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In order to make sense of a scene, a person must pay attention to several levels of

nested order, ranging from the most differentiated details of the display to the integrated

whole. In adults, research shows that the processes of integration and differentiation

have the signature of self-organization. Does the same hold for children? The current

study addresses this question with children between 6 and 9 years of age, using two

tasks that require attention to hierarchical displays. A group of adults were tested as

well, for control purposes. To get at the question of self-organization, reaction times were

submitted to a detrended fluctuation analysis and a recurrence quantification analysis.

H exponents show a long-range correlations (1/f noise), and recurrence measures

(percent determinism, maximum line, entropy, and trend), show a deterministic structure

of variability being characteristic of self-organizing systems. Findings are discussed in

terms of organism-environment coupling that gives rise to fluid attention to hierarchical

displays.

Keywords: recurrence quantification analysis, detrended fluctuation analysis, 1/f noise, self-organization,

local/global visual processing, dynamic systems

Introduction

A look out the window reveals coherence at all levels of order, from the small detail of a wall,
to the broad impression of a busy intersection. How are these different levels of order integrated
into a coherent whole? Numerous studies have looked into this question of local/global processing,
ranging back to the historical routes of the field (e.g., James, 1890; Köhler, 1929/1947; Koffka,
1935; Treisman, 1964). However, the question about coherent perception of hierarchical displays
has not been resolved, despite the many different tasks that have been developed, administered to
many different age groups (including infants and the elderly), and measuring multiple outcomes in
different populations of typical and atypical development (e.g., Navon, 1977; Martin, 1979; Enns
and Girgus, 1985; Kimchi, 1990, 1998, 2009; Ben-Av and Sagi, 1995; Rensink and Enns, 1995;
Heinze et al., 1998; Han et al., 1999; Dukette and Stiles, 2001; Behrmann and Kimchi, 2003; Kimchi
and Razpurker-Apfeld, 2004; Kimchi et al., 2005; Poirel et al., 2008; Förster, 2012).

The problem, we believe, is rooted in the intuition that local/global processing is carried out
by separate processes, those that focus on integrating elements into a global whole, and those that
focus on differentiating a global whole into separate elements. Despite evidence in support of this
intuition, we argue instead that local/global processing is the result of a soft-assembled system that
seeks an adaptive balance of constraints at all levels of order.
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Separate Processes of Integration and
Differentiation?

Intuitive support for separated processes in local/global
perception comes from our phenomenological experience: We
can easily focus our attention on the larger whole, and we
can focus our attention on a detail. In line with this intuition,
there is neurological evidence of two different pathways related
to hemispheric specialization (Fink et al., 1996, 1997; Heinze
et al., 1998; Beaucousin et al., 2011). Then there is the so-called
global precedence effect, the finding that people attend to the
global information first, giving further credence to the idea that
integration and differentiation are separate processes (cf., Navon,
2003; Poirel et al., 2008; Förster, 2012). This effect was found
with children, adults, and elderly; it was found with familiar
and unfamiliar stimuli; and it was found with various tasks and
outcome measures (e.g., Navon, 1977; Enns and Girgus, 1985;
Ben-Av and Sagi, 1995; Rensink and Enns, 1995; Kimchi, 1998;
Han et al., 1999; Dukette and Stiles, 2001; Behrmann and Kimchi,
2003; Kimchi and Razpurker-Apfeld, 2004).

There is a caveat however: The empirical global-precedence
evidence is far messier than an automatic deployment of an
integration process would imply. At the minimum, the global
precedence is tied to the specific details of the stimuli: Grouping
many small elements into a global configuration appears to differ
from grouping a few large elements; vice versa, differentiating
among few elements appears to differ from differentiating among
many elements (Kimchi et al., 2005; Poirel et al., 2006, 2008).
This effect of stimuli characteristics implies that a dual-process
view of local/global perception is insufficient to capture the full
data. It would have to be expanded to include at least four
separate processes: integration of many elements, integration of
few elements, differentiation of few elements, and differentiation
of many elements.

In the current paper we reject the idea that local/global
perception can be captured by separable processes. This is
because a separate-process model would fall short of explaining
how the proposed processes are coordinated to give rise to
smooth visual exploration. The idea is instead that perceptual
organization involves the coming together of interdependent
processes that operate on different time scales, including
processes in neurophysiology, motor behavior, attention, and
intention. For perception to take place, they all combine into a
coordinated whole of coupled processes. Similar ideas have been
put forward for a variety of motor, perceptual, and cognitive
behavior (for reviews, see Kloos and Van Orden, 2010; West,
2010; West and Grigolini, 2010). In fact, there is a consensus
that human activity requires coordination across a multitude
of neurophysiological, perceptual, and motor sub-systems that
are operating at different time scales (Newell et al., 2001; Riley
and Turvey, 2002; Van Orden et al., 2003; Turvey, 2007). This
coordinative dynamic is the signature of adaptive functioning of
human activity (Holden, 2005; Van Orden et al., 2011).

