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Aβ, tau, and P-tau have been widely accepted as reliable markers for Alzheimer’s disease

(AD). The crosstalk between these markers forms a complex network. AD may induce

the integral variation and disruption of the network. The aim of this study was to develop a

novel mathematic model based on a simplified crosstalk network to evaluate the disease

progression of AD. The integral variation of the network is measured by three integral

disruption parameters. The robustness of network is evaluated by network disruption

probability. Presented results show that network disruption probability has a good linear

relationship with Mini Mental State Examination (MMSE). The proposed model combined

with Support vector machine (SVM) achieves a relative high 10-fold cross-validated

performance in classification of AD vs. normal and mild cognitive impairment (MCI)

vs. normal (95% accuracy, 95% sensitivity, 95% specificity for AD vs. normal; 90%

accuracy, 94% sensitivity, 83% specificity for MCI vs. normal). This research evaluates

the progression of AD and facilitates AD early diagnosis.
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INTRODUCTION

Alzheimer’s disease (AD), the most common form of dementia, is characterized by a decline
in cognitive ability (Ewers et al., 2012; Farah, 2014). Current estimates suggest that 36 million
people worldwide have AD and the number is expected to almost triple in the next few decades
(Grammas and Martinez, 2014). Since the symptomatic drugs currently on the market for AD have
limited efficacy and only provides symptomatic relief without long-term cure, an important area to
understand the disease progression and identify the potential vital pathological biomarkers for the
progression has recently received increasing attention (Zhou et al., 2013; Salem et al., 2014).

Neuropsychological tests such as Mini Mental State Examination (MMSE) and Clinical
Dementia Rating (CDR) are widely used in the clinical evaluation of patients with suspected
dementia (Powell et al., 2006). However, neuropsychological tests alone are inadequate to diagnose
AD at the early stages (Zamrini et al., 2004). The biomarker-based assessment of AD has been
proposed to enhance the clinical detection of AD in early prodromal stages of the disease
(Dubois et al., 2007). The use of biomarkers in clinical diagnostics may help us to determine
whether some mild cognitive impairment (MCI) symptoms are due to AD (Ewers et al., 2012).

†Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). As such the investigators within the ADNI contributed to the design implementation of ADNI and/or

provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be

found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Several researches have suggested that cerebrospinal fluid (CSF)
based biomarkers are high precision risk factors in the disease
process (Blennow and Hampel, 2003; Brys et al., 2009).

AD has two major pathological hallmarks in CSF including
senile plaques and neurofibrillary tangles (NFT) (Kimura
et al., 2014). NFTs make up from intracellular aggregates of
hyperphosphorylated tau protein (P-tau) and senile plaques
consist mainly of amyloid β peptide (Aβ) (Small, 2008; Kimura
et al., 2014). Previous researches have shown the interaction of
tau, P-tau, and Aβ (Figure 1). On one hand, P-tau can increase
activity of acetyl-cholinesterase (AChE). Then the increased
AChE activity can elevate Aβ production bymodulating the levels
of the γ-secretase catalytic subunit presenilin-1 (PS1) (García-
Ayllón et al., 2011). On the other hand, Aβ may affect the level of
P-tau through two pathways. Firstly, Aβ can raise the activity of
AChEwhich can activate the tau kinase glycogen synthase kinase-
3β (GSK-3β) inducing tau hyperphosphorylation (García-Ayllón
et al., 2011). Secondly, Aβ can activate the voltage-dependent
Ca2+ channels (VVCD) and N-methyl-D-aspartic acid (NMDA)
receptors which results in the release of intracellular Ca2+

(Shen et al., 2006; Bezprozvanny and Mattson, 2008). Then
the increased levels of intracellular Ca2+ might initiate a
signal transduction pathway to activate Ca2+-sensitive protein
kinases which are responsible for the hyperphosphorylation of
tau (Shen et al., 2006). Furthermore, previous researches have
expounded the role of Aβ and tau pathology. On one hand,
Aβ plays a vital role in progression of AD which may lead in
turn to a series of downstream events ranging from synapse
loss to plaque deposition to inflammation to the triggering of
tau hyperphosphorylation to the death of susceptible neurons

FIGURE 1 | The interaction of Aβ, tau, and P-tau.

(Herrup, 2010). On the other hand, tau pathology plays a
complicated role in the progression of AD. Tau pathology may
affect DNA repair, neuronal activity, and inter-neuronal signaling
(Hanger et al., 2014). Though the mechanism and roles of tau
pathology are not yet fully elucidated, a consensus that the tau
pathology can enhance cognitive decline and cause dementia is
widely accepted (Salminen et al., 2011).

