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Major Depressive Disorder is a debilitating and increasingly prevalent psychiatric condition
(Compton et al., 2006; Andersen et al., 2011). At present, its primary treatments are
antidepressant medications and psychotherapy. Curiously, although the pharmacological
effects of antidepressants manifest within hours, remission of clinical symptoms takes
a number of weeks—if at all. Independently, support has grown for an idea—proposed
as early as Helmholtz (von Helmholtz, 1924)—that the brain is a prediction machine,
holding generative models1 for the purpose of inferring causes of sensory information
(Dayan et al., 1995; Rao and Ballard, 1999; Knill and Pouget, 2004; Friston et al., 2006;
Friston, 2010). If the brain does indeed represent a collection of beliefs about the causal
structure of the world, then the depressed phenotype may emerge from a collection of
depressive beliefs. These beliefs are modified gradually through successive combinations
of expectations with observations. As a result, phenotypic remission ought to take some
time as the brain’s relevant statistical structures become less pessimistic.
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THE FREE-ENERGY PRINCIPLE
The free-energy principle has been proposed as a unifying frame-
work that simultaneously links perception and action, and for-
malizes the roles of brain theories including attention, motor
control, and perceptual learning (Friston et al., 2006; Friston,
2010; Clark, 2013). It is a mathematical description whereby the
brain is a predictive device that builds statistical models of the
world and then seeks to minimize “free energy,” an approxima-
tion of surprise. Free energy depends on a number of quantities,
including the internal states of the brain, the external envi-
ronment, and exchanges between the two (through action and
perception). Mathematically, free energy is a statistical quan-
tity that approximates the surprise in a sensory input, and it
rests on two probability densities: a recognition density and
a generative model (Friston et al., 2006; Friston, 2010; Clark,
2013).

The first component—the recognition density—is an approx-
imate probability distribution of the causes of sensory data
(Friston, 2010). This is quite a simple concept to apply: when
a visual neuron fires in response to a horizontal bar in an area
of the visual field, we could think that the stimulus caused the
neural response. Equally, from the point of the neuron, we can
consider its firing to reflect a probability that our sensation of a
stimulus was caused by a horizontal bar in a particular area. The
second component—the generative model—is a joint probabil-
ity density between data and their causes from which samples can

1Technically there is only one generative model, but for the purpose of
this essay I refer to multiple internal models since the hierarchical structure
supports many processing levels (as in Clark, 2013)

be drawn (Friston, 2010). In the present context, the generative
model seeks to capture the statistical structure of its sensory envi-
ronment by tracking the web of causes of that statistical structure.
Crucially, the inferences we make about causes are not restricted
to immediate sensory signals (e.g., “the switch caused light”),
nor even time-varying/transitive inferences (e.g., “that bird is fly-
ing”) (Friston, 2010). The brain’s model of the world also includes
time-invariant regularities that afford structure to our world e.g.,
“gravity makes things fall,” but could equally be “I am in control
of my own actions.” Having said this, it is important to note that
Bayes rule and Bayesian brain theory do not guarantee veridical
associations.

MODELS IN THE BRAIN?
A “belief” in the context of the free-energy principle is formal-
ized as a probability distribution of an external state as internally
represented by its sufficient statistics (Huys and Dayan, 2009;
Friston, 2010; Mathys et al., 2011). For the purposes of this arti-
cle, a “belief” is simplified as a prediction about the cause of an
observation, given a particular circumstance and some previous
experience. A “depressive belief” can then be considered as any
consistent (negative) bias in these predictions, or vice versa2. If
our beliefs are to be useful, and reflect genuine associations rather
than random co-occurrences we must consider the prior obser-
vations of all elements concerned (Fletcher and Frith, 2009). A
simple thought experiment illustrates the concept of belief well:

2Interested readers are encouraged to read an excellent formal treatment of
model inversion by FitzGerald et al. (2014), which explores the implications
of approximate Bayesian inference on behavior.
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FIGURE 1 | Illustrating the network hypothesis of Depression. (A) In the
healthy brain, information is distributed amongst partially overlapping brain
networks. (B) In Depression, some information processing is altered. (C)

Antidepressant treatments enhance connectivity in neural networks. (D)

Activity-dependent synaptic pruning stabilizes the network. Figure and
caption reproduced with permission from Castrén (2005).

upon meeting a three-legged dog, one needs to recall all the pre-
vious times one encountered four-legged dogs to avoid the false
prediction that dogs only have three legs.