Initial evidence for the idea of coupling across scales in
local/global processing comes from Castillo et al. (2015): Adults
had to decide whether hierarchical compound items matched in
a local element, in their global shape, or not at all. This task, to

decide whether there is a match on any scale of order, is likely
to tap into the same processes of local/global perception that
or used during every-day explorations. Reaction time measured
across a large number of trials was subjected to a spectral
analysis. The fractal exponents we obtained provided evidence
for non-random coupling of multiple scales, mimicking the
findings for motor tasks, perceptual, tasks, and simple decision
tasks (e.g., Gilden et al., 1995; Clayton and Frey, 1997; Gilden,
2001; Newell et al., 2001; Aks et al., 2002; Riley and Turvey,
2002; Ward, 2002; Aks and Sprott, 2003; Holden et al., 2011; Van
Orden et al., 2003; Kello et al., 2007; Shockley et al., 2007; Turvey,
2007; Fernandes and Chau, 2008; McIlhagga, 2008; Stephen
and Mirman, 2010; Kuznetsov and Wallot, 2011; Athreya et al.,
2012; Coey et al., 2012; van Rooij et al., 2013; Malone et al.,
2014).

Here we seek further evidence for the presence of multi-
scale coupling in local/global processing, focusing explicitly on
the question of development. Do the dynamics of local/global
processing change with development? Existing research presents
a developmental story that is far from clear. For example, while
some studies find a decrease in global precedence over time
(e.g., Freeseman et al., 1993; Frick et al., 2000; Cassia and
Simion, 2002; Huizinga et al., 2010), others show an increase
(Dukette and Stiles, 2001; Poirel et al., 2008; Scherf et al.,
2009). And while there is the occasional suggestion that early
local/global processing requires the coordination of multiple
processes (Dukette and Stiles, 2001; Kimchi et al., 2005), an
explicit test of such coordination is missing. In this paper, we
seek to fill this gap, using the Detrended Fluctuation Analysis
(DFA) and the Recurrence Quantification Analysis (RQA). These
analyses have been used with children to estimate the degree
of coupling among underlying processes relevant to walking
(Hausdorff, 2007), tapping at a memorized rhythm (Kiefer
et al., 2014), reading (Wallot et al., 2014), and interacting
with a caregiver (Dale and Spivey, 2006; Warlaumont et al.,
2010). The current study builds upon these efforts, assessing the
degree of coupling among processes that give rise to local/global
perception.

In brief, DFA (Peng et al., 1995) provides an index of self-
similarity in the time series of response times (Bassingthwaighte
et al., 1994). DFA first partitions a trial series into different
size subsets. For each subset of a certain size, the best fitting
trend lines are found and their root mean square residual (Q) is
calculated. The log10 of this variation (Q) is plotted against log10
of the subset size. The slope of the regression line of the log10-
log10 plot represents the Hurst exponent (H). The exponent
reflects the degree of long-range correlations across the different
time scales. H = 0.50 is indicative of randomness (white noise).
This value depicts a lack of coupling of trials. By contrast, H >

0.50 indicates long-range correlations among trials, implying
that processes operate in a connected manner as a coupled
entity, rather than separable processes dominating the overt
behavior.

RQA (Zbilut and Webber, 1992) is designed to detect subtle
repetitive patterns in a trial series, used when data are noisy,
irregular, and high dimensional (Zbilut et al., 2002; Pellecchia and
Shockley, 2005; Marwan et al., 2007). It is based on procedures
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that visualize patterns of recurrence in a trial series, creating a
matrix that shows recurrent aspects in the autocorrelation of the
trial series. A variety of statistical measures are returned in an
RQA, including the percentage determinism, entropy, trend, and
the maximum line. Percentage determinism quantifies the degree
of randomness of a process. High percentage of determinism
implies that the future states of the system are determined by its
previous and present states. Entropy represents the uncertainty
based on Shannon’s information entropy. This measure captures
the degree of disorder that a system expresses. Systems made of
components that operate independently, without any connection
between them, should express a highly entropic behavior.
The maximum line characterizes the system stability. Periodic
signals produce long diagonal lines, chaotic signals generate very
short diagonal lines, and stochastic signals cannot generate any
diagonal line at all. Finally, the trend depicts the degree of the
stationarity associated to the system. Values near to zero reflect
stationarity, and values deviating from zero shows drift in the
system (cf., Webber and Zbilut, 1994, 2005; Riley and Turvey,
2002; Turvey, 2007).

