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Recent studies suggested that internet gaming disorder (IGD) was associated with
impulsivity and structural abnormalities in brain gray matter (GM). However, no
morphometric study has examined the association between GM and impulsivity in IGD
individuals. In this study, 25 adolescents with IGD and 27 healthy controls (HCs) were
recruited, and the relationship between Barratt impulsiveness scale-11 (BIS) score and
gray matter volume (GMV) was investigated with the voxel-based morphometric (VBM)
correlation analysis. Then, the intergroup differences in correlation between BIS score
and GMV were tested across all GM voxels. Our results showed that the correlations
between BIS score and GMV of the right dorsomedial prefrontal cortex (dmPFC), the
bilateral insula and the orbitofrontal cortex (OFC), the right amygdala and the left fusiform
gyrus decreased in the IGD group compared to the HCs. Region-of-interest (ROI)
analysis revealed that GMV in all these clusters showed significant positive correlations
with BIS score in the HCs, while no significant correlation was found in the IGD group.
Our findings demonstrated that dysfunction of these brain areas involved in the behavior
inhibition, attention and emotion regulation might contribute to impulse control problems
in IGD adolescents.
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INTRODUCTION

Internet addiction is a rapidly growing concern in the world and is associated with a
variety of psychiatric disorders (Ko et al., 2012). Young (1998) defined Internet addiction,
including internet gaming disorder (IGD), as an impulse control disorder. Prior studies
observed that subjects with internet addiction showed higher impulsivity compared to
healthy controls (HCs; Cao et al., 2007; Lee et al., 2012). In addition, impulsivity was
also noted to predict internet use disorder in the longitudinal studies (Billieux et al.,
2011; Gentile et al., 2011). Furthermore, adolescents with IGD often exhibit behavioral
control difficulties during performing the executive or impulse control related tasks

Abbreviations: BIS, Barratt impulsiveness scale-11; dmPFC, fractional anisotropy; GM, gray matter; GMV, gray
matter volume; HCs, healthy controls; IAT, internet addiction test; IGD, internet gaming disorder; IQ, Intelligence
Quotient; OFC, orbitofrontal cortex; ROI, region of interest; VBM, voxel-based morphometric.
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(Cao et al., 2007; Ko et al., 2009; Dong et al., 2010, 2011,
2013a,b; Zhou et al., 2012; Dong and Potenza, 2014). Given
that impulsive behavior may lead to serious impairments in
psychological and social functions, such as suicide attempts and
crime, it is necessary to investigate the neural substrates of the
higher impulsivity in IGD adolescents.

Functional neuroimaging studies (Dong et al., 2012, 2013a,b,
2014; Liu et al., 2015) demonstrated that the subjects with
IGD had aberrant activations in frontal, insular, temporal and
parietal cortex compared with the HCs during performing
the impulse control related tasks, and the activations in
anterior cingulated cortex and insula significantly correlated
to the correct incongruent trial reaction time and subjective
experience to lose (Dong et al., 2012, 2013a). Previous structural
studies have revealed that IGD was associated with structural
abnormalities in gray matter (GM), such as decreased gray
matter volume (GMV) in frontal, cingulated, insular, parietal
cortex and amygdala, and increased GMV in temporal and
parahippocampal cortex (Yuan et al., 2011; Hong et al.,
2013; Kühn and Gallinat, 2014, 2015; Kühn et al., 2014;
Sun et al., 2014; Ko et al., 2015). Recently, accumulating
neuroimaging studies investigated structural correlates of
impulsivity and revealed heterogeneous findings in healthy
subjects and other impulsivity-related disorders. In healthy
subjects, negative (Boes et al., 2009; Matsuo et al., 2009;
Schilling et al., 2012, 2013) or positive (Gardini et al.,
2009; Schilling et al., 2012; Cho et al., 2013) correlations
were both reported between impulsivity and GMV/cortical
thickness in frontal, temporal regions and amygdala. The
significant correlations between GMV in the orbitofrontal
cortex (OFC)/amygdala and impulsivity were also found in
patients with major depressive disorder, alcoholism, attention-
deficit/hyperactivity disorder, posttraumatic stress disorder,
antisocial personality disorder and bipolar disorder (Antonucci
et al., 2006; Tajima-Pozo et al., 2015). However, the relationship
between impulsivity and GMV in IGD adolescents was largely
unknown.