Bayes’ rule, a mathematical theorem, offers a mechanism for
how beliefs should develop over time: updating as a function
of past experiences (the prior), and the current experience (the
likelihood) to produce a posterior belief or expectation. This
interplay between likelihoods and priors may sound abstract,
but it has the very practical implication that all our experiences
depend on our knowledge of their predictability. The connection
between the free-energy principle, predictive coding3 and the

3Predictive coding refers to a class of theories in which the brain is held to
continually generate models of the world based on context and information

Bayesian brain rests on the fact that minimizing free energy
corresponds to variational Bayesian inference. This may sound
technical; however, it brings an important insight to the table:
namely, all quantities involved in making predictions must jointly
minimize surprise or free-energy. Notably, proposed quantities
include synaptic activity (encoding beliefs about the current state
of the world), synaptic efficacy (encoding regularities and causal
structure) and synaptic gain (encoding the precision of beliefs)
(Corlett et al., 2009, 2011; Adams et al., 2013). This three way split
provides a natural framework to understand perceptual inference,
learning, and the encoding of uncertainty, respectively. Crucially,

from memory to predict sensory input (Rao and Ballard, 1999; Friston and
Kiebel, 2009; Clark, 2013).
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to optimize any one set of these quantities one needs the optimal
values of the others. The implicit circular dependency means that
disruptions to inference, learning or the encoding of uncertainty
will necessarily cause abnormalities in the other domains. Of par-
ticular importance here is the notion of precision. In predictive
coding, precision corresponds to the (synaptic) gain applied to
prediction errors and plays the role of a learning rate. We will
return to this later when considering the link between neuromod-
ulators, synaptic gain and their effects on perceptual inference and
learning.

PERCEPTION AND BELIEF: WE SEE WHAT WE WANT TO SEE
Exchanges between our brain’s internal states and our exter-
nal environment are bidirectional. That is, the brain draws its
input through perception as it forms a model of the world,
and then engages the external environment through action. It
is this sampling of the environment that dictates our sensations,
thus completing an action-perception cycle. Consider an intuitive
example that occurs as we wander through our bedroom in com-
plete darkness. We anticipate what we might touch in the world
around us (expectations), and then feel around accordingly as we
attempt to confirm these expectations (selective sampling). This
process—whereby an agent selectively samples the sensory inputs
that it expects—is known as active inference (Friston et al., 2009;
Friston and Kiebel, 2009). In most real-life cases, there is already
considerable contextual (i.e., prior) information in place when
we encounter new information (Friston et al., 2006; Clark, 2013).
There is, therefore, the potential for many prior expectations to
be primed, alter the processing of incoming sensory informa-
tion, and influence future environment sampling through action
(Friston, 2010; Clark, 2013).

WHEN THINGS GO WRONG
Predictions are only as good as the model that generates them.
Disadvantages begin to creep into the system when beliefs become
either inaccurate or inflexible (Fletcher and Frith, 2009; Ma,
2012). Recall that all of our experiences are influenced by our
beliefs. Experiences that are in line with beliefs become pre-
dictable, strengthen the original belief and eliminate the need
for the energy consuming processing of predictable sensations;
because they have already been predicted and provide no “news-
worthy” information. When an incorrect belief gains strength, it
can result in one ignoring potentially informative experiences,
or a range of other misattributions (Fletcher and Frith, 2009).
The bidirectional belief-action relationship means that any inac-
curacies in our model of the world might result in abnormal
perception or action, and vice versa (Fletcher and Frith, 2009;
Friston, 2010). Additionally, since the model must have a neu-
ral basis, correct predictions (in the form of some distributed
neural network) could plausibly be disrupted by neurobiological
changes.

CHANGING THE MODEL: MINIMIZING FREE-ENERGY
Friston’s original proposition offered two mechanisms for mini-
mizing free-energy: through optimizing actions, and optimizing
representations (Friston, 2010). In other words, we must either
change the inputs to the model, or change the internal states.

