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Androgens regulate biological pathways to promote proliferation, differentiation, and sur-
vival of benign and malignant prostate tissue. Androgen receptor (AR) targeted therapies
exploit this dependence and are used in advanced prostate cancer to control disease
progression. Contemporary treatment regimens involve sequential use of inhibitors of
androgen synthesis or AR function. Although targeting the androgen axis has clear ther-
apeutic benefit, its effectiveness is temporary, as prostate tumor cells adapt to survive
and grow. The removal of androgens (androgen deprivation) has been shown to activate
both epithelial-to-mesenchymal transition (EMT) and neuroendocrine transdifferentiation
(NEtD) programs. EMT has established roles in promoting biological phenotypes associ-
ated with tumor progression (migration/invasion, tumor cell survival, cancer stem cell-like
properties, resistance to radiation and chemotherapy) in multiple human cancer types.
NEtD in prostate cancer is associated with resistance to therapy, visceral metastasis, and
aggressive disease. Thus, activation of these programs via inhibition of the androgen axis
provides a mechanism by which tumor cells can adapt to promote disease recurrence and
progression. Brachyury, Axl, MEK, and Aurora kinase A are molecular drivers of these pro-
grams, and inhibitors are currently in clinical trials to determine therapeutic applications.
Understanding tumor cell plasticity will be important in further defining the rational use
of androgen-targeted therapies clinically and provides an opportunity for intervention to
prolong survival of men with metastatic prostate cancer.
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INTRODUCTION
Prostate cancer is the most prevalent malignancy in men, and
ranks second as the cause of cancer-related deaths in the devel-
oped world (1, 2). Advanced prostate cancer is initially treated
with androgen deprivation therapy (ADT) and subsequently with
newer generation androgen-targeted therapies (ATT), approaches
which rely on the central role of androgens in tumor develop-
ment and growth. In the majority of patients, castrate resistant
prostate cancer (CRPC) develops and tumor progression occurs
despite treatment. The development of agents that more effec-
tively block androgen receptor (AR) activity, such as enzalutamide
and abiraterone, has greatly enhanced the clinical armamentarium
and extended survival (3–6). Nonetheless, advanced prostate can-
cer remains incurable. Tumor cell plasticity induced by androgen

deprivation may play a critical role in disease progression, and
potentially provides an additional opportunity to further improve
cancer control.

PROGRESSION TO CASTRATE RESISTANCE
While the exact mechanisms underlying the development of CRPC
are not yet known, it arises when cancer cells can either main-
tain AR signaling in the absence of normal levels of ligand or no
longer require activation of this pathway for survival and pro-
liferation. There are a number of mechanisms that can produce
this outcome, including altered functionality of the AR due to
genomic events, resulting in either promiscuous (7, 8), constitu-
tively activated (9, 10), or hypersensitive (11, 12) states; intrapro-
static production of androgens by tumor cells themselves (13); and
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altered growth factor and/or microenvironment signaling (14–18).
Despite the development of multiple strategies that effectively tar-
get the androgen axis, disease progression is inevitable. This is
underpinned by the accumulation of further genomic abnormali-
ties, outgrowth of different clonal populations of tumor cells, and
the adaptive response of cancer cells to therapy. In this review,
we focus on adaptive changes induced by therapy, specifically
epithelial-to-mesenchymal plasticity (EMP) and neuroendocrine
transdifferentiation (NEtD), which may contribute to the devel-
opment of advanced disease (Figure 1). A better understanding of
these processes will contribute to the development of new ther-
apeutic strategies that may potentially enhance the efficacy of
androgen-targeted agents and delay disease progression.

