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Behavioral responses are influenced by knowledge acquired during the lifetime of an
individual and by predispositions transmitted across generations. Establishing the origin
of knowledge and the role of the unlearned component is a challenging task, given
that both learned and unlearned knowledge can orient perception, learning, and the
encoding of environmental features since the first stages of life. Ethical and practical
issues constrain the investigation of unlearned knowledge in altricial species, including
human beings. On the contrary, precocial animals can be tested on a wide range of tasks
and capabilities immediately after birth and in controlled rearing conditions. Insects and
precocial avian species are very convenient models to dissect the knowledge systems
that enable young individuals to cope with their environment in the absence of specific
previous experience. We present the state of the art of research on the origins of
knowledge that comes from different models and disciplines. Insects have been mainly
used to investigate unlearned sensory preferences and prepared learning mechanisms.
The relative simplicity of the neural system and fast life cycle of insects make them ideal
models to investigate the neural circuitry and evolutionary dynamics of unlearned traits.
Among avian species, chicks of the domestic fowl have been the focus of many studies,
and showed to possess unlearned knowledge in the sensory, physical, spatial, numerical
and social domains. Solid evidence shows the existence of unlearned knowledge in
different domains in several species, from sensory and social preferences to the left-
right representation of the mental number line. We show how non-mammalian models
of cognition, and in particular precocial species, can shed light into the adaptive value
and evolutionary history of unlearned knowledge.

Keywords: origins of knowledge, precocial species, insects, avian species, Drosophila, Gallus gallus, domestic
chicks

INTRODUCTION

Precocious knowledge can help naïve individuals in making correct predictions and deciding
whether to approach or avoid an object and how to cope with a situation encountered for the first
time.

Evidence of precocious knowledge has been documented in species with a short life
span, when learning by trial and error could be too costly. For instance, in the absence
of previous experience, fruit flies (Drosophila melanogaster) prefer to lay their eggs on
fruit containing limonene, a behavior that helps them contrasting predation from parasitic
wasps (Dweck et al., 2013). Examples of knowledge supported by little if any learning have
been found also in species that live much longer than fruit flies, such as human beings
and chicks of the domestic fowl (Gallus gallus), and in tasks that can involve less dramatic
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consequences in case of failure. Along with other species, young
human beings know from the earliest stages of their life that
a large object cannot be hidden behind a narrower occluder
(Aguiar and Baillargeon, 1999, 2002; Chiandetti and Vallortigara,
2011b), that objects maintain their identity in spite of proximal
changes on the retina (Wood and Wood, 2015), and continue
to exist when occluded (Baillargeon et al., 1985; Regolin et al.,
1995), that three dots are different from two (Rugani et al.,
2009), 1/4 is different from 3/4 Rugani et al. (2014) and 4 is
different from 12 (Izard et al., 2009), that an attractive face
has two eyes and one mouth (Turati et al., 2002; Rosa-Salva
et al., 2010), that cliffs are more dangerous than solid ground
(Walk and Gibson, 1961).

The diverse examples of early knowledge can be conveniently
grouped in two categories to help an interspecific comparison:
(a) predispositions to attend or orient towards or away from
particular stimuli (e.g., specific shapes (Fantz, 1957; Zanforlin
and Vallortigara, 1985), colors (Hess and Gogel, 1954; Hess,
1956), and stimuli associated with social partners such as
face-like stimuli (Johnson and Horn, 1988; Rosa-Salva et al.,
2010), stimuli moving according to biological motion dynamics
(Vallortigara et al., 2005; Vallortigara and Regolin, 2006; Simion
et al., 2008) and (b) unconditioned assumptions/expectations
about physical facts of the world that can in turn bias learning
of certain stimuli or associations (e.g., constraints on learning
(Garcia and Koelling, 1966; LoLordo, 1979) or preparedness for
learning (Dunlap and Stephens, 2014) or help problem solving
(e.g., object permanence (Regolin et al., 1995), physical reasoning
about occluded objects (Chiandetti and Vallortigara, 2011b), use
of geometrical information for spatial cognition and navigation
(Tommasi et al., 2012).