Overview of Experiments
Two tasks were used that involved hierarchical compound
stimuli, a visual-search task and a visual-matching task.
Both tasks have been used with children before, namely to
investigate the importance of element sparcity in local/global
processing (Kimchi et al., 2005). In Experiment 1 (visual
search), children had to find the target among distractors,
the target matching in local elements on some trials, and
in global patterns on other trials. In Experiment 2 (visual
matching), children had to decide whether a middle display
matched with the right or the left answer option, with some
trials featuring a match in local elements, and other trials
featuring a match in global patterns. Adults were included as
comparison group against which we can compare children’s
performance.

Both experiments had a large number of trials to mimic
the duration of natural explorations during everyday tasks. The
hierarchical compound items differed very little from trial to trial,
to minimize distractions and allow for fast task performance.
However, to avoid repetitiveness of trials, we manipulated the
number of compound items per trial, as well as the number
of elements per display (as was done in Kimchi et al., 2005).

Outcome measures were accuracy and reaction time, to compare
with previous results and to test for evidence of non-random
coupling in the structure of the time series.

Experiment I: Visual Search

Experiment 1 employed a search task in which participants had
to search through a series of items and find the item that looked
different from all the other ones. The target differed from the
distractors either in local elements or in global shape. Filler trials
had no target.

Methods
Participants
Children were three girls and six boys between 6 and 9 years
of age (M = 8.0 years, SD = 0.98), recruited from urban
elementary schools serving Midwestern families from a wide
range of socio-economic status. Adults were six women and three
men between 18 and 36 years (M = 22.10 years, SD = 5.82
years), recruited from the introduction-to-psychology subject
pool at a large Midwestern university. In return for participation,
children received a small toy, and adults received partial course
credit. All participants were native English speakers with no
self-reported history of vision impairments.

Material
Elements were either black diamonds or black squares. Identical
elements were arranged into a global pattern that formed either
a diamond or a square (approximately 1.5 × 1.5 cm). Elements
could be either large (5× 5mm) or small (2× 2mm), and global
patterns consisted of four (2× 2), nine (3× 3), or sixteen (4× 4)
identical elements. Specifically, the 2 × 2 items always consisted
of large elements, while the 3 × 3 and the 4 × 4 items always
consisted of small elements.

On a given trial, 3–16 items appeared together, arranged
randomly on a computer screen, with at least 1 cm distance
between them. Figure 1 shows example trials with various
numbers of items and different patterns. Distractors on a
given trial were always square patterns composed of square
elements. On element-different trials (Figure 1B), the target
differed from the distractors only in the elements: the square
pattern had diamond elements. In contrast, the target on
configuration-different trials differed from the distractors only

FIGURE 1 | Example trials in Experiment 1, showing different number of elements per item, and different numbers of items. (A) target-absent trial. (B)

element-different trial. (C) configuration-different trial.
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in global shape: the square elements were configured into a
diamond configuration (Figure 1C).

There were 84 unique target-present trials, depending on the
number of items per trial (3 to16), the number of elements in a
pattern (4, 9, or 16) and the target type (configuration-different;
element-different). Filler trials (Figure 1A) matched perfectly
with the target-present trials, the only difference being that
the target configurations was changed to match the distractor
configurations. The resulting 168 trials made up one block of
trials.

As warm-up, a series of black-and-white line drawings was
used, including a fish, a monkey, and two flowers. Each drawing
was about 1.5× 1.5 cm, and they were arranged to create trials in
which a target was present (e.g., a monkey was presented together
with a series of fish). A numeric keypad was used to record
participants’ responses. The numbers 1 and 3 on the keypad were
covered with the letters Y and N to represent the Yes and No
options, respectively.

Procedure
The procedure in both experiments was approved by the local
Institutional Review Board, and all steps of ethical treatment
of human subjects were followed. Participants were tested
individually, either in a quiet room at their school (children),
or in the laboratory (adults). The experiment was carried out on
either a 15.6′′ Dell laptop (when testing took place at schools) or a
19′′ flat-panel monitor Dell computer (when testing took place in
the lab). Direct RT was used to present the stimuli and to record
participants’ responses and reaction time.

All instructions were presented on the computer, read by
the experimenter. In order to familiarize participants with the
search task, they were first presented with a series of trials for
which the target (or the absence of a target) was pointed out
explicitly. Participants were then presented with the numeric
keypad and the two relevant keys. The instructions were: “Your
task is to decide if the displays are different. Press Y for Yes.
Press N for No.” Children were given four feedback trials
(i.e., 2 element-different trials, one target-absent trial, and one
configuration-different trial). In the case in which they pressed
Yes (i.e., claiming that the displays are different), they also had
to point to the display that was different. Adults were presented
with only the last two of these feedback trials.

Prior to the experimental trials, participants were encouraged
to “be as quick and precise as possible.” After approximately
10 testing trials, children were reminded to determine whether
displays are different. Adults did not receive this reminder.
Children were presented with four blocks of testing trials (672
trials total), and adults were presented with seven blocks (1176
trials). Trials within a block were presented randomly.