EPITHELIAL-TO-MESENCHYMAL PLASTICITY
Epithelial-to-mesenchymal transition (EMT) is a process by which
adherent, polar cells with an otherwise epithelial phenotype
develop more migratory and invasive properties through altered
gene expression (19–23). Both EMT and the related process
mesenchymal-to-epithelial transition are physiological mecha-
nisms important in development and tissue repair. However, when
differentiated epithelium begins to display mesenchymal charac-
teristics it is often a sign of disease progression in cancers (19,
24–27). EMT is commonly characterized by the loss of epithelial
markers (typically E-cadherin, epithelial cytokeratins, and desmo-
somes), and gain of mesenchymal markers (such as N-cadherin,
vimentin, and fibronectin) and transcriptional repressors of E-
cadherin (Twist1, Snai1, Snai2, Zeb1, Zeb2) (20, 21). EMT has
been associated with advanced prostate cancer, and correlated
with aggressive behavior and therapy resistance in primary tumors
(17, 28–30).

NEUROENDOCRINE TRANSDIFFERENTIATION
While men may present with prostate cancer demonstrating
various neuroendocrine features (31), the prevalence of

neuroendocrine differentiation increases following ADT and in
CRPC (32–37). These cells not only express neuropeptides, rem-
iniscent of the normal NE cells of the prostate, but also proteins
that are characteristic of prostate epithelial cells [such as prosta-
tic acid phosphatase cytokeratin 8/18 and/or epithelial adhesion
molecules and proliferation markers (38, 39)], while AR expres-
sion is typically absent or low (40). Importantly, the number of
NE-like prostate cancer cells is positively associated with the dura-
tion of hormone deprivation therapy (32–34). There are several
hypotheses for the origin of NE-like prostate cancer cells. It has
been postulated that NE-like cancer cells can arise during dis-
ease progression from NE cells of the prostate (41). However, the
observation that genetic aberrations are common to both the ade-
nocarcinoma and NE-like cells (42–45) suggests that this is not
likely to be a common mechanism. An alternative explanation is
that a common progenitor prostate cancer stem cell gives rise to
both the NE-like and adenocarcinoma components and both these
components continue to evolve and respond to selective pressures
in parallel (42, 44, 46, 47). In contrast, NEtD is a process that can
enable prostatic adenocarcinoma cells to gain NE characteristics
without relying on genetic divergence. NEtD can occur after pro-
longed androgen deprivation, and has recently been reported in
a patient derived xenograft (48). This mechanism would poten-
tially enable tumor cells to reduce ATT-induced apoptosis and
thus provide an adaptive pathway that would contribute to the
development of CRPC (41).

ANDROGENS SUPPRESS NEUROENDOCRINE
TRANSDIFFERENTIATION
Evidence of NEtD has been observed in both in vitro and in vivo
studies. LNCaP cells, an androgen dependent prostate cancer cell
line derived from a lymph node metastasis, undergo NEtD when
exposed to media lacking androgens (39, 49–51). In low-androgen
conditions, LNCaP cells take on an altered elongated neuron-like

FIGURE 1 | Inhibition of androgen receptor (AR) signaling using
androgen-targeted therapies (ATT) induces adaptive responses
including epithelial–mesenchymal transition (EMT) and
neuroendocrine transdifferentiation (NEtD) in prostate cancer cells.

These phenotypes are associated with CRPC (castrate resistance prostate
cancer). Inhibition of plasticity drivers Brachyury, Axl, MEK, and Aurora
kinase A provide potential mechanisms to reduce the induction of the EMT
and/or NEtD phenotypes.
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phenotype, gain cytoplasmic secretory granules, and undergo
growth arrest. This is accompanied by an increase in expression of
NE markers and a decrease in AR and PSA levels. This transdif-
ferentiation is reversible with the addition of androgens (DHT) to
the media, an observation consistent with the identical allelic pro-
files of NEtD LNCaP and parental LNCaP cells. Silencing of the AR
using siRNA also induces NEtD in LNCaP cells, suggesting that AR
signaling suppresses NEtD (52). In vivo studies also provide sup-
port for the NEtD model. Castration of nude mice bearing prostate
cancer xenografts LNCaP, PC-295, CWR22, and PC-310 increased
the number of tumor cells expressing NE markers, consistent with
induction of NEtD (53–56). Furthermore, implantation of pri-
mary patient tumor tissues from a population of adenocarcinoma
cells implanted under the renal capsule of castrated mice appear
to undergo an NEtD en masse as an adaptive response (48).