In most of the cases, the origin of precocious knowledge
and its evolutionary basis cannot be easily established.
Knowledge available in the first stages of life can either
be acquired through early specific stimulation—including
embryonic experiences (Lecanuet and Schaal, 1996; Schaal
et al., 2000; Graven and Browne, 2008; Harshaw and
Lickliter, 2011)—or transmitted between generations, in
the form of predispositions that orient perception, learning
and other cognitive functions during the course of normal
development. Precocial species, which are able to move
and feed soon after birth and require little if any parental
care, can have a great benefit from unlearned knowledge.
Moreover, the life history of insect species who did not evolve
parental care (Wong et al., 2013) gives them a privileged
position for the investigation of unlearned knowledge.
Insect species with no post-hatching parental care exhibit
several unlearned abilities, such as phototaxis, thermotaxis
and chemotaxis (e.g., Gong, 2012; Dubnau, 2014). In the
aforementioned case of fruit flies and citrus preference,
experimenters can control the environment to exclude a
role of specific experience, try to identify the sensory-motor
circuits that produce preferential choices, compare the ecology
and oviposition choices of different species to investigate
the adaptive value of a trait, or even run experimental
evolution to investigate evolutionary responses at the
behavioral and genetic level in a reasonable amount of time

(Schlötterer et al., 2015; Versace, 2015). While most of
studies involving insects focused on sensory preferences
and preparedness for learning/constraints on learning (e.g.,
Giurfa et al., 1995; Dweck et al., 2013; Dunlap and Stephens,
2014), more recently other cognitive domains such as unlearned
spatial cognition and navigation abilities (Lee and Vallortigara,
2015) and general learning abilities (Mery and Kawecki, 2002)
have been investigated.

In the case of youngster of altricial species—including
human beings, which are dependent on parental care for a long
time, the options to investigate the origins of knowledge are
much more limited. For centuries philosophers and scientists
(reviewed in Hess, 1973; Spelke and Newport, 1998; Spelke,
1998) have been asking to which extent our perceptions and
reactions depend on predisposed mechanisms disengaged
from specific experience (nativist hypotheses) or on the
specific experiences we have been exposed to (empiricist
hypotheses). In the last years new techniques have been
developed to measure precocious reactions and sensitivity to
a variety of stimuli in infants (reviewed in Streri et al., 2013),
that range from behavioral (e.g., habituation/dishabituation
procedures (Aslin, 2007) to neuroimaging approaches
(e.g., near infrared spectroscopy (Bartocci et al., 2000) and
magnetoencephalography Cheour et al. (2004)). In spite
of this, the range of capabilities that can be investigated
soon after birth is still limited by the reduced range of
motor actions and immaturity of perceptual abilities in
infants.1

Moreover, for ethical and practical reasons primate babies
cannot be raised in completely controlled rearing conditions
or be deprived of important stimuli such as light or social
contact until the moment of test, as it is done in isolation
experiments.2 Wood and Wood (2015) have reviewed similar
constraints in rodent species, for whom rearing in darkness
prevents complete and normal maturation in the visual cortex,
alters the development of GABAergic transmission, and cannot
be raised from birth in controlled, lighted environments. In the
light of the limitations that constrain research in altricial species,
questions about the origin of unlearned knowledge might be
more conveniently addressed using precocial species.

Avian precocial species (species that move around and feed
on their own soon after hatching) such as young domestic
chickens (Gallus gallus), goslings and ducklings have been used
to investigate the existence and content of precocious knowledge
in vertebrate species since the late nineteenth century (for a
review, see Andrew, 1991). As for acoustic stimulation, Gottlieb
(1968) showed that in ducks embryonic auditory experience
with the own calls produces species-specific preferences for

