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Acute graft-versus-host disease (GvHD) causes high mortality in patients undergoing 
allogeneic hematopoietic cell transplantation. An early event in the classical pathogen-
esis of acute GvHD is tissue damage caused by the conditioning treatment or infection 
that consecutively leads to translocation of bacterial products [pathogen-associated 
molecular patterns (PAMPs)] into blood or lymphoid tissue, as well as danger-associated 
molecular patterns (DAMPs), mostly intracellular components that act as pro-inflamma-
tory agents, once they are released into the extracellular space. A subtype of DAMPs is 
nucleotides, such as adenosine triphosphate released from dying cells that can activate 
the innate and adaptive immune system by binding to purinergic receptors. Binding 
to certain purinergic receptors leads to a pro-inflammatory microenvironment and pro-
motes allogeneic T cell priming. After priming, T cells migrate to the acute GvHD target 
organs, mainly skin, liver, and the gastrointestinal tract and induce cell damage that 
further amplifies the release of intracellular components. This review summarizes the role 
of different purinergic receptors in particular P2X7 and P2Y2 as well as nucleotides in 
the pathogenesis of GvHD.
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inTRODUCTiOn

Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative therapeutic option 
mainly for patients with acute leukemias or malignant lymphomas but also for selected non-malignant 
diseases. Initial transplantation attempts remained ineffective due to the lack of knowledge regarding 
human leukocyte antigen (HLA) compatibility between donor and recipient and the lack of adequate 
immunosuppressive drugs. Today, more than 60 years later, immunologic reactions between donor 
and host still remain one of the major causes of morbidity and mortality after allo-HCT. Here, we 
discuss the impact of purines as danger-associated molecular patterns (DAMPs) in the context of 
acute GvHD. We decided to focus on purines and their receptors in GvHD because other danger 
signals in the context of allo-HCT have been discussed in a previous review (1). Nucleosides and 
nucleotides bind to the P1 and P2 family of purinergic receptors. Whereas adenosine activates 
four receptors belonging to the P1 family, UDP (Uridine-5′-diphosphate), uridine-5′-triphosphate 
(UTP), adenosine diphosphate (ADP), and adenosine triphosphate (ATP) activate the large fam-
ily of P2 receptors with a variable affinity. The P2 receptor family is divided into two subfamilies, 
the ligand-gated ion channels P2X receptors and the G-protein-coupled P2Y receptors. Purinergic 
signaling is regulated by the expression of cell surface enzymes known as ectonucleotidases, most 
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TABLe 1 | Purinergic signaling and ectonucleotidases in inflammatory diseases.

Disease context Mechanism Reference

Airway inflammation ATP triggers airway inflammation via P2X7 expression on dendritic cells (11, 12)

Airway inflammation P2Y6 receptor expressed on lung epithelial cells mediates IL-6 and IL-8 secretion upon allergen challenge (13)

Airway inflammation ATP activation of the P2Y2 receptor contributes to eosinophilic lung inflammation (44, 45)

Cardiovascular disease P2Y12 receptor deficiency reduces monocyte infiltration and plaque lesion area (3)

Cardiovascular disease Lack of the P2Y1 receptor decreases leukocyte infiltration into atherosclerotic plaques (4)

Cardiovascular disease Neointima injury results in upregulation of the P2Y2 receptor in rats, which in turn promotes leukocyte adhesion (6, 7)

GvHD ATP released from damaged cells aggravates GvHD by activation of antigen-presenting cells (23, 73)

GvHD P2Y2 deficiency in monocytes reduces GvHD severity by abrogating ERK activation and ROS production (50)

GvHD CD73 deficiency increases T cell allo-reactivity and aggravates murine GvHD (65, 66)

Inflammatory bowel disease CD39 deletion aggravates chemically induced colitis in mice (57, 60)

CD39 expression on Tregs is associated with better therapy response in inflammatory bowel disease patients

Inflammatory bowel disease Lack of CD73 aggravates experimental inflammatory bowel disease in mice (64)

Ischemia–reperfusion injury CD39 plays a protective role by reducing vascular leakage (56)

Lupus-associated nephritis Inhibition of the P2X7 receptor reduces nephritis severity (17)

Multiple sclerosis ATP increases oligodendrocyte excitotoxicity and plaque formation via binding the P2X7 receptor (15, 16)

Gain of function polymorphisms of the P2X7 receptor are associated with increased MS risk

Platelet aggregation Inhibition of P2Y12 signaling blocks platelet aggregation (10)
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prominently CD39 and CD73 that convert ATP/UTP to ADP/
UDP and ultimately to the respective nucleosides adenosine 
and uridine. Purinergic signaling modulates inflammation on 
multiple levels and contributes to the pathogenesis of a broad 
variety of diseases besides GvHD. P1 and P2 receptors show a 
variable distribution among different tissues that ensures a broad 
spectrum of effects. For instance, the P2Y2 receptor is expressed 
on immune cells but also on epithelial and endothelial cells and 
osteoblasts. Expression of the P2X7 receptor is predominant on 
immune cells, such as antigen-presenting cells, but is also found 
in the skin and pancreas (2). Expression of the P2Y12 receptor on 
platelets is a key feature for the use of P2Y12 receptor antagonists 
in the clinic.