THERAPY-INDUCED EMT
There is accumulating evidence supporting that ADT may induce
an EMT, and that this is particularly prominent with the newer
generation ATT. ADT has been associated with an increase in the
expression of mesenchymal markers N-cadherin, vimentin, Zeb1,
Twist1, and Snai2, with a concomitant loss of E-cadherin in patient
derived xenografts and clinical prostate tumors (17, 57–59). Tra-
ditionally, investigations have primarily focused on the effects of
targeting AR signaling in prostate cancer cells; however, ADT/ATT
is not specific to tumor cells alone. Recent reports demonstrate
significant effects of ADT/ATT on the tumor microenvironment,
including stromal and immune cells (15, 18, 60). For instance,
elevated numbers of tumor associated macrophages have been
reported in men undergoing ADT (60), and these cells have been
shown to promote local invasion and metastatic dissemination of
tumor cells in response to ADT (18, 57–60). Hence, the implica-
tions of targeting the androgen axis and its effect on the multiple
cell types comprising the tumor microenvironment needs to be
assessed when considering therapeutic interventions.

THERAPY-INDUCED EMT AND NEUROENDOCRINE
TRANSDIFFERENTIATION AS CLINICAL TARGETS
Therapeutically targeting regulators of EMP/NEtD is an attrac-
tive concept that has recently matured to clinical trials (Figure 1).
Brachyury is a transcription factor required for the developmen-
tal EMT that generates mesoderm by converting epithelial cells
into migratory mesenchymal cells (61). In tumor cells, includ-
ing prostate cancer, Brachyury also induces EMT and an invasive
phenotype (62–65). Furthermore, Brachyury is overexpressed at
both the transcript and protein level in clinical prostate cancer
specimens, and nuclear expression is associated with metastasis
(66). While the regulation of Brachyury by androgen-targeted
therapies has not been addressed, Brachyury motifs were highly
enriched in AR bound promoters when LAPC-4 cells were grown
in the presence of AR antagonist flutamide (67). Furthermore,
in silico bioinformatic analysis using transcriptional profiles from
clinical prostate cancer specimens and clustering Brachyury co-
expressed genes by functional role/signaling pathways demon-
strated an enrichment for regulation of neuron differentiation
and nervous system development (68). An inverse relationship

between Brachyury and E-cadherin expression, with a concomi-
tant positive correlation of Brachyury with EMT promoting genes
FN1, Snai1, IL8, and TGF-β was also observed. Thus, we hypothe-
size that targeting Brachyury in the context of ATT may modulate
the emergence of both a neuroendocrine phenotype and EMP
by preventing, for example, the induction of Brachyury medi-
ated release of migration/invasion promoting soluble factors into
the tumor microenvironment (62, 68, 69). GI-6301 (Tarmogen)
is a Brachyury vaccine (70) currently in Phase I clinical trial in
patients with metastatic or unresectable locally recurrent cancers
who have failed previous therapy or have no further therapeutic
options (NCT01519817). Recent assessment of data from patients
with advanced chordoma in this trial demonstrated safety and a
confirmed partial response (71), and data from the larger cohort
are eagerly awaited.