1Similar limitations apply to other altricial species, as certain cichlid fish,
that require an extended period of development before reaching a complete
sensory-motor maturation and behavioral performance (Barlow, 2000). Fish
species such as the zebrafish (Danio rerio), showed to be convenient models
for the investigation of social cognition (Oliveira, 2013).
2This approach can clarify which input is not necessary for the development
of a certain behavior, and not that no experience is not required for the
development of a certain behavior, because a certain amount of experience
is always present.
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acoustical stimuli. In this species the acoustic system is tuned
in such a way that the little experience gained by the embryo
is sufficient to orient subsequent approaching responses to
conspecific calls (Gottlieb, 1965). Similar results have been
found in bobwhite quail chicks (Lickliter and Stoumbos, 1991).
Prenatal learning of sounds has been observed in altricial
species, including human beings (for a review, see Lecanuet
and Schaal, 1996). As for visual stimuli, a wide range of
experiments has identified preferences of naïve chicks to
approach specific colors (Schaefer and Hess, 1951; Hess and
Gogel, 1954), size (Schulman et al., 1970), shapes (Fantz, 1957;
Zanforlin and Vallortigara, 1985), as well as configurations
of static (e.g., face-like stimuli (Rosa-Salva et al., 2010) and
dynamic stimuli (e.g., biological motion (Vallortigara et al.,
2005), self-propulsion (Mascalzoni et al., 2010). The preferential
orientation towards face-like stimuli has been attributed to
the so-called CONSPEC system (Morton and Johnson, 1991).
This mechanism specifies information on the general features
of social partners and care-givers, as opposed to the so-
called CONLERN system, devoted to learning the particular
visual characteristics of specific individuals. Consistent with
this hypothesis is the fact that precocial avian species which
in the wild develop an attachment to the mother, share
the preference for cues associated with social partners and
care-givers with newborns of our species (e.g., Morton and
Johnson, 1991; Simion et al., 2008). The co-occurrence of
early preferences for face-like stimuli, biological motion and
self-propelled objects suggests that social species might be
endowed with a core knowledge system dedicated to social
stimuli (Spelke and Kinzler, 2007; Vallortigara, 2012b).This
suggestive hypothesis could be validated by investigating the
differences in reactions to social stimuli between breeds
and species that require a different degree of parental care
soon after birth. Reptiles such as tortoises, which require
no post-hatching parental care, are a good model system to
understand the adaptive role and evolution of social core-
knowledge mechanisms. While it has been showed that adult
tortoises have the capability to follow the gaze of conspecifics
(Wilkinson et al., 2010), little is known on their early social
capabilities.

PREDISPOSITIONS FOR ATTRACTIVE
AND AVERSIVE STIMULI

Sensory Predispositions
Nativist theories have found support in the domain of sensory
development (e.g., Walk et al., 1957; Walk and Gibson, 1961;
Blakemore and Van Sluyters, 1975; Li and Liberles, 2015). The
olfactory system of Drosophila is a good model for probing these
theories. Compared to other sensorymodalities, olfactory circuits
require few connections to convert sensory inputs into behavioral
responses [see CO2 avoidance (Suh et al., 2004)], and pheromone
detection and courtship behavior (Dulac and Wagner, 2006;
Ruta et al., 2010). Fruit flies exhibit consistent unlearned
attraction and repulsion for food- and oviposition-related odors
(Ruebenbauer et al., 2008; Semmelhack and Wang, 2009; Dweck
et al., 2013; Min et al., 2013; Ronderos et al., 2014; Versace and

Reisenberger, 2015) but these behavioral responses are not fixed.
Peripheral (Krishnan et al., 1999, 2008; Root et al., 2011) as
well as central circuits (Semmelhack and Wang, 2009) encode
the valence of stimuli depending on odor-concentration—higher
concentrations can recruit additional receptors, change central
representations and modify the perceived valence (Semmelhack
and Wang, 2009)—and the internal physiological state of the
individual (e.g., circadian changes in olfactory sensory neurons
have been observed (Krishnan et al., 1999, 2008); starved
flies are differently responsive to odors compared to fed flies
(Root et al., 2011). Hence in fruit flies attraction to food
odors is state-dependent, both at the peripheral and central
level.