Results and Discussion
Two children and one adult did not complete the full set of
trials (they responded to 613 (91.22%), 624 (92.86%), and 1159
(98.55%) trials, respectively). Given that they completed over
90% of the trials, their data was nevertheless included in the
analyses. In a preliminary section, we will provide information
about accuracy and reaction time, as a function of within-subject

manipulations. While these analyses are not the focus of the
paper, they are presented here nevertheless, as a means to
comparisons to previous findings.We will then turn to the results
obtained from the DFA and RQA.

Accuracy and Reaction Time
As was found before, children had lower accuracy than adults,
both on target-present trials [M = 80 vs. 98 % correct; F(1, 16) =
31.06, p < 0.01; η

2
p = 0.66], and on filler trials [M = 88 vs.

99% correct; F(1, 16) = 12.74, p < 0.01; η2
p = 0.44]. Similarly,

children performed more slowly than adults, again on both the
target-present trials [M = 1816 vs. 846ms; F(1, 16) = 42.42,
p < 0.01; η2

p = 0.73] and on filler trials [M = 1927 vs. 1405ms;

F(1, 16) = 9.96, p < 0.01; η2
p = 0.33].

We were also able to replicate the interaction between
number of elements and type of trial (configuration-different,
element-different). Take children’s accuracy, for example
(Figure 2A, collapsed across the number of items per trial). An
increase in number of elements (from 4 to 9 to 16) led to an
increase in accuracy in configuration-different trials [M4 = 80;
M9 = 85; M16 = 88; F(2, 15) = 3.89, p < 0.04; η

2
p = 0.34],

while it led to a decrease in accuracy in element-different trials
[M4 = 87; M9 = 65; M16 = 76; F(2, 15) = 14.82, p < 0.01;
η
2
p = 0.66]. This double-dissociation between number of

elements and trial type was also visible in adults (see Figure 2B),
though far less pronounced given that adults performed largely at
ceiling.

Reaction-time data too provided evidence for the double-
dissociation. In children (Figure 2C), an increase in number
of elements led to faster performance in configuration-different
trials [M4 = 1862; M9 = 1741; M16 = 1582ms, F(2, 15) = 6.04,
p < 0.02; η

2
p = 0.45], while it led to slower performance in

element-different trials, at least from 4 to 9 elements per item
[M4 = 1888, M9 = 2078ms, p < 0.01]. In adults (Figure 2D),
an increase in number of elements led to faster performance in
configuration-different trials [M4 = 889, M9 = 774, M16 =

744ms, F(2, 15) = 4.01, p < 0.04; η
2
p = 0.35], while it led

to slower performance in element-different trials, at least from
4 to 9 elements (M4 = 766; M9 = 1053ms, ps < 0.01).
Thus, children and adults were sensitive to the number of the
elements of hierarchical patterns: they showed a local bias for
few-element configurations and a global bias for many-element
configurations.

To what extent does this sensitivity emerge from a coupling
among many processes? To answer this question, we look at the
outcome of the Detrended Fluctuation Analysis next.

Detrended Fluctuation Analysis (DFA)
Aparticipant’s reaction-time data (which included all of the trials,
independently of type and accuracy) were submitted to DFA.
For control purposes, we re-shuffled each time series, such that
individual data points were re-ordered randomly. The reshuffling
eliminates the sequential dependence of trials, and thus provides
a baseline measure of coupling (i.e., chance structure). We then
calculated the Hurst exponent for the original and the randomly
reshuffled time series. The difference between these two Hurst
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FIGURE 2 | Mean proportion of correct answers (A,B) and

reaction times (C,D) in Experiment 1, separated by age group

(children and adults), trial type (target-absent,

configuration-different, and element-different), and number of

elements per configuration (4, 9, and 16). Error bars illustrate the

standard errors.

exponents, for a particular participant, reflects the degree of
coupling, over and above chance structure.

Figure 3A shows the difference in Hurst exponents
(Horiginaltimeseries—Hreshuffletimeseries), plotted against the age
of the participant. Findings show similar distributions of H
differences between children and adults, p > 0.69: While the H
difference varied in size across children, the variability matched
that found in adults. A 2-by-2 mixed-design ANOVA, with
age group as the between-group factor, trial series (original,
reshuffled) as the within-group factor, and H as the dependent
variable, revealed an effect of trial series, F(1, 16) = 26.81,
p < 0.001; η

2
p = 0.62: Hurst exponents were higher in the

original trial series (M = 0.59, SD = 0.09) than the reshuffled
time series (M = 0.48, SD = 0.04). This difference held up
for each age group separately, ts > 3.14 (children: 0.60 vs. 0.48;
adults: 0.59 vs. 0.48). There was no effect of age group or a
significant interaction, Fs ≤ 0.20. The observed Hurst exponents
were significantly higher than the Hurst exponent expected for of
white noise (H = 0.50), both in children [H = 0.60, t(8) = 2.89;
p = 0.02] and adults [H = 0.59, t(8) = 3.32; p = 0.01].