The receptor tyrosine kinase Axl is implicated in the Snai1-,
Snai2-, IL6-, and STAT3-mediated activation of EMT (72, 73)
as well as the metastasis promoting AKT/NF-κB and AKT/Snai2
pathways (73, 74) in multiple cancer types. Targeting Axl has
shown promise in preclinical models of cancer progression (75–
77), and clinical trials are currently underway. BGB324 is a small
molecule inhibitor of the Axl receptor tyrosine kinase developed to
block EMT with the goal of inhibiting drug-resistance and metas-
tasis. Recent Phase Ia data have demonstrated BGB324 to be safe
and well tolerated, and Phase Ib studies commenced in non-small
cell lung cancer and acute myeloid leukemia in 2014. Cabozanti-
nib is another tyrosine kinase inhibitor targeting Axl, as well as
EMT promoting kinases VEGFR2, RET, KIT, FLT-1/3/4, c-MET,
and Tie-2 (78–80). Clinically significant regression of metasta-
tic tumors in CRPC patients was achieved with cabozantinib
treatment in a Phase II trial (81). Of course the precise molec-
ular mechanism underpinning this efficacy is not clear and likely
involves inhibition of multiple tyrosine kinases in several cell types.
Trials investigating whether cabozantinib is a useful addition to
ADT in the control of prostate cancer are currently underway
(NCT01630590).

MEK inhibitors may also be useful in managing therapy-
induced EMP/NEtD. In vitro, MEK inhibitor PD98059 blocked
the acquisition of NE-like morphology and prevented the increase
in NSE levels usually observed in LNCaP-C33 cells induced to
undergo NEtD by androgen-depletion (82). Ectopic expression of
constitutively active AR in LNCaP cells inhibited RAF/MEK/ERK-
induced NSE expression (83), demonstrating the central regu-
latory role of AR in constraining the emergence of this pheno-
type. Furthermore, the RAF/MEK/ERK pathway has been shown
to be necessary for the induction of Twist1, Snai1, and N-
cadherin in multiple cancer models (84, 85). A neoadjuvant trial
examining the effect of short-term MEK inhibition (trametinib)
prior to radical prostatectomy in the context of ADT on mark-
ers of EMT (N-cadherin, vimentin) has recently commenced
(NCT01990196).

Finally, Aurora kinase A (AURKA) inhibitors may also be effec-
tive in inhibiting ATT-induced EMP/NEtD as they suppress both
EMT and NEtD in vitro and in vivo (86, 87). In cancer cells,
AURKA has been demonstrated to play an important role in the
genesis of a more mesenchymal phenotype via down-regulation
of E-cadherin and up-regulation of vimentin (88). Clinical trials
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examining the role of the inhibitors in prostate cancer are currently
ongoing (NCT01799278, NCT01094288).

Despite independent lines of evidence implicating key factors
in both EMT and NEtD, the functional and molecular relation-
ship between these states in prostate cancer has not been exten-
sively explored. McKeithen et al. (89) have demonstrated that the
well-established EMT-inducing transcription factor Snai1 induced
both EMT and NEtD in LNCaP cells as defined by morphology
and marker expression. However, as the data are mostly presented
as analyses of bulk populations of cells, it is not possible to deter-
mine whether EMT and NEtD phenotypes are co-expressed within
individual cells, and are thus intimately linked, or whether these
transdifferentiation processes are independent of each other and
become activated by influences such as neighboring cells, local
microenvironmental cues, or cell intrinsic factors.

CONCLUDING REMARKS
Multiple factors are clearly involved in the progression to CRPC
during treatment with ATT. Studies over the past two decades
have associated blockade of the androgen axis with the increased
prevalence of neuroendocrine prostate cancer. These observations,
in combination with recent reports of androgen deprivation mod-
ulating EMP, suggest novel strategies for therapeutic intervention.
Further studies will be required to determine whether these adap-
tive response pathways have a functional role in the progression to
CRPC or are simply a consequence of removing the differentiation
pressure imposed by active androgen signaling on prostate cells.
Moreover, revealing if and how these plasticity pathways inter-
sect in the androgen-targeted environment will be an intriguing
area for future research. Improved understanding of the molecu-
lar pathways underlying the adaptive responses to ATT provides
opportunities to investigate whether targeted inhibition of these
pathways will delay tumor progression and thus improve outcomes
for men with prostate cancer.
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