The relative simplicity of the courtship behavior circuits
in fruit flies makes the investigation of the perception-action
circuitry much more feasible than in vertebrate species (Datta
et al., 2008). While at the peripheral level exposure to the
male emitted pheromone cis-vaccenyl acetate produces
similar responses in males and females, the behavioral
responses are completely different in the two sexes: females
increase receptivity to courting males, whereas males show
an increase of aggression towards males and suppression
of courtship. These sexually dimorphic differences are
mediated by anatomical and functional differences in the
central nervous system. In particular, specific regions of
the lateral horn receive projections from glomeruli linked
to odor attraction and aversion, suggesting that valence
is spatially encoded in this structure (Min et al., 2013).
The link between lateral horn neurons and behavioral
responses has not yet been entirely clarified but by tracing
the pheromone-response circuit researchers have revealed lateral
horn neurons with sexually dimorphic projections, including
projections to male descending neurons, that enter the ventral
nerve cord, which in turn controls movement (Ruta et al.,
2010).

Unlearned preferences are widespread in the visual modality
too. To make a few examples, fruit flies show phototactic
responses (Gao et al., 2008; Yamaguchi et al., 2010), several
insects have color preferences for flowers (Giurfa et al., 1995;
Lunau andMaier, 1995; Gumbert, 2000) and naïve chicks display
visual preferences for pecking objects (Hess and Gogel, 1954;
Fantz, 1957) and for imprinting objects (Schaefer and Hess,
1951; Kovach, 1983, 1990; see also Rosa Salva et al., 2015
for a review about preferences for imprinting objects). The
investigation of visual unlearned preferences in human infants
has a long tradition: already in the Sixties Fantz (1963) showed
a greater responsiveness to patterns than to hues. Recent work
with children (8–16 years old) who gained sight after early-
onset blindness, provides evidence of unlearned susceptibility
to the Ponzo and Müller-Lyer illusions immediately after the
onset of sight (Gandhi et al., 2015). This evidence points
at the role of unlearned knowledge also in our species.
We will discuss preferences for configurations of stimuli in
human and non-human newborns in the next section. The
complexity of the visual circuitry makes the investigation of the
perception-action link more difficult than in the case of olfactory
perception.
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Structural Features and Structured Events
Beside sensory attraction and avoidance reactions for perceptual
stimuli, predispositions to orient towards or avoid configurations
of stimuli since the early stages of life have been identified in
different species.

In the visual domain the case of reactions to face-like stimuli is
paradigmatic. Stimuli that reproduce the configuration of faces,
with two centered eye-like spots in the upper part and one
centered mouth-like spot in the lower part, can trigger attraction
responses. Few hours after birth, human newborns follow more
effectively themovement of schematic face-like stimuli compared
to scrambled faces, blank stimuli, upside-down face-like stimuli
and top heavy stimuli (Goren et al., 1975; Johnson et al., 1991),
and in the absence of visual experience with faces, naïve newly
hatched chickens show an analog preference to approach face-
like stimuli (Johnson and Horn, 1988; Rosa-Salva et al., 2010).
This predisposition, shared between social species, has been
attributed to a mechanism of preferential tuning towards care-
givers, namely the CONSPEC mechanism (see Morton and
Johnson, 1991). Eye-like stimuli can also elicit anti-predatory
responses such as tonic immobility in chickens (Gallup and
Nash, 1971; Gagliardi et al., 1976) and have been suggested to
produce avoidance in insectivorous birds (Janzen et al., 2010;
Hossie and Sherratt, 2013), although salience can be the major
drive of this effect (Stevens et al., 2008). The neural circuits that
mediate unlearned responses to faces and eye-like stimuli have
not been completely identified, but some evidence suggests that
in our species the initial attraction for faces might be mediated by
subcortical areas (e.g., superior colliculus or homologous areas
(Rosa Salva et al., 2015), while subsequent stages rely more on
cortical areas (Johnson et al., 2014).