In this study, we aimed to identify altered structural correlates
of impulsivity using a voxel-based morphometry (VBM) analysis
in IGD adolescents compared to the HCs. Twenty-five male
IGD adolescents and 27 age-, and education-matched HCs
were recruited and impulsivity was evaluated with the Barratt
impulsiveness scale-11 (BIS). Exploring the relationship between
impulsivity and GMV in IGD adolescents may provide new
insights into the underlying neural mechanisms of the higher
impulsivity in IGD adolescents.

MATERIALS AND METHODS

Subjects
Twenty-five right-handed male adolescents with IGD were
recruited in this study. Only the male subjects were examined
because of the relatively small number of females with internet
gaming experience. The inclusion criteria for IGD group were:
(i) subjects with five or more ‘‘yes’’ responses on the Young
Diagnostic Questionnaire for Internet addition (Young, 1998);

TABLE 1 | Participant’s characteristics for IGD group and the HCs.

IGD HCs
Item N = 25 N = 27 T P

Age (years) 17.28 ± 3.42 17.48 ± 2.87 −0.231 0.819
Education (years) 10.40 ± 2.71 11.33 ± 2.95 −1.186 0.241
IQ 50.08 ± 7.27 47.89 ± 6.17 1.175 0.246
Online game playing 8.56 ± 4.67 1.43 ± 0.63 7.860 <0.001
time (hours/day)
IAT Score 69.96 ± 11.43 32.15 ± 7.56 14.172 <0.001
BIS Score 68.56 ± 11.42 55.33 ± 7.87 4.895 <0.001

BIS, Barratt impulsiveness scale-11; IAT, internet addiction test; IQ, Intelligence

Quotient.

(ii) online game playing time ≥4 h per day; and (iii) Young’s
20-item internet addiction test (IAT) score ≥50. Twenty-
seven right-handed, age-, and education-matched male healthy
adolescents were recruited as the HCs. The inclusion criteria for
the HCs included: (i) the subjects had not reached the diagnostic
criteria of Young Diagnostic Questionnaire for Internet addition;
(ii) online game playing time ≤2 h per day; and (iii) Young’s
20-item IAT score <50. The exclusion criteria for both groups
were: (i) existence of a neurological disorder; (ii) alcohol or
drug abuse; and (iii) any physical illness such as a brain
tumor, brain trauma or epilepsy as assessed according to clinical
evaluations and medical records. Intelligence Quotient (IQ) of
all participants was tested using standard Rawen’s progressive
matrices. The detailed demographic information was shown in
Table 1. The protocol of this study was approved by the Ethical
Committee of Tianjin Medical University General Hospital,
and all of the participants provided written informed consent
according to institutional guidelines.

Impulsivity Assessment
The BIS, a self-report questionnaire designed to measure
impulsivity (Patton et al., 1995), was used to measure
impulsivity of all participants. All items were answered on a
4-point Likert-scale (Rarely/Never; Occasionally; Often; Almost
always/Always). Higher score signifies higher impulsivity.

Structural MRI
MR imaging was conducted on a Siemens 3.0T scanner
(MagnetomVerio, Siemens, Erlangen, Germany). A T1-weighted
volumetric magnetization-prepared rapid gradient-echo
sequence was used to acquire a series of 192 contiguous
sagittal high resolution anatomical images with the following
parameters: TR = 2000 ms, TE = 2.34 ms, TI = 900 ms, flip
angle = 9◦, FOV = 256 mm × 256 mm, slice thickness = 1 mm,
matrix size = 256 × 256.

