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Developmental toxicity of organotin compounds in animals
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Organotin compounds (OTs) have been used as biocides in antifouling paints and
agriculture. The IMO introduced a global ban on the use of OTs in antifouling systems in
2001 due to their high toxicity. However, OTs have still been detected in the environment
and pose a threat to the ecosystem. Several research groups have summarized
the analytical methods, environmental fate, biochemistry, reproductive toxicity and
mechanisms of actions of OTs. Here, we reviewed the developmental toxicity of OTs
in various organisms such as sea urchin, ascidian, mussel, and fish. The differences
in sensitivity to OT exposure exist not only in different species but also at different
stages in the same species. Though some hypotheses have been proposed to explain
the developmental toxicity of OTs, the solid evidences are greatly in need.
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INTRODUCTION
Organotin compounds (OTs) have been widely used as bio-
cides in antifouling paints and agriculture since the 1960s.
Tributyltin (TBT) and triphenyltin (TPT) are most important
OTs. TBT is considered the most toxic man-made and deliber-
ately substances introduced into the environment. It can cause
the imposex in gastropods—a condition in which male sex
organs develop in females (Gibbs et al., 1987; Shi et al., 2005).
Therefore, the International Maritime Organization (IMO) calls
for a global treaty that bans the application of OTs as biocides
(IMO, 2001). The unique story of TBT and imposex not only
is one of the best examples of endocrine disruption in wildlife
but also show us a typical story of the integration between
the fields of scientific research and regulation (Sousa et al.,
2013).

Despite this success, the story of OTs is far from its end. OTs
are still widely used rather than in antifouling paints. OTs have
been still detected in various environments in recent years (Yi
et al., 2012; Ho and Leung, 2014). Thus, OTs inputs will con-
tinue, and the hazard of OTs will still exist. In recent years,
several research groups have reviewed the analytical methods
(Dubalska et al., 2013), environmental fate (Dubalska et al., 2013;
Graceli et al., 2013; Sousa et al., 2013), reproductive toxicity
(Graceli et al., 2013), and the mechanisms of actions of OTs
(Pagliarani et al., 2013). The early developmental stages of organ-
isms are highly sensitive to chemical exposure. Therefore, we
reviewed the current study of developmental toxicity of OTs in
the present paper.

EFFECTS OF OTs ON DIFFERENT SPECIES AT EARLY
DEVELOPMENTAL STAGES
Many studies have shown that OTs have high toxicity to embryos
of various organisms at environmentally relevant concentrations
(Table 1).

SEA URCHIN
TBT significantly reduces the growth of sea urchin Paracentrotus
lividus from post-fertilization to the pluteus stage at 0.01 µg/L
(Marin et al., 2000). The length of the P. lividus pluteus somatic
rods is significantly reduced by 1.5 µg/L TPT at 48 h post-
fertilization. Progressive increases in skeletal anomalies are also
detected. Embryos never reach the pluteus stage at 5 µg/L, and the
development is blocked at the gastrula stage at 10 µg/L (Moschino
and Marin, 2002).

ASCIDIAN
TBT blocks Styela plicat embryo development to the larval stage
from 1 µM. Exposure to 10 µM TPT soon after fertilization hin-
ders embryonic cleavage and at the two-cell to four-cell stage
blocks further development (Cima et al., 1996). Incubation of
Ciona intestinalis neurula larvae in 0.1–10 µM TBT solutions for
1–2 h provokes serious anomalies thus causes an irreversible block
of embryonic cleavage (Dolcemascolo et al., 2005).

BIVALVES
TBT increases the mortality of Crassostrea gigas embryos
at 0.36 µg/L at 24 h (Tsunemasa et al., 2011), and induces
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Table 1 | Comparison of developmental toxicity of organotin

compounds in animals.