Precocial biases for biological vs. rigid motion (Vallortigara
et al., 2005; Simion et al., 2008) and for self-propelled objects
(Mascalzoni et al., 2010, 2013) can produce a preferential
orientation towards structural and configurational patterns
associated with animate entities. When points of light are
attached to the joints of a moving animal kept in darkness,
the animation conveys information about the animal’s activity
that suggests the idea of biological motion Johansson (1973).
Inexperienced newly hatched chicks (Vallortigara et al., 2005),
as well as human newborns (Simion et al., 2008), show
a spontaneous preference to approach/preferentially look at
stimuli that move according to semi-rigid trajectories of
a walking animal (biological motion) vs. the same animal
rotating on the central axis in a rigid fashion (see also
Rugani et al., 2015a). Naïve chicks (Mascalzoni et al., 2010)
and human newborns (Di Giorgio et al., 2014) prefer to
approach/fixate objects that exhibit self-produced motion
compared to objects that move only after the contact with
a moving object, and 5-month-old infants understand that
objects can start to move only as a result of contact with
another moving object, unless they are provided with inner
energy that permits self-produced motion (Luo and Baillargeon,
2005).

In the acoustic modality, it has been shown that 1–3 days
old newborn babies show differential hemispheric activation
during the presentation of consonant vs. dissonant tones

(Perani et al., 2010), suggesting early functional specialization
for specific sounds. Moreover, 2 and 4-month old infants
prefer to listen to consonant over dissonant intervals (Trainor
et al., 2002). These preferences could be acquired not
only through early exposure to music but also through
embryonic experience, given the acoustic sensitivity of the
fetus (for a review, see Hepper and Shahidullah, 1994). In
the acoustic modality, Chiandetti and Vallortigara (2011a)
have shown a precocial preference of newly hatched chicks
for consonant vs. dissonant intervals, a phenomenon that
could guide newly hatched chicks to attend to (and imprint
on) animate rather than inanimate objects, given that the
harmonic relationships between frequency components is
associated with prominent features of sounds in natural
environments.

These findings about unlearned preferences for structured
stimuli that correlate with the presence of animate objects (face-
like stimuli, biological motion, self-propelled objects, potentially
consonant intervals) suggest that different vertebrate species
may share a predisposed neural mechanism to detect animate
objects (Vallortigara, 2012b). A core knowledge system for social
cognition could have evolved to help newborns of social species
in the interaction with their care-givers. Comparative work with
precocial non-social species can help clarifying this issue.

PREDISPOSITIONS FOR LEARNING AND
UNCONDITIONED ASSUMPTIONS

Predispositions for Preferential/Faster
Learning of Specific Stimuli or
Associations
Since the seminal work conducted on rats, which showed an
easier association of audio-visual stimuli with electric shock and
gustatory stimuli with gut sickness (Krechevsky, 1933; Garcia
and Koelling, 1966), it is known that some predispositions exist
that can ease or hinder the acquisition of specific associations.
Other examples of species-specific biases, known as constraints
on learning or preparedness for learning, include the preferential
use of the ‘‘win-shift’’ over ‘‘win-stay’’ strategies in birds during
foraging (Gill andWolf, 1977; Kamil, 1978; Cole et al., 1982). The
convenience of insects as model species has recently emerged in
this field of research. Taking advantage of the learning abilities
and fast life cycle of D. melanogaster, Dunlap and Stephens
(2009, 2014) have used fruit flies to show the role of the
environment in shaping learning mechanisms. By pairing an
aversive taste contingency with color or with odor for dozens
of subsequent generations, the authors found empirical support
to the hypothesis that the reliability of associations encountered
during the evolutionary history shapes the learning abilities of
a species (Dunlap and Stephens, 2014). Experimental evolution
on fruit flies has showed also the possibility to select for
enhanced associative learning abilities in the olfactory domain
(Mery and Kawecki, 2002). Organisms with a fast life cycle are
extremely important to understand the evolutionary basis of
cognitive mechanisms, including unlearned predispositions, at
the behavioral and genetic level (Versace, 2015).
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Unconditioned Assumption/Expectations
Few months after birth, human babies understand that objects
continue to exist even when they are no longer visible (object
permanence, see Baillargeon et al., 1985), reason about the
physical properties of objects such as height, size and solidity
(Aguiar and Baillargeon, 1999, 2002), encode the location of
objects (Newcombe et al., 1999) and encode causal relationships
(Leslie and Keeble, 1987; Mascalzoni et al., 2013). This evidence
though is compatible both with precocial learning and unlearned
capabilities (or maturation of unlearned capabilities).