In this study, a cross-talk network is established by integrating
the interactions among CSF biomarkers. As a complex biology
system, cross-talk network has two properties. The first is small-
worldness which means that most pairs of nodes can be linked to
each other by relatively short chains (Maslov and Ispolatov, 2007;
Zhao et al., 2010). Secondly, robustness is the capacity of keeping
homeostasis under a range of condition which may be disrupted
by disease (He et al., 2013; Nijhout and Reed, 2014).

The aim of this research is to provide novel insight into the
progression from the perspective of crosstalk network disruption.
Nevertheless, cross-talk network is a large complicated system,
evaluating the entire network robustness is less practical. To
address this issue, a simplified cross-talk network termed as mini
network is established. The widely accepted key markers are
selected to form the skeleton of the mini network. The cross-
talk among key markers is modeled by transit compartments
model. Robustness and the integral variation of the mini
network are proposed to be used as a good proxy for complex
disease progression. In our model, three mini network integral
disruption parameters U, K, and ϕ are introduced to evaluate
integral variation of the network and mini network disruption
probability is employed to measure the robustness of mini
network.
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MATERIALS AND METHOD

Subject
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The initial goal of ADNI was to
recruit 800 subjects but ADNI has been followed by ADNI-GO
and ADNI-2. To date these three protocols have recruited over
1500 adults, ages 55–90, to participate in the research, consisting
of cognitively normal older individuals, people with early or late
MCI, and people with early AD. For up-to-date information, see
http://www.adni-info.org.

In this study, the longitudinal biomarker data (4 years,
version: 2012-09-06) in ADNI-1 is used to develop the model.
The data set includes three CSF markers: Tau protein, Aβ,
and Phosphorylated tau protein (P-tau). Details of the CSF
analysis and quality control measures have previously been
published (Shaw et al., 2009). The patients are divided into three
groups: AD, MCI, and normal control group. The CSF samples
are collected at four time points: 12, 24, 36, and 48 months.
Patients with missing data are excluded in our experiments.
The demographic information of subjects used in this study at
different time points is given in Table 1.

Model Development
In this study, the mini network is established based on the
property of small-worldness. Then the robustness of the mini
network is evaluated by Monte Carlo Simulation and disruption
parameters. In addition, our model can identify the potential
vital biomarkers in the disease progression. The framework of the
model is shown in Figure 2.

Modeling Mini Network
The structure of mini network is shown in Figure 3. The mini
network is established based on small-worldness property which
means that the markers in the network can affect each other.
The interaction among markers involves multiple middle links.
For example, Aβ increases the activity of AChE. Then the
AChE activates the GSK-3β inducing the hyperphosphorylation
of tau. In contrast, P-tau can also affect Aβ by elevating AChE.
In our model, these middle links between the biomarkers are
represented by transit compartments. The mathematic model of
mini network is given in Supplementary Material.

Estimation of Mini Network Integral Disruption

Parameters
In this study, three mini network integral disruption parameters
U, K, and ϕ are used to evaluate the integral variation of the mini
network.

TABLE 1 | Demographic information of subjects.

Normal MCI AD

Number 135 155 18

Gender (male/female) 71/60 106/49 6/12

Age 79 ± 5 77 ± 6 74 ± 7

MMSE 29 ± 1 27 ± 2 24 ± 2

K =
|Va|

|Vb|
(1)

ϕ = cos−1 Va · Vb

|Va| |Vb|
(2)

U =

√

(Va − Vb)(Va − Vb)T (3)

Va is a vector including levels of all the markers in the mini
network in pathogenic state. Vb is a vector including levels of all
themarkers in themini network in normal state. |Va| and |Vb| are
their modular. The symbol “T” in Equation (3) represents vector
transposition. Moreover, a simulation experiment is performed
for investigating the physiological significance of the disruption
parameters (shown in Investigation of Disruption Parameters
Physiological Significance).

Estimation of Mini Network Disruption Probability
In this study Monte Carlo Simulation is used to estimate
probability ofmininetworkdisruption.At thebeginning, generate
random perturbations for all the biomarkers in the mini network
and assess the mini network disruption by U, K, and ϕ after
random perturbation. Finally, calculate probability of network
disruption (Equation 4) and its relative error (Equation 5), and
repeat the above steps until the relative error is less than 5%.

pf =
d

D
(4)

ε

p
= tα/2

√

pf (1− pf )

pf n
(5)

tα/2 is unilateral threshold of t distribution. pf is the probability
of mini network disruption. n is the predefined iterative number.
d is number of network disruption. D is the current iterative
number.