Returning to the example of walking through a dark room,
there are two ways in which we might minimize surprise. One
could sample differently (through action), e.g., turn on a light.
Alternatively, one could change expectations (perceptual infer-
ence), e.g., entertain the alternative belief that you have woken up
in a hotel room as opposed to your bedroom. It is critical to note
here that both action and perception constitute an iterative cycle
and depend upon each other. This contextualizes the three way
dependencies between perceptual inference, learning and preci-
sion noted above: in other words, any changes in action rest
upon changes in perception that—at some level—depend upon
perceptual learning. Because perceptual learning proceeds at a
much slower timescale than inference, our beliefs (which under-
lie action) do not change immediately; rather we successively
combine past and current experience to optimize our generative
model of the world. As such, rectifying a depressive model of the
world (and thus the depressive phenotype) will be a gradual pro-
cess. More specifically, this gradual process corresponds to the
acquisition of generative models and involves the suppression of
free-energy or prediction errors (over time) by changing connec-
tion strengths in the generative model. It is this process that one
might consider to be the target of therapeutic interventions (e.g.,
by increasing learning rates—as is discussed later).

ANTIDEPRESSANTS: REPAIRING REPRESENTATIONS?
Interesting parallels arise when considering depression from a free
energy viewpoint. Anhedonia—a decreased interest in reward-
ing stimuli—is a cardinal symptom in the diagnosis of depres-
sion. Computational theories of reward-guided learning hold
that future reward expectations depend heavily on the difference
between actual and expected reward outcomes, i.e., prediction
errors (Rescorla and Wagner, 1972; Sutton and Barto, 1998).
Neurally, a close link has long been noted between prediction
error signals and the firing of dopaminergic neurons during asso-
ciative learning (Schultz et al., 1997). For instance, one recent
study used optogenetic techniques to demonstrate a causal rela-
tionship between dopamine and anhedonia (Tye et al., 2013).
Here, optogenetic silencing of midbrain (VTA) dopaminergic
neurons was shown to induce a lack of sucrose preference (a
homolog of anhedonia) in mice, while optogenetic stimulation
of the same neurons relieved anhedonia (Hayes, 2013; Tye et al.,
2013). However, while animal models suggest that phasic predic-
tion error signaling is impaired in anhedonia, a recent behavioral
meta-analysis of human data suggests otherwise (Huys et al.,
2013).

Computationally, anhedonia can arise through either a pri-
mary insensitivity to reward, or disrupted ability to learning
about rewards (Huys et al., 2013). Huys et al. (2013) directly
contrasted these alternatives, conducting a model-based Bayesian
meta-analysis of six datasets where depressed patients com-
pleted a probabilistic reward learning experiment. They found
that reward sensitivity4 —but not learning—was impaired in
MDD patients, but a dopamine agonist pramipexole showed the

4It may be important to clarify that while the Huys paper demonstrated
impaired reward sensitivity for wanting in MDD patients, it seems that liking
rewards remains intact in MDD (Dichter et al., 2010).
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opposite pattern (Huys et al., 2013). Serotonin, on the other hand,
is understood to selectively modulate behavioral and neural rep-
resentations of reward value (Seymour et al., 2012). Specifically, it
has been shown through acute depletion of a serotonin precursor
(tryptophan) that serotonin depletion leads to impaired reward
sensitivity in humans (Seymour et al., 2012). Other model-based
differences in reward processing between depressed patients and
controls have also been shown: depressed patients have blunted
prediction error signals compared to healthy controls (Kumar
et al., 2008; Gradin et al., 2011), and fail to adjust reaction times
(e.g., post-error slowing) in the same way as control participants
(Steele et al., 2007). As a brief but important note, either deficit
would lead to inaccuracies in our recognition model: no longer
faithfully reflecting reward causalities in our interactions with the
world. Here we see important examples of how neuromodulation
(serotonin and dopamine) can adversely affect beliefs about preci-
sion (sensitivity or gain and learning rates) to produce suboptimal
inference and learning, respectively.

Seemingly abstract differences between computational quan-
tities may carry important implications for the treatment of
depression. Disruptions to neural representations of either reward
sensitivity or reward learning would introduce inaccuracies to
our generative model of the world. Indeed, a distorted mapping
between actions and rewards could conceivably explain a number
of depressive symptoms, particularly the feelings of hopelessness,
distorted appetite, and anhedonia/decreased interest in pleasur-
able stimuli. However, the precise mechanism by which this
occurs is critical to treatment strategies: while either impair-
ment might lead to similar behavioral deficits, exactly which
impairment a patient has carries implications for their treat-
ment. At present, serotonin-targeting treatments are the first-line
antidepressant method, but do not seem to alleviate depres-
sive symptoms in many patients (Harmer and Cowen, 2013).
After failed SSRI treatment, dopamine-targeting treatments can
be attempted (Rush et al., 2006; Trivedi et al., 2006). It is entirely
plausible that depressive symptoms, which broadly result from
impaired reward processing, might stem from either, or both,
impairments to serotonergic reward sensitivity and dopaminergic
reward learning.