Increasing evidence collected with precocial species is
clarifying to which extent unlearned knowledge about physical
facts of the world can help animals to cope with the environment
and in problem solving since the earliest stages of life. In spite
of continuous changes in lightning, distance and point of view,
different species have no difficulties in recognizing an object.
Young chicks of nidifugal species develop an attachment and
following response, known as filial imprinting (reviewed in
Bateson, 1991), for the first conspicuous object encountered
in their life. In nature this object is usually the mother hen.
To understand whether chicks require experience with multiple
appearances of the same object to produce invariant object
recognition of the imprinting object, Wood and Wood (2015)
have reared newly hatched chicks in a controlled imprinting
environment with partial and impoverished experience with an
imprinting object. Following exposure with only three views of
a single object, chicks could build an invariant representation of
it.

Object permanence has been investigated in young chicks
that had no previous experience with occluded objects. By
using imprinting objects disappearing behind occluders of
different size, Chiandetti and Vallortigara (2011b) showed object
permanence abilities in the absence of previous experience
and spontaneous physical reasoning about occluded objects. In
fact chicks expected that imprinting objects had disappeared
more likely behind occluders bigger than their size than behind
occluders smaller than their size.

Orientation, navigation and location memory rely on
environmental cues such as the geometric features of the
environment (Vallortigara et al., 2009). Newly hatched chicks
are able to encode and use geometric information to search for
a disappeared imprinting object in the absence of previous
experience (Chiandetti et al., 2014). Fish (Archocentrus
nigrofasciatus, Brown et al., 2007) as well as chicks of the
domestic fowl (Chiandetti and Vallortigara, 2008) reared in
home cages of different geometric shapes are equally capable
of learning and performing navigational tasks using geometric
information. These findings suggest that the effective use of
geometric information does not require specific metric and
geometrical experience (Chiandetti et al., 2014). Recent studies
on bumble bees have shown that spontaneous use of geometrical
features, boundaries and local environmental features (Lee and
Vallortigara, 2015) can guide the untrained spatial behavior in
these insects. Behavioral studies have just started to show the
potential of insect models in the study of unlearned knowledge
used in ‘‘high-level’’ cognitive abilities (Vallortigara et al.,
1999).

Another striking example of precocious and untrained
abilities is numerical cognition. Numerical abilities have been
found in human infants (Xu et al., 2005; Libertus et al.,
2009; Libertus and Brannon, 2010) and even newborns (Izard
et al., 2009; Coubart et al., 2014; De Hevia et al., 2014).
These studies offer good evidence for abstract numerical
representations at the start of postnatal experience and parallel
similar evidence obtained in newborn chicks (e.g., Rugani
et al., 2014; and see also comments in Brugger, 2015; Drucker
and Brannon, 2015). Infants habituated to pictures of the
same number of objects (e.g., 8 dots) looked longer when
presented with arrays of a new numerical value controlled
for continuous variables (e.g., 16 dots; Xu, 2003; Brannon
et al., 2004; Xu et al., 2005), thus showing an early sense
of number/numerosity. Individual differences in this task
remain stable during infancy (Libertus and Brannon, 2010;
De Hevia and Spelke, 2010) and are a good predictor for
subsequent mathematical abilities in childhood (Starr et al.,
2013). Similarly to other domains, the learned/unlearned origin
of this knowledge can be hardly established in human beings.
Young chicks can be used to investigate precocial proto-
mathematical cognition based on their need of proximity to
social partners to reach an optimal temperature and avoid
predators since the early stages of life. After imprinting,
chicks treat imprinting objects as social partners and prefer
to approach sets with larger number of imprinting objects,
showing their untrained capability to distinguish between
sets of different numerosities. This behavior does not simply
reflect a general preference for larger sets or for larger
extent of continuous features, since when presented with
novel objects chicks approach the group with the same
numerousness as in the original imprinting condition (Rugani
et al., 2010) when continuous features are controlled. In
chicks, even basic arithmetic skills are available at birth
and in the absence of formal training, as shown by the
capability to approach the larger set of imprinting objects
that results after displacement (corresponding to addition or
subtraction) of occluded imprinting objects (Rugani et al.,
2009). In these experiments after imprinting the chicks saw a
set of four and a set of one imprinting objects disappearing
behind a screen. Subsequently chicks were shown imprinting
objects moving between the screens. When left free to move,
they chose to approach the screen that currently hide the
largest number of objects, thus showing proto arithmetical
capabilities to sum and subtract numerosities. Experiments
run on numerical encoding in this species have clarified an
untrained left-right representation of the ordinal value of
numbers, suggesting that the left-right representation of the
mental number line in human beings can reflectmore a biological
predisposition than mere cultural conditioning (Rugani et al.,
2015b).