Voxel-Based Morphometry (VBM) Analysis
Structural images were preprocessed using VBM8 tool-
box1 of the SPM8 (Wellcome Department of Imaging
Neuroscience, London, UK; available at http://www.fil.ion.ucl.
ac.uk/spm/software/spm8 implemented on MATLAB R2010a

1http://dbm.neuro.uni-jena.de/vbm/
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(Math Works Inc., Sherborn, MA, USA). Three-dimensional
geometric correction was performed during reconstruction of
the images. Then, the individual native images of all participants
were segmented into GM, white matter, and cerebral spinal
fluid, and the GM segments were normalized to the Montreal
Neurological Institute template. Next, the normalized GM
segments were registered to a template generated from their
own mean by diffeomorphic anatomical registration through
exponentiated lie algebra (DARTEL). The registered partial
volume images were then modulated by dividing the Jacobian
of the warp field to correct for local expansion or contraction.
Final modulated GM images were smoothed with an isotropic
Gaussian kernel of 8 mm full-width at half maximum. To
exclude from the statistical analysis pixels assigned by the
segmentation to GM with low probability values and pixels with
a low inter-subject anatomical overlay after normalization, the
mean image of normalized GM from all subjects was used to
create a GM mask, whose threshold was set at a value of 0.30
(pixels with computed GM fraction values >30% were selected)
and then used as an explicit mask for the statistical analysis.

Statistical Analysis
The intergroup differences in age, education, IQ, online game
playing time (hours/day), IAT score and BIS score were
compared using a two-sample t-test in SPSS 18.0 and the
significance level was set at p < 0.05.

To characterize if the correlations between GMV and BIS
score are different between the two groups, we introduced a
general linear model considering GMV as dependent variable,
with group (the HCs vs. IGD), BIS score and their interaction
as interested independent variables and the age as confounding
variable (Giedd and Rapoport, 2010). The BIS score of each
subject was demeaned in each group before entering into
the GLM model. The parameter (also called the regression
coefficient) between the GMV and BIS score of each group of
each voxel was estimated, and the regression coefficients between
the HCs and IGD group were compared using t-test. Given that
our study is an exploratory research and entails a small sample
size, a relatively loose significance threshold (uncorrected p <

0.005; cluster size >200 voxels) was used here.
Clusters with altered correlations between GMV and BIS

score in IGD adolescents were defined as regions of interest
(ROIs). Average GMV in the ROIs were extracted and the
correlations between average GMV of these ROIs and BIS score
were further tested using the Pearson correlation analysis in
SPSS 18.0. ROI-wise intergroup comparisons of average GMV
of these ROIs were also performed using two-sample t-test.
The significance level was set at p < 0.05.

RESULTS

Demographic Data Results
There was no significant intergroup difference in age, education
and IQ. Online game playing time (hours/day), IAT score and
BIS score were significantly higher in the IGD group than in the
HCs (Table 1).

Voxel-Wise Correlation Results
The voxel-wise correlation analysis revealed that,
compared to the HCs, IGD adolescents had lower
correlations between BIS score and GMV in the right
dorsomedial prefrontal cortex (dmPFC), the bilateral
OFC/insula, the right amygdala and the left fusiform cortex
(uncorrected p < 0.005; cluster size >200 voxels; Table 2,
Figure 1).

Region-Of-Interest (ROI) Correlation
Results
ROI-based correlation analysis showed significant positive
correlations between GMV of all these clusters and BIS score in
the HCs, while no significant correlation was found in the IGD
group (Table 3, Figure 1).

Region-Of-Interest (ROI) Gray Mater
Volume (GMV) Results
There was no significant intergroup difference in GMV within
the right dmPFC, the bilateral OFC/insula, the right amygdala
and the left fusiform cortex (Table 4).

DISCUSSION

In the present study, the correlation between GMV and
impulsivity was investigated in adolescents with IGD. Altered
correlations between impulsivity and GMV in the right dmPFC,
the bilateral insula/OFC, the right amygdala and the left
fusiform gurus were revealed in IGD adolescents compared to
the HCs.