Perhaps, therefore, a reinforcement learning experiment might
have predictive value over which treatment will be effective. If
model-based analyses show a patient has a learning rate impair-
ment, they may be more suited to dopaminergic treatment.
If a patient has impaired reward sensitivity, perhaps seroton-
ergic interventions ought to work. Considering behaviorally-
dissociable recognition density distortions offers an interesting
re-appraisal of inconsistent antidepressant success, with poten-
tial therapeutic implications. In fact, there is no reason to limit
our investigation to these parameters. In one recent example
(Diaconescu et al., 2014), sophisticated computational model-
ing was applied to a social learning task (based on Behrens
et al., 2008) to investigate the mechanisms by which we infer
the intentions of others. Such analyses characterize both social
and non-social aspects of learning behavior extensively, and
would enable researchers to consider potential abnormalities in
MDD in a rich fashion. This kind of computational psychi-
atric approach is becoming increasingly popular, and has enjoyed

recent success across a range of disorders (Montague et al., 2012;
Corlett and Fletcher, 2014; Stephan and Mathys, 2014), including
psychosis (Corlett et al., 2009, 2011), borderline personality dis-
order (Fineberg et al., 2014), schizophrenia (Fletcher and Frith,
2009), and delusions (Moutoussis et al., 2011).

REWIRING BELIEFS
Since beliefs must be stored in the brain, using antidepressants
to correct aberrant models of the world ought also to require
some neurophysiological restructuring. This is in line with extant
explanations for the delay in antidepressant efficacy. One early
hypothesis for the delay in clinical effect of SSRIs argued that the
desensitization of serotonin autoreceptors on serotonergic bodies
and terminals is required before SSRIs can fully increase sero-
tonin nervous transmission (Blier and de Montigny, 1994). In line
with this suggestion, clinical trials combining SSRIs with sero-
tonin autoreceptor antagonists have shown a faster and enhanced
antidepressant effect (Whale et al., 2010). More recent alterna-
tive suggestions concerned the effects of SSRIs on neurotrophins
and cellular processes generating new neurons and synapses.
Animal models of depression highlight decreased BDNF pro-
duction, neurogenesis, and synaptic plasticity: effects that are
reversed by repeated administration of SSRIs (Santarelli et al.,
2003; Castrén, 2005; Castrén and Rantamäki, 2010). Although
interesting attempts have been made to apply the free-energy
principle to monoaminergic (dopamine) transmission and infer-
ence (Friston et al., 2012), the present essay makes no prescrip-
tions as to what specific neurobiological changes would happen
as models become “less depressed.”

PSYCHOTHERAPY: BREAKING THE ACTION-PERCEPTION
CYCLE?
Correcting representations (the perceptual side to free-energy)
might be one way of treating a depressive model of the world,
but it is not the only way. Earlier I described the notion of active
inference, whereby an agent selectively samples the environment
in line with its model of the world, using the intuitive example of
wandering in the dark (Friston, 2010). Another way in which we
can influence the model is by changing its inputs, that is, optimiz-
ing actions to sample the environment differently. For instance, it
may be that interactions with certain people or objects are fur-
ther enhancing depressive symptoms, and/or (conversely) that
a lack of positive actions is having a similar effect, reminiscent
of learned helplessness models of depression. There is evidence
in line with this; several studies have noted depressed patients
spend significantly longer looking at negative stimuli (Matthews
and Antes, 1992; Eizenman et al., 2003; Caseras et al., 2007; Seth,
2013)—perhaps this excessive negative sampling is skewing the
inputs to our models. But this notion also extends beyond an
individual’s physical actions; excessively sampling negative causal
relationships might also distort an agent’s model of the world.
Indeed, this idea of active sampling concurs with recent theo-
retical work linking interoceptive inference and emotion, where
emotion is held to emerge from cognitive appraisals of physiologi-
cal states (Seth, 2013). One recent computational paper attempted
to model emotional valence as the second time-derivative of free-
energy, where emotional valence regulates the learning rate of the
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causes of sensory inputs (Joffily and Coricelli, 2013). In more
plain terms: “when sensations increasingly violate the agent’s
expectations, [emotional] valence is negative and increases the
learning rate. Conversely, when sensations increasingly fulfill the
agent’s expectations, [emotional] valence is positive and decreases
the learning rate” (Joffily and Coricelli, 2013). Put simply, active
inference requires us to sample the world in accordance with our
expectations. If expectations imply the world is a rather hostile
place, then it will be sampled as such. There are clear analogies
with learned helplessness models of depression here. Interestingly,
learned helplessness can be (Bayes) optimal, if the world is indeed
persistently hostile and has a low volatility.