Species Time LC50 EC50 References

CRASSOSTREA GIGAS

Tributyltin 2 h 16 µg/L – Tsunemasa
et al., 2011

24 h 3.9 µg/L – Tsunemasa
et al., 2011

Triphenytin 2 h 14 µg/L – Tsunemasa
et al., 2011

24 h 2.7 µg/L – Tsunemasa
et al., 2011

MYTILUS GALLOPROVINCIALIS

Tributyltin 48 h – 377 ng/L Beiras and
Bellas, 2008

GILTHEAD SEABREAM

Tributyltin
chloride

24 h 28.3 µg/L – Dimitriou et al.,
2003

Triphenytin
chloride

24 h 34.2 µg/L – Dimitriou et al.,
2003

DANIO RERIO

Trimethyltin 96 h 8.2 µM 2.8 µM Chen et al., 2012
Triphenyltin
acetate

96 h 40 µg/L – Strmac and
Braunbeck, 1999

XENOPUS TROPICALIS

Triphenytin 72 h 5.25 µg·Sn/L 0.96 µg·Sn/L Yu et al., 2011

malformations of Mytilus galloprovincialis embryos at 0.161 µg/L
(Beiras and Bellas, 2008). TBT also induces cytogenetic damage
(sister chromatid exchanges and chromosomal aberrations) in
Mytilus edulis embryo (Jha et al., 2000).

FISH
TPT increases the mortality of European minnows Phoxinus
phoxinus embryos at 3.9 µg/L and causes bent tails, opaque eyes
and impaired swimming behavior in P. phoxinus larvae after 3
days exposure (Fent and Meier, 1994). TPT also induced skele-
tal and ocular deformations in other fishes at environmentally
relevant concentration (Strmac and Braunbeck, 1999; Hu et al.,
2009). TBT reduces the hatchability and causes dorsal curvature,
severely twisted tails and pericardial edema in Sebastiscus mar-
moratus embryo at no less than 10 ngSn/L levels (Zhang et al.,
2011).

AMPHIBIAN
TBT and TPT induce multiple malformations in Xenopus tropi-
calis embryos at environmentally relevantly concentrations (Guo
et al., 2010; Yu et al., 2011). The dominant phenotypes of mal-
formation include abnormal eyes, enlarged proctodaeum, and
narrow fins (Yu et al., 2011). TPT also significantly affects sur-
vival, growth, and days to metamorphosis in Lithobates sylvaticus
larvae at 0.1 µg/L (Higley et al., 2013).

MAMMAL
DBTCl (dibutyltin chloride) leads to a significantly decrease
of survival rate of fetuses at terminal cesarean sectioning in
cynomolgus monkeys after 2.5 mg/kg exposure. TPT induces

postimplantation embryonic loss in pregnant rats, but no results
indicate teratogenic responses. The study of mammals may sug-
gest that OTs possesses no teratogenic effect in mammals (Ema
et al., 2007).

STAGE-SPECIFIC SENSITIVITY OF ANIMALS TO ORGANOTIN
EXPOSURE
Toxicity of xenobiotics to embryos is dependent not only on type,
level, and duration of exposure but also on developmental stages
of exposure. In sea urchin, organotins strongly affect all stages
(soon after fertilization, two to four cells, gastrula, and neurula)
of Styela plicata embryo, but the most sensitive and critical stage
is gastrula (Cima et al., 1996). Same sensitive stage has been
reported in the Ciona intestinalis embryo (Vittoriaa et al., 2009).
Gastrula is also the most sensitive stage when Lytechinus variega-
tus embryos is treated with TBT (Perina et al., 2011). The most
susceptible developmental stage to trimethyltin (TMT) exposure
is between 48 and 72 hpf in zebrafish embryo (Chen et al., 2012).
The most sensitive stage is stage39/40 to stage41, followed by
stage41 to stage43 in amphibian (Xenopus tropicalis) embryos
after exposure to TPT (Yuan et al., 2011).