PURineRGiC SiGnALinG in 
CARDiOvASCULAR DiSeASe

Purinergic signaling has a well-established role in cardiovascular 
disease on multiple levels. For instance, nucleotides play a role 
in the formation of atherosclerotic plaques as a result of lipid 
metabolism dysregulation. In a murine model of atherosclerosis 
with apolipoprotein E-deficient mice, lack of the P2Y12 receptor 
was linked to a reduced plaque lesion area, decreased monocyte 
infiltration, and enhanced fibrous content of the plaque (3). In 
this same model, deficiency of the P2Y1 receptor significantly 
decreased the expression of vascular adhesion molecules 
P-selectin, VCAM-1, and ICAM-1 leading to diminished recruit-
ment of leukocytes to lesion sites (4). Furthermore, endothelial 
cell cytoskeleton, motility, and adhesion are regulated via activa-
tion of the P2Y2 receptor following ATP or UTP binding (5). This 
is of particular importance due to the fact that the P2Y2 receptor 
is upregulated in the neointima of injured arteries in rats (6). 
Nucleotide binding to the P2Y2 receptor results in co-localization 
of the P2Y2 and VEGFR2 with subsequent upregulation of 
VCAM-1 that facilitates leukocyte adhesion (7). Endothelial 

cell migration is enhanced upon binding of ADP to the P2Y1 
receptor via activation of the mitogen-activated protein kinase 
pathways (8). Last but not least, purinergic signaling has long 
been known to modulate platelet aggregation (9), mostly by ADP 
binding to the P2Y12 receptor (10). This fact led to the utilization 
of P2Y12 receptor antagonists, such as clopidogrel for inhibition 
of platelet aggregation for multiple cardiovascular diseases in 
patients (Table 1). Taken together, these data indicate that release 
of nucleotides with subsequent activation of purinergic receptor 
is a pro-inflammatory stimulus that enhanced leukocyte binding 
to the endothelium, platelet aggregation, and subsequent athero-
sclerotic plaque formation. Given the fact that multiple receptors 
have been implied to play a role, a more general purinergic 
receptor blockade might be required in order to achieve optimal 
protection.

PURineRGiC SiGnALLinG in AiRwAY 
inFLAMMATiOn

In the context of airway inflammation, purinergic signaling 
also plays a significant role in the activation of immune cells 
(Table 1). For instance, increased ATP levels following allergen 
challenge recruit airway-specific myeloid cells and induce Th2 
cell polarization and eosinophilic airway inflammation, which 
are major features of allergic asthma in humans. Neutralization 
of ATP signaling abrogated airway inflammation in response 
to allergens (11). Further studies emphasized the role of P2X7 
receptor expression on dendritic cells (DCs) in this context 
(12). However, purinergic receptor expression is not limited 
only to the immune cell compartment. The P2Y6 receptor was 
found on airway epithelial cells with abundant expression upon 
allergen challenge and its inhibition by synthetic antagonists 
or the genetic deletion reduced IL-6 and IL-8 secretion by epi-
thelial cells and improved disease outcome in a murine model 
(13). More recent studies suggest that purinergic signaling 
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might be regulated by microRNAs. There is evidence that the 
immunomodulatory miR-155 is necessary for intact purinergic 
signaling. Lack of miR-155 resulted in impaired DC chemotaxis 
toward pro-inflammatory stimuli with subsequently reduced 
airway inflammation in mice (14).

PURineRGiC SiGnALinG  
in AUTOiMMUniTY

Purine nucleotide-mediated signaling has been implied in auto-
immune diseases, including multiple sclerosis (MS), psoriasis, 
and nephritis among others (Table 1).