There is a caveat with determining the Hurst exponent for
each participant individually. This is because such calculation
depends on the presence of a linear relation on the log10-log10
plot, which was not given on the level of individual participants.
Therefore, in order to test whether we can replicate the findings
without relying on the log10-log10 plot of individual participants,
we determined the cumulative log10-log10 plot for each age
group, separated by original and reshuffled time series (see

Figure 3B). The results mimic what was found with individual
trial series: The cumulative Hurst exponent is higher for original
than re-shuffled data series, with no difference between children
and adults1.

Recurrence Quantification Analysis (RQA)
To what extent is the variability in reaction time non-random?
This question is particularly relevant for children’s data, because
their reaction-time variability appears random2. Recurrence
variables were estimated with two embedded dimensions, a
radius of 10, and plotted for lags between 1 and 10 trials. Figure 4
shows the resulting RQA measures (percent determinism,
maximum line, entropy, and trend), plotted as a function of
the chosen delay, and separated by type of trial series (original,
reshuffled). Results show that each measure was higher for the
original than the reshuffled time series, regardless of the delay,
ts(8) ≥ 2.35; ps ≤ 0.04.

Experiment II: Visual Matching

To what extent do the results hold up in a different task? To
address this question, we collected data for a second task, visual
matching, where participants were asked to decide which of two

1The cumulative plot looks different for adults vs. children, due to the difference

in total number of trials.
2Adults are not included in this analysis because their recurrent measures

estimated from observed trials decreased to the same low level of reshuffled trials

with delays equal or more than 2.
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FIGURE 3 | (A) Difference between the Hurst exponents determined

for the original time series and the randomly reshuffled time series,

shown as a function of participants’ age. Asterisk show the

average difference for children (gray) and adults (black), respectively.

(B) Cumulative plots on log10-log10 coordinates, separated by age

group (children, adults), and type of trial series (original and

reshuffled). Error bars represent standard errors of average Qs. CH:

children. AD: adults.

FIGURE 4 | Average of recurrence variables. (A) Determinism, (B) Maximum Line, (C) Entropy, and (D) Trend estimated from original and reshuffle reaction times

of children in Experiment 1.

answer options matched best with the middle display (see also
Experiment 2 of Kimchi et al., 2005).

Methods
Participants
Children were six girls and two boys between 6 and 9 years of
age -year-olds (M = 8.24 years, SD = 1.07), and adults were

seven women and one man (M = 22.11 years, SD = 6.79 years).
Recruitment procedures were the same as in Experiment 1.

Materials
We again used elements of a particular shape (black squares
or black circles), arranged into a pattern of a particular
shape (square or diamond). There were 4, 9, or 16 elements
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per pattern (2 × 2, 3 × 3, and 4 × 4), and the sizes of
elements and displays were comparable to what we used in
Experiment 1.

Four identical items were arranged into a column, and five
columns appeared on a given trial (see Figure 5 for example
trials). The two left and the two right columns showed the
answer options. In perfect-match trials, the middle column
matched perfectly with one answer option, the two answer
options differing from each other in global pattern only
(Figure 5A), in element only (Figure 5B), or in both (Figure 5C).
In configuration-match trials, the middle column matched with
one answer option only in global patterns, the answer options
differing from each other in configuration (Figure 5D). In
element-match trials, the middle column matched with one
answer option only in elements, the answer options differing
from each other in elements (Figure 5E). Finally, in conflicting
trials, the middle column matched with one answer option in
global pattern, and with the other answer option in elements
(Figure 5F). In this case, the two answer options differed in both
configuration and elements.

Depending on trial type (3 types of perfect-match trials, 1 type
of configuration-match trial, 1 type of element-match trials, and 1
type of conflicting trial), left-right arrangement, and the number
of elements per configuration (4, 9, 16), the number of unique
trials was as follows: 18 perfect-match trials, 6 element-match
trials, 6 configuration-match trials, and 6 conflicting trials.
Within a block, each trial was repeated four times, resulting in
a total of 144 trials.

For familiarization, we used line drawings, geometrical shapes,
and hierarchical patterns. Specifically, the line drawings showed
animals (e.g., fish, monkey), plants (e.g., flower, fruit), and
artifacts (e.g., airplane), scaled to approximately the same size.
The geometrical shapes were triangles of different angles and
orientations, and the configurations mimicked those of the
experimental trials. A numeric keypad was used again, this

time with letters L and R covering two keys, respectively. They
represented the two answer options, left and right.