MECHANISMS OF ACTION OF OTs IN ANIMALS
Several mechanisms of actions of OTs have been reported both in
vitro and in vivo studies (Grün and Blumberg, 2006). However,
the mechanism of OTs in the developmental stages is still not
clear.

NUCLEAR RECEPTOR
TBT and TPT have been proved to induce imposex in snails by
binding to retinoid X receptor (RXR), as the natural ligand of
RXR, 9-cis retinoic acid (9c-RA) acts (Figures 1A–C) (Nishikawa
et al., 2004; Nakanishi, 2008). Many studies have suggested that
TBT or TPT disturb fish and frog embryos development through
RXR (Yu et al., 2011; Zhang et al., 2011; Higley et al., 2013).
Since the natural ligand of RXR (i.e., 9c-RA) is a well-known
teratogen by disrupting retinoic acid (RA) signal in vertebrate
embryos (Minucci et al., 1996), it is reasonable to deduce that
OTs induce malformations through RA signaling pathway (Hu
et al., 2009). However, TPT and 9c-RA induce totally different
phenotypes of malformations and have different sensitive expo-
sure windows in frog embryos (Figures 1D–F) (Yu et al., 2011;
Yuan et al., 2011). These findings suggest that RA signal is not
involved in OTs-induced teratogenicity.

APOPTOSIS
In zebrafish (Danio rerio) embryo, 5 µM TMT exposure signifi-
cantly promots apoptosis in the tail, this enhanced apoptosis in
the tail may partly explain the attenuated tail touch response in
the TMT treated embryo (Chen et al., 2011). Similar localized
apoptosis in the tail is caused by TBT in Sebastiscus marmoratus
embryo, which may be the reason of TBT induced twisted tails
abnormality (Zhang et al., 2011). TMT actives the caspase 8/cas-
pase 3 pathway for nuclear translocation of DNases in the primary
cultured cortical neurons from embryonic mice, suggesting that
TMT neurotoxicity is initially caused by activating this apoptosis
pathway (Kuramoto et al., 2011).
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FIGURE 1 | Comparison of toxic effects of triphenyltin (TPT) and 9-cis

retinoic acid (9c-RA) on snail (Thais clavigera) (A–C) and frog (Xenopus

tropicalis) (D–F). Photographs of (A–C) were cited from Nishikawa et al.

(2004) with permission. cg, capsule gland; ov, ovary; p, penis; vd, vas
deferens; e, eye; f, fin; bt, bent tail; te, turbid lens of eyes; nf, narrow fin; pe,
protruding eye.

INTRACELLULAR Ca2+ HOMEOSTASIS
Calcium ion is a key signaling molecule in many developmental
processes and plays a critical role in chemical-induced toxic cell
killing and apoptosis. In the eggs of the sea urchin Paracentrotus
lividus, TBT inhibits intracellular sequestration of Ca2+ into the
reticular compartment at low concentrations and inhibits the ion
flow during skeletal deposition (Moschino and Marin, 2002).

OTHER POTENTIAL MECHANISMS
TBT exposure results in a significant decrease of Na+/K+-ATPase
activity in S. marmoratus brains and induces changes in the
total pattern of phosphotyrosine and in the phosphorylation
levels of ERK 1/2 in Ciona intestinali embryos (Zhang et al.,
2008; Damiani et al., 2009). Another subfamily of MAPKs, c-Jun
N-terminal kinase (JNK), is reported to be involved in part of
the neuronal degeneration induced by TMT in cortical neurons
of mice (Shuto et al., 2009).

CONCLUSION AND FUTURE PERSPECTIVE
A lot of researchers have suggested that OTs show a high toxicity
to many species, especially at their early life stages. The differ-
ences in sensitivity to OT exposure exist not only in different
species but also at different stages in the same species. Though

some hypotheses have been proposed to explain the develop-
mental toxicity of OTs, the solid evidences are greatly in need.
Further studies may help to fill gaps and to improve knowledge
of developmental toxicity of OTs.
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