Recognition of Potential Vital Biomarkers
We define the marker with the greatest contribution to the mini
network disruption as the potential vital biomarker during the
disease progression, and its contribution can be measured by the
probability of mini network disruption calculated when only a
single marker or a group of markers with interaction is disturbed.
For the recognition of potential vital biomarkers, the first step
of Monte Carlo simulation needs a minor modification. When
evaluating the contribution of the ith marker, it needs to be
disturbed and the other markers remain invariant. The joint
contribution of multi-marker can be estimated in the same way:
disturb the group of the markers to be evaluated and keep the
other markers constant.

Model Performance Evaluation
In this study, we evaluate model performance in two ways. First,
check if the mini network disorder probability can be used as
a proxy for the disease progression by performing regression
analysis of mini network and MMSE.

Second, check if the model can improve the accuracy of AD
diagnosis by comparing classification accuracy of AD vs. normal
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FIGURE 2 | The framework of model.

FIGURE 3 | Structure of mini network. Transit compartments with a mean

transit time constant τ are used to descript the indirect interactions between

these markers.

and MCI vs. normal. Two Support vector machines (SVM) are
trained for measure the classification performance: SVM based
on mini network disruption parameters (U, K, ϕ) and mini
network disorder probability and SVM based on CSF markers
(tau, P-tau, and Aβ). The classification performance is evaluated
by 10-fold cross-validation.

Investigation of Disruption Parameters Physiological

Significance
To illustrate significance of U, K, and ϕ, we perform a simulation
experiment. The change of biomarkers is simulated in three cases.
The three situations are shown as follows:

• Single marker changing simulation: Only one marker changes
as the gradient.

• Multi-marker changing simulation 1: All the markers increase
as the gradient. For instance, the gradient is 10%. At this
situation, all three markers increase 10%.

• Multi-marker changing simulation 2: The first marker
increases as the gradient and the other two markers decrease
as the gradient. For instance, marker A increases 10% and
markers B and C decrease 10%.

Finally, observe the change of the three dynamic parameters U,
K, and ϕ.

For a further insight into the significance of mini network
integral disruption parameters, an addition test is performed.
Three SVMs are trained for evaluating the contribution of mini
network integral disruption parameters in the classification: SVM
based on K and ϕ for assessing the contribution of parameter
U, SVM based on K and U for assessing the contribution
of parameter ϕ, SVM based on ϕ and U for assessing the
contribution of parameter K. Then observe the performance of
these three SVMs.

RESULT

Model Performance
Figure 4 indicates that mini network disorder probability has
good linear relationship with MMSE suggesting that mini
network disorder may be a good proxy for disease progression.
Figure 5 shows that our model may improve the classification
accuracy and specificity of AD vs. normal and MCI vs. normal.
Our model may enhance the classification sensitivity of MCI vs.
normal.

Evaluation of Mini Network Balance
Mini network balance map (see Figure 6) is used to describe mini
network imbalance visually. The closer to equilateral triangle
the shape is, the less serious the mini network imbalance is.
The results (Figure 6B) show that mini network imbalance

deteriorates rapidly from 12 to 24 and 36 to 48 months while

there is a plateau between the above two periods in both AD and

MCI group, which coincide with the changes of MMSE.
The results of mini network disruption probability andMMSE

are shown in the Figure 4. In AD group and MCI group, the

mini network disruption probability increases rapidly between
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FIGURE 4 | The relationship and correlation analysis between estimated mini network disruption probability and MMSE. As plot AD, MCI, and normal

shown, mini network disruption probability coincides with 1/MMSE. In plot regression, least squares regression is used to analyze the correlation between mini

network disruption probability and MMSE.

FIGURE 5 | Model performance in classification of AD vs. normal and MCI vs. normal.

12 and 24 months and there is a platform period from 24

to 36 months, then the disease progression turn into a rapid

deterioration period until 48 months. In the normal control
group, the mini network disruption probability keeps fluctuating

during this study.

Significance of Mini Network Disruption
Parameters
The mini network disruption parameters U, K, and ϕ can be
used to evaluate mini network imbalance integrally. According
to Equations (1–3), with the mini network variation gets smaller,
the K-value gets closer to 1 whereas the values of U and ϕ get
closer to 0.