A number of neuroimaging studies revealed that the OFC
and the dmPFC not only played a critical role in behavior
inhibition but were also involved in the regulation of emotion
(Horn et al., 2003; Kringelbach and Rolls, 2004; Ochsner et al.,
2004; Rolls, 2004; Amodio and Frith, 2006; Lemogne et al.,
2012). Previous fMRI studies showed significant activation of
the OFC during response inhibition in healthy subjects, which
positively correlated to trait impulsivity score (Brown et al.,
2006; Goya-Maldonado et al., 2010). Patients with alcohol
dependence also showed altered functional activation in the
OFC during a stop signal task, which was associated with less
control of impulsivity and emotion instability (Li et al., 2009).
Neuroimaging study demonstrated that GMV of the dmPFC

TABLE 2 | Regions showing decreased structural correlates of impulsivity
in adolescents with IGD compared with the HCs.

Peak MNI Coordinates Cluster Size

Region X Y Z T value* (voxels)

R_dmPFC 6 32 36 4.04 926
R_OFC/insula 33 18 −14 3.68 425
L_OFC/insula −33 27 −9 3.37 213
R_Amygdala 30 −6 −12 3.36 227
L_Fusiform −35 −84 −17 4.08 342

∗Uncorrected P < 0.005, Cluster size >200. dmPFC, dorsomedial prefrontal

cortex; L, left; OFC, orbitofrontal cortex; R, right.
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FIGURE 1 | Brain regions showing decreased structural correlates of impulsivity in IGD adolescents compared to the HCs. (A) dmPFC; (B) right
OFC/Insula; (C) left OFC/Insula; (D) right Amygdala; (E) left Fusiform. GMV of all these clusters showed positive correlations with BIS score in the HCs, while no
significant correlation was found in the IGD group. T value ranges from 2 to 5 presented by color bar.

had a significant positive correlation with novelty seeking
which refers to an individual’s tendency to action behaviors
in healthy subjects (Gardini et al., 2009). It has also been
reported that the dmPFC showed abnormal activation during
performing cognitive task which contributed to self-regulation

and impulse control processing in the subjects with IGD
compared with healthy subjects (Meng et al., 2015). In addition,
Cho et al. (2013) and Antonucci et al. (2006) reported
that GMV of the dmPFC and the OFC positively correlated
with BIS score in healthy subjects and a group of non-
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TABLE 3 | The correlations between the GMV of ROIs and BIS score in IGD
adolescents and the HCs.

ROI IGD HCs

r P r P

R_dmPFC −0.121 0.565 0.608 0.001
R_OFC/insula −0.103 0.624 0.541 0.004
L_OFC/insula −0.255 0.218 0.517 0.006
R_Amygdala −0.288 0.162 0.564 0.002
L_Fusiform 0.250 0.905 0.554 0.003

dmPFC, dorsomedial prefrontal cortex; L, left; OFC, orbitofrontal cortex; R, right.

TABLE 4 | Comparison of GMV within the ROIs between IGD adolescents
and the HCs.

ROI IGD HCs T P

R_dmPFC 0.552 ± 0.053 0.571 ± 0.081 −0.981 0.331
R_OFC/insula 0.783 ± 0.044 0.793 ± 0.070 −0.622 0.537
L_OFC/insula 0.676 ± 0.061 0.650 ± 0.081 1.331 0.189
R_Amygdala 0.647 ± 0.059 0.636 ± 0.047 0.732 0.467
L_Fusiform 0.575 ± 0.042 0.585 ± 0.070 −0.647 0.521

dmPFC, dorsomedial prefrontal cortex; L, left; OFC, orbitofrontal cortex; R, right.

psychotic psychiatric clients, respectively. In line with these
studies, our study also revealed positive correlations between
BIS score and GMV of the right dmPFC and the bilateral
OFC in the HCs. However, no significant correlation was
found between impulsivity and GMV of the right dmPFC and
bilateral OFC in IGD adolescents. These results implicated that
the higher impulsivity in IGD adolescents was associated with
the functional or the structural changes in the dmPFC and the
OFC which are involved in behavior inhibition and emotion
regulation.