Note again the crucial role of the learning rate in facilitating
the (re)learning of a generative model. Under predictive coding,
an implementation of the free-energy principle, the learning rate
increases with the expected volatility of environmental contin-
gencies, but volatility is only one factor influencing it (Mathys
et al., 2011, 2014). Behaviorally, it has been shown that healthy
human subjects assess volatility in an optimal manner—that is,
increase their learning rate when the environment is more volatile
(Behrens et al., 2007). In this study, the authors demonstrated
that the optimal estimate of environmental volatility was reflected
in the fMRI signal in the anterior cingulate cortex (ACC), and
variations in this signal predicted between-subject variations in
learning rate. Although no study has specifically investigated the
ability of depressed patients to optimally update learning rate
according to their environment, one study showed that controls—
but not patients—significantly activated the ACC when given
negative feedback during a gambling task (Gradin et al., 2011).
Of course, this itself does not mean that ACC activity significantly
differed between controls and patients (Gelman and Stern, 2006).

Nonetheless, it seems optimizing actions in order to change a
model of the world is reflected in psychotherapy approaches. APA
(2010)5 guidelines for depression psychotherapy include help-
ing people “gradually incorporate enjoyable, fulfilling activities
back into their lives,” and “improve patterns of interacting with
other people that contribute to their depression,” both of which
would constitute optimisation of actions under the free-energy
framework. Essentially, breaking any actions or sampling mecha-
nisms that further a depressive model of the world appears to be
a recommendation that the free-energy framework makes, that
psychotherapy treatments have already taken.

FREE-ENERGY: A HOLISTIC APPROACH?
It is worth briefly setting this approach in the context of other
accounts of depression. It is true that we already have elegant
emotional/cognitive accounts of depression (Harmer and Cowen,
2013), and there are many putative biological explanations of dis-
ruption and restoration at cellular (Castrén and Rantamäki, 2010)
and molecular (Berman et al.) levels. However, pharmacologi-
cal level explanations often lose sight of the multidimensional
nature of the depressive phenotype; and emotional or high-level
explanations are difficult to relate directly back to the neurobiol-
ogy. In fact, a predictive coding approach resembles a previous

5Available online at: http://psychiatryonline.org/pb/assets/raw/sitewide/ prac-
tice_guidelines/guidelines/mdd.pdf

information-processing level approach, illustrated in Figure 1,
known as the “network hypothesis of depression” (Nestler et al.,
2002; Castrén, 2005). At a minimum, this is encouraging: it
suggests that the free-energy framework is largely consistent with
theories of depression at multiple levels, and offers a plausible
alternative that also unifies global brain theories in biological
and physical sciences. In future, it may offer an opportunity for
researchers to directly transition between depression’s many lev-
els of research in a principled, model-based fashion (Montague
et al., 2012; Friston et al., 2014; Stephan and Mathys, 2014). For
example, there may be different underlying problems in MDD,
with different behavioral ways of testing, with specific therapeutic
implications.

It is also interesting to relate the free-energy approach to the
literature on Depressive Realism, a claim that depressed people
are sometimes better at evaluating instrumentality than non-
depressed people (Alloy and Abramson, 1979; Alloy et al.). The
claim appears robust, if small: a recent meta-analysis of 75 stud-
ies indicated a small overall depressive realism effect, although
both depressed and non-depressed individuals showed a substan-
tial “optimism bias” (Moore and Fresco, 2012). Some compelling
model-driven research suggests the effect may be driven by con-
textual processing differences, rather than depressed individuals
having consistently low expectation of control (Msetfi et al.,
2005). This is partially supported by one recent pharmacolog-
ical study showing that amongst a group of 15 non-depressed
participants, acute tryptophan depletion improved contingency
judgments for participants with particularly low scores on the
Beck Depression Inventory (BDI < 6; Chase et al., 2011). In
a free-energy view, “control” in the clinical psychological con-
text corresponds to outcome entropy, and it directly influences
an individual’s belief about what kinds of outcome distributions
are likely. “Maladaptive” priors or generalization tendencies could
equally result in differences in perceived control, although “mal-
adaptive” here requires some clarification. Since both depressed
and non-depressed individuals typically show an optimism bias,
“maladaptive” is simply with reference to non-depressed individ-
uals, rather than a comment on optimality. Although a detailed
analysis of entropy and perceived control is beyond the scope
of the current article, Huys and Dayan (2009) offer an excellent
mathematical treatment of behavioral control from a Bayesian
perspective.