The simulation experiment result is presented in the Table 2.
The results of single marker changing simulation indicate that
the parameters U and ϕ are related to the variation of single
marker. The results of multi-marker changing simulation 1
suggest that parameter K is related to the consistency multi-
marker changing and U is sensitive to the great consistency
variation of multi-marker. The results of multi-marker changing
simulation 2 indicate that parameters U and ϕ are related
to the multi-marker inconsistency variation. We summarize
physiological significance of U, K, and ϕ with the simulation
experiment evidence. U is responses to both consistency
variation and inconsistency variation comprehensively. K
responds to multi-marker consistency variation. ϕ is response to
the multi-marker inconsistency variation.
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FIGURE 6 | Mini network balance map of AD based on CSF biomarkers panel. (A) Mini network balance maps for the three groups at different time points.

(B) Longitudinal mini network balance maps for the three groups. In normal state, the shape of mini network balance map is equilateral triangle. With the shape

deformation, the mini network imbalance gets serious.

The boxplot of mini network disruption parameters
(Figure 7A) shows that these three parameters in both AD
and MCI groups are significantly greater than those in normal
group (P < 0.01, based on One-way ANOVA, Table 3) which
suggests that if mini network disruption parameters U, K, and ϕ

are higher than the upper whisker of normal group, the patient
may have high disease risk. Moreover, the trajectory figure
(Figure 7B) shows that the variation of parameter U is similar to
the disease progression.

The contribution of the mini network integral disruption
parameters are shown in the Figure 8. The SVM based on
all three parameters has the best classification performance
compared with the other SVMs. The SVM without parameter U
has the poorest performance which is same as the SVM based on
CSF markers.

Contribution of Biomarkers to Mini
Network Disruption
The biomarker contribution to the mini network disruption is
given in the Figure 9. For the single marker, P-tau is the major
contributor to the mini network in the disease progression in
both AD andMCI. However, effects of other two markers Aβ and
tau on aggravating mini network disruption cannot be neglected
at the end stage (at 48 month). The joint contribution of P-tau
and Aβ may play a more important role in the deterioration of
the disease.

DISCUSSION

In this study, we propose a disease progression model termed
as mini network balance model. The mini network balance
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model evaluates the disease progression in three ways. Firstly,
the mini network balance map describes mini network imbalance
visually. Secondly, the robustness of mini network is measured
by mini network disruption probability which is a proxy

TABLE 2 | The mini network integral disruption parameters changes in

simulation experiment.

Gradient (%) K (%) ϕ (%) U (%)

Situation: single marker simulation 10 3.78 12.88 11.09

20 7.77 25.07 23.45

50 20.77 57.21 65.17

Situation: multi-markers simulation 1 10 10.00 0.00 0.27

20 20.00 0.00 6.82

50 50.00 0.00 57.85

Situation: multi-markers simulation 2 10 2.19 27.68 25.30

20 3.38 57.21 51.38

50 0.82 147.97 131.69

for the disease progression. Thirdly, the integral variation of
mini network is evaluated by the mini network disruption
parameters U, K, and ϕ. The variation of mini network is usually
complex. These three parameters decompose the complicated
variation into simple variation. Firstly, parameter K is response
to the consistency variation of biomarkers in mini network.
Secondly, parameter ϕ represents the inconsistency variation
of biomarkers in mini network. Parameter U is response
to the total variation. With value of mini network integral
parameters greater, the disease risk gets higher. The clinical
relevance of mini network integral disruption parameters is
that they can help enhance the accuracy and specificity of
AD and MCI diagnosis. Especially, parameter U has the
greatest contribution to the accuracy and specificity of the
classification.

Compared to several previous researches based on CSF
markers list in Table 4, the mini network balance model achieves
relatively high performance on the classification of AD vs. normal
and MCI vs. normal. Furthermore, the comparison to researches
based on imaging markers shows that CSF markers and imaging
markers may play similar roles in classification of AD vs. normal.

FIGURE 7 | (A) Box plot of mini network integral disruption parameters. “+” represents data points beyond the whiskers. (B) The trajectory figure of the mini network

integral disruption parameter U. The different colors of the area under the curve indicate different time period. With the curves of U farther to the center, mini network

imbalance gets worse. **P < 0.01 vs. normal.
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Because, AD may cause atrophy in multiple region in brain
and CSF markers reflect these change (Reiman and Jagust, 2012;
Rosenmann, 2012). However, these two different types may
play different roles in classification of MCI vs. normal. On one
hand, imaging methods are often recommended to help rule
out potentially reversible brain abnormalities like tumors or
subdural hematomas in patients with MCI (Reiman and Jagust,

TABLE 3 | Estimation of disruption parameters U, K, and ϕ.