P2X7 receptor activation by ATP binding triggers oligoden-
drocyte excitotoxicity and increases MS plaque formation in 
an experimental autoimmune encephalomyelitis model. More 
importantly, P2X7 receptor upregulation is observed in healthy 
tissue of MS patients, suggesting that inhibition of purinergic 
signaling might be a novel therapeutic target (15). In line with 
these data, a signal nucleotide polymorphism in the human 
p2x7r gene that leads to a gain of function amino acid exchange, 
occurs more frequently in MS patients than in healthy controls 
(16). P2X7 receptor upregulation was also observed in lesional 
and non-lesional skin of psoriasis patients. In lupus-associated 
nephritis, P2X7 receptor antagonists reduced nephritis severity, 
pro-inflammatory serum cytokines, and NLRP3 inflammasome 
activation underlying once more the broad therapeutic potential 
of these pathways (17).

THe ROLe OF P2X7 in GvHD

ATP is a molecule with a high intracellular concentration that 
is released upon cell stress. In the absence of tissue damage, the 
intracellular ATP concentration ranges from 3 to 10 mM, while 
extracellular ATP levels are as low as 10  nM. This balance is 
regulated by ectonucleotidases, such as CD39 and CD73, which 
dephosphorylate ATP to ADP, AMP, and ultimately generate 
adenosine (2, 18, 19). The P2X7 receptor is a cation channel 
activated by high concentrations of ATP (20). P2X7 plays a cen-
tral role for IL-1β secretion via activation of the NACHT, LRR, 
and PYD domains-containing protein 3 (Nlrp3) inflammasome 
(21,  22). We observed that release of ATP from damaged cells 
after allo-HCT amplified acute GvHD (23) via enhanced matura-
tion of APCs and reduced Treg numbers. Besides activation via 
P2X7, the Nlrp3 inflammasome can be activated by uric acid 
(24) and Syk signaling (25). We found that uric acid enhanced 
GvHD in the early phase after allo-HCT (26). Inhibition of Syk 
reduced GvHD-related mortality in the mouse model without 
impairing anti-MCV or anti-leukemia responses (27). After 
tissue damage due to chemotherapy of irradiation, neutrophil 
granulocytes (neutrophils) and inflammatory monocytes reach 
a site of inflammation particularly early and participate in the 
first line of defense. Different studies have shown the chemotactic 
role of ATP for neutrophil chemotactic recruitment (28, 29). It 
was shown that purinergic signaling causes strong activation of 
human neutrophils (30) and activated neutrophils can release 
ATP through pannexin-1 hemichannels by an active process, 

which means that the process consumes energy (30). Neutrophils 
release reactive oxygen species (ROS) upon activation with bac-
tericidal activity and the potential to cause local tissue damage 
(31, 32) that was shown to enhance GvHD (33) (Table 1). The 
mechanism as to how DAMPs, PAMPs, and neutrophils may 
contribute to GvHD is depicted in Figure 1. Besides neutrophils 
(33–35), other myeloid cell populations in particular DCs (36), 
macrophages (37), and certain monocyte subsets (38, 39) were 
found to enhance or reduce GvHD. Different purinergic recep-
tors were found to be expressed by these myeloid cells (2) and 
their activation modifies the immune response elicited by the 
respective myeloid cell type. Myeloid-derived suppressor cells 
(MDSC) that lack a function Nlrp3 inflammasome are more pro-
tective against GvHD compared to WT MDSC (40), indicating 
that a functional Nlrp3 inflammasome modifies the inflamma-
tory phenotype of this myeloid cell type. Besides MDSCs, DCs 
were shown to be influenced by different signals from purinergic 
receptors. To present the antigen that was taken up at the site of 
inflammation by a DC, costimulation is required. ATP is involved 
in this process as it enhances the maturation of human monocyte-
derived DCs with increased levels of costimulatory molecules (41, 
42). Recently, the central role of donor-derived colonic CD103+ 
DCs in Ag presentation to donor T cells that then induce GvHD 
was reported (43). These reports from different groups support 
the concept that P2X7 activation in myeloid cells enhances their 
inflammatory phenotype that then promotes T cell priming and 
inflammation that ultimately lead to GvHD.

THe ROLe OF P2Y2 in GvHD AnD 
inFLAMMATiOn

The activation of P2Y2 was shown to promote tissue damage 
in airway inflammation (44, 45) and acute liver injury (46). 
However, P2Y2 was also shown to have protective effects in a 
model of lung infection induced by pneumonia virus of mice 
(47). P2Y2 can be activated by different nucleotides, the P2Y2 
ligand ATP was found in different inflammatory diseases, 
including inflammatory bowel disease (48), glomerulonephritis 
(49), asthma (11), and diabetes (48). We recently reported that 
P2y2 deficiency of the recipient caused lower levels of myelop-
eroxidase in the intestinal tract of mice developing GvHD 
(50). Selective deficiency of P2Y2 in inflammatory monocytes 
lead to reduced GvHD severity (50) and P2y2−/− inflammatory 
monocytes had defective ERK activation and ROS production. 
Besides these results in the mouse model, histochemical analysis 
of patient samples revealed that the frequency of P2Y2+ cells in 
inflamed GvHD lesions correlated with histopathological GvHD 
severity.