The free-energy approach detailed in this review is not, how-
ever, an exhaustive account of depression. Symptoms of low
mood and anhedonia may be cardinal symptoms in MDD but
they are not the only ones: the accompanying loss of appetite,
sleep disturbance, diurnal fluctuation, low energy and somatic
symptoms are a key part of the illness. Furthermore, these addi-
tional symptoms can sometimes be the ones that are slowest
to resolve. It is possible that wider symptoms may emerge as
a behavioral consequence of a distorted generative model: for
instance, if food rewards are no longer subjectively rewarding
then loss of appetite or motivation to eat is understandable, if
not predictable. In addition, although this review focused on
the most common treatments for depression—monoaminergic
antidepressants and psychotherapy—there is now preliminary
evidence that intravenous administration of ketamine and other
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glutamatergic drugs can have remarkably quick—but transient—
antidepressant effects in unipolar and bipolar depression (aan
het Rot et al., 2010; Aan Het Rot et al., 2012; McGirr et al.,
2014). The speed of ketamine’s antidepressant efficacy here may
appear problematic for a free-energy interpretation at first glance.
However, few treatments in psychiatry or medicine are effec-
tive after a single dose, and ketamine is no exception: patients
often return to the depressed state without a course of treatment
over a number of weeks (aan het Rot et al., 2010; McGirr et al.,
2014). From a free-energy perspective, ketamine can be consid-
ered a faster vehicle for repairing representations, but one that
nonetheless takes some time to repair the generative model. In
addition, from a neurobiological perspective, ketamine’s acute
and sustained antidepressant effects have been hypothesized to
depend on synaptogenesis (Li et al., 2010), in reminiscent fash-
ion to monoaminergic antidepressants. Further insight comes
from Bayesian treatments of psychosis using ketamine as a model
(Corlett et al., 2009, 2011). Here, distinct influences have been
proposed for ketamine in the short and long term. In the short
term, it is thought that ketamine briefly disturbs cortical inference
by blocking NMDA receptors, and impairing the specification of
top-down prior expectancies (Corlett et al., 2011). With chronic
ketamine use, however, there is a compensatory increase in the
number and function of NMDA receptors; longer-lasting changes
that can give way to a delusional phenotype and depressed mood
rather than remission from depression (Morgan et al., 2010;
Corlett et al., 2011).

CONCLUSION
Under the free-energy principle the brain is an active prediction
engine that seeks to establish a model of the causal structure of
our environment, and minimize long-term surprise. The brain
makes inferences about causal relationships at many levels of
abstraction, and there is growing neural evidence in line with this
theory. If the brain does indeed represent a collection of beliefs
about the causal structure of the world, then the depressed phe-
notype emerges from a collection of depressive beliefs. The two
mechanisms by which free-energy is minimized (and perhaps,
how agents survive) are by optimizing actions, and optimizing
representations. The two are markedly reminiscent of depres-
sion’s two main therapies: psychotherapy and antidepressants,
respectively. Distorted representations of the world might stem
from distortions in reward representation, and correcting these
through monoaminergic interventions might be a solution to
anhedonia symptoms in particular. Similarly, a distorted sam-
pling mechanism may exacerbate depressed mood, and require
psychotherapies in an attempt to break the spiral of self-defeating
actions. Either way, solutions ought not to be immediate: beliefs
are changed gradually through successive combinations of past
experiences and current observations. Irrespective of the formal
insights into putative pathophysiology in depression, it may be
the case that the holistic (theoretical) framework on offer here
may be useful in cognitive behavior therapy. In other words, it
may provide a rationale for the conjoint use of psychothera-
peutic and pharmacological approaches that could be useful for
both the therapist and patient alike. One thing is clear: depres-
sion is a multi-faceted illness in which disruptions to beliefs,

emotions, perception and action are intertwined. Perhaps, there-
fore, our approach must intertwine beliefs, emotions, perceptions
and actions accordingly.
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