CONCLUSIONS

In the absence of previous specific experience, unlearned
knowledge can guide behavioral responses of approach and
avoidance, and provide cues to problem solving. Establishing
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whether a response is guided by previous learning or it is rather
spontaneously determined requires controlled rearing conditions
until the moment of the experiment. By collecting evidence
from disciplines as different as evolutionary biology, animal
cognition and developmental psychology we have showed how
different models and approaches can help clarifying the origins
of precocious knowledge. When young individuals of altricial
species are too immature to be tested before the acquisition of
significant experience in the domain of interest, often precocial
species are convenient models. This does not of course deny
the existence of unlearned knowledge in human beings. There
is indeed some straightforward evidence of this, as shown for
example by some of the work with human newborns that
provided evidence of abstract number at the start of postnatal
life (see ‘‘Unconditioned Assumption/Expectations’’ Section).
For instance, Izard et al. (2009) showed that newborn infants
spontaneously associate stationary, visual-spatial arrays of 4–18
objects with auditory sequences of events on the basis of
number. Here it seems unlikely (though perhaps it cannot be
completely excluded) that newborns before the tests have had
opportunities and time enough to associate, on the basis of
their early minimal multimodal perceptions, visual and auditory
stimuli which were time-locked and then to generalize the
link to non time-locked stimulation. Besides, it is difficult to
imagine how such a link can be formed without a predisposed
abstract notion of number. Yet, in other cases it is virtually
impossible to prevent human newborns from having even
minimal visual experiences, and thus early learning, that can
easily account for their precocious abilities (e.g., exposure to
faces for predisposition to face-like stimuli, exposure to extended
visual surfaces in the spatial layout for predisposition to geometry
and so on).

Insect of species that do not require post-hatching parental
care, such as the well-studied model Drosophila melanogaster,
can be easily controlled until the moment of test and investigated
at the behavioral, neurobiological and genetic level. Moreover,
the relative simplicity of the olfactory circuits in insects makes
the investigation of neural mechanisms feasible, and genetic
analysis has already shed light into the genetic determinants of
olfactory behavior (Rollmann et al., 2010; Arya et al., 2015).
Other research has shown the potential of phylogenetically
distant models for biomedical research on human beings
(Reiter et al., 2001). Moreover, fruit flies have a life cycle
fast enough to be monitored during experimental evolution
for changes in their predispositions (and underlying genetic
changes (Schlötterer et al., 2015; Versace, 2015). When selected
for different associations (color/flavor vs. odor/flavor) fruit flies
changed their promptness in learning the association used
during selected (Dunlap and Stephens, 2014), thus indicating the
evolutionary basis of preparedness for learning.