In our study, the bilateral insula showed altered
morphological correlations with impulsivity in IGD group.
Insula belongs to the salience network (Di Martino et al.,
2009; Menon and Uddin, 2010; Cauda et al., 2011; Deen et al.,
2011; Menon, 2011) and is critical to the high-level cognitive
control and attention processing (Menon and Uddin, 2010;
Sharp et al., 2010). Horn et al. (2003) reported that trait
impulsivity score was positively associated with activation
of the insula in healthy subjects. Significant activations of
the insula were also found in individuals with IGD during
performing the cognitive tasks compared to healthy subjects
(Dong et al., 2013a; Dong and Potenza, 2014). Furthermore,
functional connectivity analysis revealed that the insula exhibited
enhanced rest-stating functional connectivity with brain areas
(including anterior cingulated cortex, putamen, angular gyrus,
precuneous, precentral gyrus and supplemental motor area)
which were involved in salience, self-monitoring, attention
and movement control in IGD subjects (Zhang et al., 2015).
These results indicated that abnormal salience network might
contribute to the dysregulation of cognitive control and
attention processing, which leaded to the higher impulsivity in
IGD subjects.

In this study, altered structural correlations to impulsivity
were found in the right amygdala and the left fusiform
in the IGD adolescents. The amygdala was a critical

region for regulating affective control and emotional/social
behavior (Cisler and Olatunji, 2012; Gabard-Durnam et al.,
2014). In addition, the amygdala was also a critical neural
substrate for impulse control in patients with substance
abuse (Hill et al., 2001). A recent study demonstrated
that GM density of the bilateral amygdala decreased and
connectivity between the prefrontal cortex/insula and
the amygdala increased in IGD individuals, which might
represent their emotion dysregulation (Ko et al., 2015).
Additionally, the fusiform gyrus is mainly involved in
processing of the emotion perception in facial stimuli and
is also critical to emotion processing (Weiner et al., 2014).
Taken together, it is plausible to postulate that altered emotion
regulation may contribute to the higher impulsivity in IGD
adolescents.

In our study, the positive correlations between impulsivity
and GMV in the HCs may be related to stronger contribution
of these brain areas to impulsive control. The individuals with
higher impulsivity need to make more efforts to control their
behaviors, and as a physiological compensatory response (Cho
et al., 2013), GMV of the brain areas related to impulse control
increased. Contrary to the HCs, no significant correlation was
found in the IGD adolescents, which may be explained as
the compensatory mechanism that invoked in the HCs was
not presented in the IGD adolescents. However, it should be
mentioned that there was no significant intergroup difference
in GMV of the right dmPFC, the bilateral OFC/insula, the
right amygdala and the left fusiform cortex, which may indicate
that the IGD adolescents enrolled in our study were still at
the early stage of IGD and the structural alterations were
too subtle to be detected with VBM method. Moreover, it
is difficult to determine whether disappeared correlations in
the IGD adolescents was because of preexisting abnormal
structural development or secondary to the IGD with this
cross-sectional study. A longitudinal study may be helpful
in clarifying this causality. Other limitations should also be
noted in this study. First, as few women or other age groups
exhibit IGD, only young males were recruited in our study.
The current findings should be considered as specific to young
males with IGD, and future studies should be performed in
female subjects and in other age groups. Second, the relatively
small sample size limited the statistical power; the results
should be confirmed by a further study with a larger sample
size.

In conclusion, the altered correlations between impulsivity
and the GMV in the dmPFC, OFC, insula, amygdala and the
fusiform in IGD adolescents indicated that the dysregulation in
the brain networks involved in behavior inhibition, attention and
emotion regulation might contribute to the high impulsivity in
IGD adolescents.
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