Procedure
The general set-up mimicked that of Experiment 1. During
warm-up, participants were told: “In this game, you have to
decide which side matches with the drawing in the middle. Look
at themiddle.Which side does it match with?” There were a series
of warm-up trials to illustrate the task, illustrating, for example,
that a “match” takes into account size and orientation. To prepare
them for conflict trials (where there is no right or wrong answer),
participants were told: “Sometimes it is very difficult to make a
decision. Just make a guess.”

Testing started immediately. Before each trial, a fixation
point appeared for 320ms and reaction time and accuracy were
recorded. Children were presented with four blocks (144 × 4 =

576 trials), and adults were presented with eight blocks (144 ×

8 = 1152 trials). Trials within a block were presented randomly.

Results
Wewill again present accuracy and reaction time first, after which
we turn to the detrended fluctuation analysis and the recurrence
quantification analysis.

Accuracy and Reaction Time
For scoring purposes of conflicting trials, we considered the
correct choice to be the answer option that matched in
configuration, rather than in element, with the middle column.
Figure 6 depicts the resulting mean accuracy and reaction time,
collapsed across number of items per trial.

Children were less accurate than adults, at least in the case
of the perfect-match, element-match, and configuration-match
trial [M = 84 vs. 93%; F(1, 14) = 6.02, p < 0.02; η

2
p = 0.30].

They were also slower than adults on these trials [M = 2655 vs.
1200ms; F(1, 14) = 10.14, p < 0.01; η2

p = 0.42]. For conflicting

FIGURE 5 | Example trials used in Experiment 2. (A–C) Perfect-match trials for which the answer options differed from each other in configuration only (A), in

element only (B), or in both (C); (D) Configuration-Match trial; (E) Element-Match trial; (F) Conflicting Trial.
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FIGURE 6 | Mean proportion of correct answers (A,B) and

reaction time (C,D) in Experiment 2, separated by age

group (children, adults), trial type (perfect-match,

configuration-match, element-match, conflicting), and number

of elements per configuration (4, 9, 16). Error bars illustrate

the standard errors.

trials, children were slower than adults [M = 2509 vs. 1247ms;
F(1, 14) = 7.29, p < 0.02; η2

p = 0.34], but there was no difference
in accuracy [M = 64 vs. 55%; F(1, 14) = 1.13, p = 0.31]. There
was an interaction between trial type (configuration-match,
element-match) and the number of elements per configuration—
best visible in children’s accuracy (Figure 6A): An increase in
number of elements per configuration led to an increase in
accuracy in configuration-match trials, [M4 = 76, M9 = 87,
M16 =91%; F(2, 13) = 8.11, p < 0.01; η2

p = 0.55], but a marginal
decrease in accuracy in element-match trials [M4 = 81,M9 = 72,
M16 = 73% correct; F(2, 13) = 3.13, p < 0.08; η

2
p = 0.33].

This double-dissociation between number of elements and trial
type was partiallymimicked in adults, though far less pronounced
given their tendency to perform at ceiling. There was an marginal
increase in accuracy for configuration-match trials [M4 = 88,
M9 = 94, M16 = 95% correct; F(2, 13) = 3.24, p < 0.07; η2

p =

0.33], but no difference among element-match trials (M4 = 90,
M9 = 90,M16 =89 % correct; p > 0.78).

For conflicting trials, the number of elements per item had
a substantial effect: the likelihood of choosing the global match
increased steadily as the number of elements increased, both for
children, [M4 = 39, M9 = 71, M16 = 83%; F(2, 13) = 12.87,
p < 0.01; η

2
p = 0.66] and for adults, [M4 = 42, M9 =

57, M16 = 67%; F(2, 13) = 4.82, p < 0.03; η
2
p = 0.43].

For example, while children and adults performed at chance

when there were only four elements per item, they consistently
picked the answer option that matched in global pattern when
there were 16 elements per item, ts(7) ≥ 2.49, ps ≤ 0.05.
Thus, both children and adults showed a local bias for few-
element configurations and a global bias for many-element
configurations.

The interaction between number of elements and trial type
are further supported by reaction-time data, at least in children
(see Figure 6C): While an increase in number of elements led to
faster performance in configuration-match trials [M4 = 3332,
M9 = 2593, M16 = 2556ms, F(2, 13) = 5.46, p < 0.02;
η
2
p = 0.46], the number of elements did not have an effect

on element-match trials (M4 = 3264, M9 = 3258, M16 =

3398ms, p > 0.52). There was no effect of element number on
perfect-match trials, (M4 = 1812; M9 = 1846; M16 = 1834ms,
p > 0.93). In adults, performance was uniformly fast, with no
interaction effect between number of elements and trial type,
F(2, 13) ≤ 0.82, ps ≥ 0.46.