PURineRGiC SiGnALinG AnD THe 
GRAFT-veRSUS-TUMOR eFFeCT

Transplanation of the donor immune system into the allo-HCT 
recipient provides the graft-versus-tumor (GvT) effect that 
ensures long-term control of the underlying malignancy. Due to 
the fact that most treatments reduce the activation of the immune 
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system, preserving the GvT effect is a major issue in post-
transplant care. Interestingly, reduction of GvHD by application 
of the broad-spectrum P2R inhibitor PPADS did not interfere 
with the GvT effect, likely due to the fact that CD8+ T cell func-
tion is independent of purinergic signaling (23). On the other 
hand, A2A-AR expression on T cells allows adenosine to reduce 
allo-reactivity in a murine allo-HCT model, so that blockade of 
adenosine production allows for a more potent GvT effect at the 
cost of aggravated GvHD (51). These data suggest that purinergic 
receptor expression on T cells is crucial for the modulation of 
the GvT effect and offers a few therapeutic perspectives. On the 
one hand, in cases where a functional GvT effect is required, 
such as high-risk malignancies, a P2R inhibition might be a suc-
cessful approach that reduces GvHD but leaves the GvT effect 
untouched. On the contrary, when performing allo-HCT in a 
patient with a benign hematopoietic disease without a necessity 
for a GvT activity, adenosine signaling might be enhanced as a 
therapy strategy for GvHD.

MeCHAniSMS TO COUnTeRBALAnCe 
THe eFFeCTS OF nUCLeOTiDeS

impact of the ectonucleotidases CD39 
and CD73 on Purinergic Signaling
Purine nucleotides are naturally metabolized by ectonucleotidases 
– cell surface enzymes with catabolic activity in the extracellular 
space. Two ectonucleotidases have been mainly proposed in the 

context of inflammation and GvHD so far – CD39 and CD73 
(ecto-5′-nucleotidase). While CD39 catabolizes the first two steps 
in purine metabolization, mainly the dephosphorylation of ATP 
to ADP and AMP, CD73 is involved in the last step, namely the 
generation of adenosine from AMP. Adenosine itself is a potent 
anti-inflammatory mediator that binds to the four receptors 
belonging to the P1 receptor family and counteracts the effects 
of the pro-inflammatory ATP (51). Ectonucleotidase activity 
counterbalances the effects of nucleotides by regulating their 
concentration in the extracellular space. Concomitant expression 
of CD39 and CD73 is observed, for example, on regulatory T cells 
(52) and multipotent mesenchymal stromal cells (53). Activity 
of soluble recombinant CD39 removes ATP and ADP from the 
extracellular space and inhibits platelet aggregation in vitro (54). 
However, CD39 seems to play a dual role in hemostasis, as CD39-
deficient mice exhibited prolonged bleeding times resulting from 
P2Y1 receptor desensitization (55). CD39 activity protects in the 
context of ischemia–reperfusion injury by modulation of vascular 
leakage (56). Furthermore, CD39 deletion rendered mice more 
susceptible to chemically induced murine colitis (57).

With regard to GvHD, recent studies demonstrate that 
CD39 activity on regulatory T cells induces the expression 
of the A2A-adenosine receptor on conventional T cells (58). 
Moreover, CD39-mediated adenosine signaling is important for 
the regulatory T cell-mediated inhibition of NOTCH1 signaling 
in conventional T cells (58), which is a known protective mecha-
nism in the context of acute GvHD (59). Additionally, higher 
CD39 levels were found on regulatory T cells of inflammatory 
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bowel disease patients in clinical remission when compared to 
non-responders (60).

Generation of adenosine from AMP via CD73 is mostly 
known as an anti-inflammatory reaction that dampens the 
pro-inflammatory cascades following ATP accumulation. In 
rheumatoid arthritis, lack of CD73 enhanced disease develop-
ment, including Th1 cell differentiation, cytokine production, 
and joint destruction, and this was reversed by administration 
of a selective A2A-adenosine receptor agonist (61). In addition, 
decreased levels of CD73 were found on the surface of synovial 
fluid mononuclear cells in children with juvenile idiopathic 
arthritis (62). The immunosuppressive role of CD73 is also 
shown by the fact that mice lacking this molecule are more 
prone to autoimmune glomerulonephritis (63) and inflamma-
tory bowel disease (64).