Avian precocial species, such chicks of the domestic fowl, have
been extensively used to investigate unlearned knowledge about
configurations of cues as well as unconditioned expectations
about facts of the world that can to cope with the environment.
The precocial preference for stimuli associated with the presence
of animate objects that has been found in both naïve chicks
and human newborns—e.g., face-like stimuli (Rosa-Salva et al.,

2010), biological motion (Vallortigara et al., 2005; Simion
et al., 2008)—suggests that species that require post-birth
parental care might rely on an adaptive social core knowledge
system moulded by natural selection. This hypothesis can be
validated through comparative research that investigates the
responses of precocial species with no post-hatching parental
care, such as Chelonia. This example clearly shows that the
interest in non-mammalian species is theoretically important,
and not only justified by ethical reasons (e.g., primate infants
cannot be controlled-reared until they reach the maturation
required for behavioral tests), or by practical convenience (e.g.,
precocial avian species can be easily manipulated until the
moment of the test and possess developed sensory and motor
capabilities soon after hatching). The evidence collected in
the last decades (Vallortigara, 2012b; reviewed in Spelke and
Kinzler, 2007; Vallortigara et al., 2009; Spelke et al., 2010;
Vallortigara, 2015), with the notable examples of unlearned
number (e.g., Rugani et al., 2009, 2014) and spatial cognition
(e.g., Vallortigara et al., 2009; Lee and Vallortigara, 2015) show
the continuity of the human mind with other species, including
phylogenetically distant species. By comparing different breeds
and species it will possible to shed light into the adaptive
value and evolutionary history of unlearned knowledge, and
to understand the connection between sensory or ‘‘low-level’’
processes and other cognitive abilities, such as the link between
the number sense in infancy and mathematical abilities in
childhood (Starr et al., 2013). Furthermore, behavioral tests
developed on precocial species, and therefore well-validated
for their independence from specific experiential effects (again,
social, space and number cognition provide excellent examples,
see for instance (Haun et al., 2010; Vallortigara, 2012a,b) may
set the stage for the development of similar tests in species that
are not precocial but offer on the other hand peculiar advantages
for molecular and genetic analyses (zebrafish is an obvious
example, for social cognition see for instance Oliveira, 2013),
for space cognition (see Lee et al., 2013; for number cognition
see Potrich et al., 2015), thus favoring the step to translational
research.

Precocial species have proven to have high translational
value for areas associated with neurocognitive disturbances
and developmental disorders. Van der Voet et al. (2014) have
recently reviewed the importance of Drosophila for translational
research on dozens of early onset cognitive disorders, from
Fragile X syndrome (the most extensively studied) to Autism
spectrum disorders (e.g., Hahn et al., 2013 for impairment of
social behaviors in mutant flies), highlighting the convenience
of fruit flies to investigate gene function, determine primary
origin of pathology and identifying specific genes involved,
test hypotheses on in vivo models, acquire disease-relevant
tissues, combine mutations in different genes to dissect
molecular networks. Genetic and neurobiological approaches
can be conveniently applied to fruit flies to study unlearned
behaviors and clarify the role of environmental cues in eliciting
specific responses, circuits and computations involved in pre-
programmed behaviors (Manoli et al., 2006). Vertebrate non-
mammalian species are also highly valuable translational models.
For instance, besides being a classical model for epilepsy (see
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for instance Douaud et al., 2011 for recent studies) the domestic
chick is a well-established model for the study of the cellular
mechanisms of memory and potential therapies for dementia
diseases (Mileusnic and Rose, 2010). Furthermore, studies on
precocial social species have permitted the formulation of
original hypothesis on some developmental disturbances such
as autism. The so-called ‘‘social orienting hypothesis’’ assumes
that unusual development of the social brain in individuals
with autism spectrum disorders may be due to an alteration
in the early activation of a subcortical mechanism that biases
newborns to orient to relevant social visual stimuli (Johnson,
2005). The hypothesis was originally formulated in the context

of studies on chicks spontaneous preferences (Morton and
Johnson, 1991; Rosa Salva et al., 2011) and recent work with
this animal model inspired recent attempts to develop early
bio-markers of these neurodevelopmental disorders (Di Giorgio
et al., 2014; Johnson, 2014; Rosa Salva et al., 2015) and the
study of the underlying molecular mechanisms (Nishigori et al.,
2013).
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