Detrended Fluctuation Analysis
We again submitted reaction-time data to DFA, as well as
each participant’s reshuffled time series. Figure 7A shows each
participant’s difference in Hurst exponents (Horiginal—Hreshuffled),
plotted against the participant’s age. Resultsmimic those obtained
in Experiment 1: While there was some variability in the
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Hurst-exponent difference across children, children and adults
had similar values, p > 0.54. The original trial series
had higher Hurst exponents that their respective reshuffled
trial series, both for children, t(7) = 4.5, p < 0.01,
and adults, t(7) = 5.90, p < 0.01. Figure 7B shows the
log10-log10 cumulative plot, determined across participants.

Again, we found higher cumulative Hurst exponents for
the original than reshuffled time series. And the observed
exponents were significantly higher than white-noise Hurst
(H = 0.50), again in both children [H = 0.59, t(7) =

3.51; p = 0.01], and in adults [H = 0.62, t(7) = 4.23;
p = 0.004].

FIGURE 7 | (A) Difference between the Hurst exponents determined for the

original time series and the reshuffled time series, shown as a function of

participants’ age. Asterisks show the average difference for children and

adults, respectively. (B) Cumulative plots of subset size against Q, in

log10-log10 coordinates, separated by age group (children, adults), and type

of trial series (original and reshuffled). Error bars represent standard errors of

average Qs obtained for the group of eight participants in Experiment 2. CH:

children and AD: adults.

FIGURE 8 | Average of recurrence variables. (A) Determinism, (B) Maximum Line, (C) Entropy, and (D) Trend estimated from original and reshuffle reaction times

of children in Experiment 2.
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Recurrence Quantification Analysis
Recurrence variables were estimated with two embedded
dimensions, a radius of ten, and plotted between 1 and 16
trials lags (Figure 8). A repeated-measure ANOVA shows that
recurrence variables decrease quickly in the extents that delay
between trials increase, Fs(6, 180) = 47.66, p < 0.01,
η
2
p ≥ 0.61. However, regardless of the delay, the original time

series had higher determinism (Figure 8A); stability (Figure 8B);
entropy (Figure 8C) and non-stationarity (Figure 8D) than their
respective reshuffled time series, ts(7) ≥ 2.67, ps ≤ 0.06.
Like in Experiment 1, the degree of entropy associated to the
system was in the range in which complexity can emerge.
Similarly, the system stability was in the range of periodic
to chaotic signals, different from what would be indicative
of a stochastic system. Finally, the degree of stationarity was
low, indicative of a system that is drifting, rather than be
stationary.

General Discussion

Two tasks were used to investigate how children and adults
perceive hierarchical compound items, items for which elements
give rise to a higher-order Gestalt. There was no explicit
instruction about whether to focus on individual elements or
on the overall Gestalt, mimicking perception in every-day tasks.
Trials differed in whether the itemswere varying in their elements
or their overall Gestalt, bringing about a perceptual mode that
takes into account all levels of order. The question was whether
this perceptual mode has the signature of adaptive coupling of
multiple processes (Kello and Van Orden, 2009; Wallot et al.,
2015).

Results provide positive evidence for this question. Even
though there were notable differences between children and
adults, in both accuracy and reaction time, the analyses revealed
striking similarities across age groups. For both children and
adults, the DFA yielded Hurst exponents that were significantly
above the exponents obtained for the reshuffled time series (and
significantly above randomness). Importantly, the distribution
of exponents did not differ between children and adults. Both
children and adults showed a fluidity of performance that
is characteristic of self-organizing cognitive systems (Wijnants
et al., 2009).

Additional evidence for a coupled process of local/global
perception comes from the RQA conducted with children’s
reaction-time data. All measures pointed in the same direction:
There was a clear difference between the original trial series and
the reshuffled time series, showing that variability in reaction
time, from one trial to the next, was far from random. Time
series showed a configuration resistant to a growing number of
delays that could not be explained by the presence of independent
processes.

Our findings are relevant in several ways: (1) they replicate
previous results with adults, (2) they demonstrated long range
correlations and patterns of recurrence in children’s response
time during local/global perception, and (3) they add to the
conversation about whether local/global perception is sub-served
by separable processes. Each of these aspects in discussed in turn.

Perception of Hierarchical Compound Items in
Adults
Our previous research established that the perception of
hierarchical displays has the signature of self-organized
adaptability (Castillo et al., 2015): Alpha exponents returned by a
spectral analysis were above what would be expected by chance,
even in the most difficult task version (e.g., when elements
were unfamiliar and trial order was unpredictable). The current
results extend those findings, namely by using two new tasks and
subjecting the data to DFA.