In the context of allo-HCT, we and others have previously 
shown that CD73 and adenosine modulate the severity of GvHD 
but might also represent a target for the enhancement of the graft-
versus-leukemia (GvL) effect (65, 66). In absence of CD73 and 
adenosine, alloreactive T cells show a stronger proliferation with 
increased secretion of pro-inflammatory cytokines and improved 
migration capacity. This more aggressive T cell phenotype trans-
lates into more pronounced GvHD severity, but also offers a target 
for enhancing the GvL effect in the context of allo-HCT (67).

CD73 and adenosine seem to play a differential role in inflam-
mation, depending on the disease model, since recent studies 
suggest that CD73 might potentiate inflammation in the context 
of atherosclerotic plaque formation (68) and radiation-induced 
lung fibrosis (69).

P1 and P2 Receptor Modulation
The broad role of purinergic signaling in inflammation suggests 
a great therapeutic potential for compounds which modulate 
purinergic receptor signaling. P2Y12 receptor blockers, such 
as clopidogrel have now long been employed for inhibition of 
platelet aggregation.

Another receptor with a promising role in immune responses 
is the P2X7 receptor. Preclinical studies have suggested a ben-
eficial role for P2X7 blockade in allograft vasculopathy (70) 
ischemia–reperfusion injury (71), acute lung injury (72), and 
GvHD (23, 73) among others. Also blocking downstream effects 
of P2X7, namely Nlrp3 inflammasome activation reduced GvHD 
in different models (26, 74, 75). However, first clinical trials with 
P2X7 receptor antagonists proved to be disillusioning. Phase 
II clinical trials with the compound AZD9056 could not show 
a reliable benefit in the treatment of patients with rheumatoid 
arthritis (76, 77) or Crohn’s disease (78). These data indicate that 
inhibition of P2X7 receptor signaling might be a powerful target 
to modulate inflammation but there is still need for development 
of active compounds for the clinical setting.

Adenosine is the counterpart of the pro-inflammatory 
nucleotides ATP, ADP, UTP, and UDP. Adenosine is mostly 
generated among others by regulatory T cells and binds to the 
four receptors belonging to the P1 receptor family, A1, A2A, A2B, 

and A3 adenosine receptor. In the context of inflammation, the 
A2A receptor has been implied as anti-inflammatory in a wide 
spectrum of preclinical disease models.

A2A receptor agonists showed beneficial effects also in 
preclinical models of rheumatoid arthritis (79), encephalomy-
elitis (80), and allergic asthma (81). A2A receptor involvement 
in GvHD has also been shown by our group and others. A2A 
receptor expression on alloreactive T cells is critical for the 
integration of the protective CD73-mediated adenosine sign-
aling (65). Treatment with a selective A2A receptor agonist, 
ATL146e inhibited T cell activation and reduced GvHD sever-
ity (82). These data were confirmed using other A2A receptor 
agonists with increased frequency of regulatory T cells in the 
GvHD target tissues (83). Numerous early clinical trials with 
adenosine receptor agonists are ongoing or have been completed 
recently, including indications such as psoriasis, rheumatoid 
arthritis, sickle cell anemia, myocardial reperfusion, and nerve 
injury (84) and hold promise to become part of the therapeutic 
arsenal against inflammatory diseases. To interfere with a broad 
activation signal as it is exerted by nucleotides the inhibition of 
the central signal is most promising and modification of TCR 
signaling can lead to Treg development (85). Besides purinergic 
receptor inhibition promising targets are the γc receptor (86) or 
Janus kinases (87, 88).

SUMMARY

Purinergic signaling belongs as a DAMP to the intrinsic mecha-
nisms for inflammation regulation without pathogen exposure. 
Differential receptor expression is observed on various cell and 
tissue types, indicating distinct roles of purines depending on 
the particular disease context. In general, nucleotides as ADP, 
ATP, UDP, and UTP serve as “alarmins” and activate neutrophil 
granulocytes, macrophages, DCs, and platelets. On the other 
hand, adenosine produced by regulatory T cells or mesenchymal 
stem cells counteracts the effects of the nucleotides by binding 
to P1 receptors. The findings from multiple groups in different 
models of pathogenic inflammation indicate a central function 
of different purinergic receptors, such as P2X7 and P2Y2, in 
ATP-activated recipient myeloid cells during GvHD, which 
could be exploited when targeting danger signals to prevent 
GvHD. Current efforts are concentrating on the development of 
bioavailable and efficient compounds for the conduct of clinical 
trials.
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