U K ϕ

AD 118.84 ± 87.12** 0.9684 ± 87 0.4484 ± 87**

MCI 103.80 ± 72.64** 0.9480 ± 72 0.3980 ± 72**

Normal 72.43 ± 30.35 0.923 ± 30 0.263 ± 30

The data are presented as mean ± SD. **P < 0.01 vs. Normal.

2012). On the other hand, CSF markers have better accuracy
and specificity in classification of MCI vs. normal and they
can be employed to identify the prodromal AD (Blennow and
Zetterberg, 2015).

The amyloid cascade hypothesis has been widely accepted as
AD etiology. However, our model shows that Aβ accumulation
may not be the sole factor in AD etiology. Joint contribution
of P-tau and Aβ may be another potential major contributor to
the AD progression. Consistent with Prior studies, Aβ toxicity
is P-tau dependent (Kayed, 2010; Desikan et al., 2012). In other
word, Aβ in the absence of P-tau is not necessarily associated with
loss of cognitive function. Previous researches have proposed a
possible mechanism for the interaction of P-tau and Aβ. On one
hand, P-tau can increase the activity of AChE which can elevate
the level of PS-1 and then accelerate the Aβ deposition (García-
Ayllón et al., 2011; Silveyra et al., 2012). On the other hand, Aβ

can activate tau hyperphosphorylation pathways (García-Ayllón

TABLE 4 | Comparison to previous researches.

Research Biomarkers Normal vs. AD Normal vs. MCI

ACC (%) SEN (%) SPE (%) ACC (%) SEN (%) SPE (%)

SVM based on network disruption model (this study) CSF 95 95 95 90 95 84

SVM (Apostolova et al., 2014) CSF 82 – – 74 – –

Multi-modal multi-task (M3T) learning (Zhang et al., 2012) CSF 93 – – 83 – –

Logistic Regression (Teipel et al., 2007) CSF 81 78 83 – – –

Large-scale regularized logistic regression (Casanova et al., 2013) CSF 75 71 78 64 50 74

Multi-modal multi-task (M3T) learning (Zhang et al., 2012) MRI 93 – – 83 – –

SVM (Salvatore et al., 2015) MRI 76 – – 72 – –

Sparse representation (Xu et al., 2015) MRI 95 96 90 75 66 82

Image-level hierarchical classifier learning (Suk et al., 2014) MRI 92 92 95 84 99 54

Multi-modal multi-task (M3T) learning (Zhang et al., 2012) PET 93 – – 83 – –

Sparse representation (Xu et al., 2015) PET 91 89 93 72 65 79

Image-level hierarchical classifier learning (Suk et al., 2014) PET 92 88 96 84 99 57

ACC, accuracy; SEN, sensitivity; SPE, specificity.

FIGURE 8 | Mini network integral disruption parameters’ contribution to the performance in classification.
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FIGURE 9 | The percentage contribution to mini network disruption of the markers. Color-coded scale is used to present the percentage contribution to mini

network disruption of the markers in this plot. The joint contribution of tau and P-tau as well as P-tau and Aβ both are potential vital factors of disease.

et al., 2011). The crosstalk between Aβ and P-tau forms a vicious
cycle in which they elevate each other and trigger cognitive
decline.

Furthermore, more and more evidences in clinical trials
suggest themultifactorial nature of AD. For example, Anti-bodies
bapineuzumab and solanezumab targeted at Aβ have failed
to meet their primary endpoints in the high-profile phase 3
clinical trials (Castello et al., 2014). Doody et al. attribute
the failure to administering the therapy at late stages and
propose that it should be instituted in early stages (Doody
et al., 2014). However, the proposed model suggests that even
at early stage the therapies targeted at Aβ only may have
limited effect on AD. The presented results suggest that P-tau
may also play a vital role in AD progression. Several prior
studies have proved that immunotherapies targeted at P-tau can
reduce cognitive impairment in animal model (Boutajangout
et al., 2010; Kayed, 2010; Lim et al., 2013). In addition, our
results suggested that single marker might play a limited role
in disease progression and joint contribution of P-tau and Aβ

might be the potential vital factors in the disease progression.
Therefore, the single-target immunotherapies may have limited
effects on AD. According to our results, combination therapy of
reducing both P-tau and Aβ may be an effective strategy for AD
treatment.

CONCLUSION

This paper provides a novel method for modeling the complex
disease progression. The mini network balance model has
good performance on evaluating the AD progression which is
beneficial on AD early diagnosis and facilitating therapeutic
strategies.
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