The main difference between the previous and the current
kinds of task was in the instructions: In previous tasks, adults
were explicitly asked to focus on a specific level in the hierarchy of
orders. For example, they were asked to decide whether two items
shared an individual element. In contrast, in the current tasks,
no explicit instructions were given about what level to focus on.
Instead, participants were merely asked to compare items. Their
high accuracy across all types of trials, whether the match was in
local element or global Gestalt, implies that adults paid attention
to both levels of order. Thus, we succeeded in bringing about a
kind of perception that required a switch between local and global
aspects of the displays. And indeed, this kind of perception had
the signature of adaptive interdependence of different processes.

Across the two different experiments of the current study, the
size of the Hurst exponents corresponds to the range of alpha
exponent found in Castillo et al. (2015). They show compatibility
of fractal measures, at least when it comes to spectral analyses
and detrended fluctuation analyses, in line with what was found
before (e.g., Kiefer et al., 2009). Together, these findings provide
further evidence that skilled perception of visual scenes is guided
by the self-organization of coupled processes (cf., Aks and Sprott,
2003; McIlhagga, 2008; Stephen and Mirman, 2010; Coey et al.,
2012). They suggest that integration and segmentation are part of
an ongoing conglomerate of many processes: A kind of emergent
coupling that cannot be described as separable components
(Wallot et al., 2015). To what extent does the same apply for
children?

Development of Local/Global Processing
In terms of development, the main finding was that children
and adults had similar Hurst exponents, across both the search
task and the matching task. Thus, whether children were asked
to search for the display that looks different, or match a set
of displays to one group or another, the magnitude of Hurst
exponents stayed stable across age. One could argue that our
design had too little power to detect a developmental difference.
However, such claim would run counter to our findings with
accuracy and reaction time: Here we found clear developmental
changes across age. It appears instead that children demonstrate
a level of coordination that is similar to that of adults. This
conclusion is further supported by the results returned by the
recurrence quantification analysis, showing moderate levels of
determinism, system stability, entropy and non-stationarity.

Previous studies that investigated developmental changes
in Hurst exponents found a moderate increase with age,
whether the task was to tap the index finger at a specific
frequency (Kiefer et al., 2009) or to advance a text while
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reading (Wallot et al., 2014). Those results were interpreted
as evidence for an increase adaptive coupling of relevant
processes, perhaps due to an optimization of constraints that
allows for a more stable coordination (Scherf et al., 2009).
In contrast, the visual perception of hierarchical compound
items investigated in the current study does not show the same
level of improvement. It is possible that the age range chosen
for the current studies is too narrow to detect developmental
differences. It is also possible, however, that even younger
children demonstrate an adaptive self-organizing process of
local/global perception, despite lower levels of accuracy and
slower performance.

Is the Idea of Separate Processes of Integration
and Differentiation Justified?
Finding non-random Hurst exponents, in the time series of
local/global performance; hints at the presence of a system that
cannot be decomposed into its constituents (Kelso, 1995). Thus,
our findings add to the growing dissatisfaction with postulating
different processes to explain different behavior (Aks et al., 2002;
Aks and Sprott, 2003; Van Orden et al., 2003; Stephen and
Mirman, 2010; Coey et al., 2012). Building on these arguments,
we suggest that the fault line in local/global processing runs
between easy and difficult tasks, as explained next.

It is easy to focus on an overall pattern when the elements
are very small (e.g., face perception), and it is easy to ignore
an overall pattern when elements are large and salient (e.g.,
super-ordinate categorization) (Walton, 2014). Vice versa, it is
difficult to ignore large elements to detect the overall pattern
(e.g., abstract reasoning), and it is difficult to focus on small
element while ignoring the larger order (e.g., perceptual learning)
(Goldstone, 1998). Indeed, the developmental trajectory of the
easy task is flat, while the trajectory of the difficult task is steep
(Kimchi, 1990, 1998). This difference in trajectory is the result
of differences in constraints on the entire system, rather than in

different underlying processes. In the easy task, there are multiple
mutually enforcing constraints available to guide performance. In
a difficult task, in contrast, performance depends on supplying
the necessary constraints, in the form of top-down control, to
support performance (Evans, 2003).

Our evidence of a self-similar fractal system in local/global
processing suggests that we need to take into account a multitude
of processes, not just those of integration and differentiation,
to explain fluid perception in hierarchical scenes. And the
systematic control of these processes is an emergent property
sustained by multiplicity feedback mechanisms, phenomenon
usually conceptualized like allometric control (West and Griffin,
1999; West, 2010).

In sum, we found support that performance in the local/global
task is the result of an emergent and self-organized coupling of a
multitude of processes in the task-actor system, captured by the
fractal scaling exponent and recurrence variables of reaction time
data. Integration and differentiation are both required to make
sense of the surrounding, coherently coupled to provide adaptive
fluidity in visual perception. Developmentally, it is likely that this
self-organization is most clearly visible in a task that requires little
top-down control. It might show a protracted development in

tasks that require more deliberate control in a context with only
few supportive constraints.
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