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Impairments in statistical learning might be a common deficit among individuals with
Specific Language Impairment (SLI) and Autism Spectrum Disorder (ASD). Using meta-
analysis, we examined statistical learning in SLI (14 studies, 15 comparisons) and ASD
(13 studies, 20 comparisons) to evaluate this hypothesis. Effect sizes were examined
as a function of diagnosis across multiple statistical learning tasks (Serial Reaction
Time, Contextual Cueing, Artificial Grammar Learning, Speech Stream, Observational
Learning, and Probabilistic Classification). Individuals with SLI showed deficits in
statistical learning relative to age-matched controls. In contrast, statistical learning was
intact in individuals with ASD relative to controls. Effect sizes did not vary as a function of
task modality or participant age. Our findings inform debates about overlapping social-
communicative difficulties in children with SLI and ASD by suggesting distinct underlying
mechanisms. In line with the procedural deficit hypothesis (Ullman and Pierpont, 2005),
impaired statistical learning may account for phonological and syntactic difficulties
associated with SLI. In contrast, impaired statistical learning fails to account for the
social-pragmatic difficulties associated with ASD.

Keywords: statistical learning, specific language impairment, autism spectrum disorder, meta-analysis,
procedural deficit hypothesis

INTRODUCTION

Statistical learning of complex rules or patterns is thought to play a crucial role in the development
of language, social-cognitive, and motor skills (Perruchet and Pacton, 2006; Frith and Frith,
2008; Romberg and Saffran, 2010; Ruffman et al., 2012)1. Deficits in statistical learning have been
implicated in a range of developmental disorders, such as Specific Language Impairment (SLI) and
Autism Spectrum Disorder (ASD) (Ullman, 2004; Nicolson and Fawcett, 2007). Ullman (2004),
Ullman and Pierpont (2005), and Walenski et al. (2006) proposed the procedural deficit hypothesis
wherein challenges with rule-based aspects of language observed across a range of developmental
disorders (including SLI and ASD) can largely be explained by neurological abnormalities affecting
the frontal/basal ganglia and cerebellar circuits that underpin the procedural memory system. This

1The literature alternates between the terms implicit, statistical, sequence, and procedural learning (see Perruchet and Pacton,
2006). For the sake of parsimony, we will not differentiate between these terms and will be using the term statistical learning
throughout this paper.
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system underpins the acquisition of long-term knowledge that is
inherently sequential or statistical in structure.

Ullman (2004, p. 251) asserted that “SLI may best be viewed
as an impairment in procedural memory” because phonological,
morphological, and syntactic rule learning is commonly impaired
in SLI while lexical knowledge is often spared. Researchers
have also hypothesized that implicit learning impairments
may contribute to the social-communicative and behavioral
atypicalities associated with ASD by making it more difficult for
individuals with ASD to extract patterns from the environments
in order to understand the unspoken rules governing language
and social mores (Frith, 1970a,b; Klinger et al., 2007). In this
paper, we report a series of meta-analyses conducted on studies of
statistical learning in SLI and ASD in order to evaluate whether
the procedural deficit hypothesis provides an adequate account of
impairments in SLI and ASD.

DEFINING CHARACTERISTICS OF SLI
AND ASD

Specific language impairment is a neurodevelopmental disorder
characterized by below age-appropriate language functioning
with respect to the production and/or comprehension
of language. The language problems associated with this
disorder occur in the absence of general developmental delay,
autism diagnosis, neurological deficit, or hearing impairment
(Schwartz, 2009). ASD is characterized by difficulties in social-
communication, as well as restricted and repetitive patterns of
behavior, including sensory atypicalities (American Psychiatric
Association [APA], 2013). Although language impairments are
not part of the current diagnostic criteria for ASD, impairments
in pragmatics, semantics, morphology, phonology, and syntax
are observed among many individuals with ASD, as well as
those with SLI (Tager-Flusberg, 2006; Boucher, 2012). Research
suggests a similar neurological basis for language impairments
in SLI and ASD (De Fossé et al., 2004; Lindgren et al., 2009).
Nevertheless, pragmatics and semantics are typically more
impaired than syntax and phonology across the lifespan in ASD
relative to SLI (Boucher, 2012).

Despite these apparent differences, some individuals with ASD
exhibit pronounced difficulties with phonological processing,
grammatical morphology, and semantics akin to the difficulties
exhibited by individuals with SLI (Kjelgaard and Tager-Flusberg,
2001; Tager-Flusberg, 2006). Researchers have suggested that
these severely language-impaired individuals with ASD are
evidence that a subset of individuals with ASD exhibits
the structural language impairments characteristic of SLI.
Additionally, a subset of individuals with SLI exhibits social and
pragmatic difficulties similar to those exhibited by individuals
with ASD (Leyfer et al., 2008; Durkin et al., 2012); as adults, these
individuals may have difficulties in social functioning similar to
those experienced by adults with ASD (Whitehouse et al., 2009).

Children with ASD and SLI experience a number of
challenges beyond the core social-communicative impairments.
For example, individuals with SLI typically perform worse
than controls on tasks assessing working memory, attention,

executive functioning, and motor skills (Im-Bolter et al., 2006;
Marton, 2008). Similarly, individuals with ASD also perform
worse than controls on certain tasks assessing attention, executive
functioning, and motor functioning (Dawson et al., 2002; Hill,
2004; Landry and Bryson, 2004; Provost et al., 2007; Robinson
et al., 2009). In contrast to SLI, working memory may be intact
in ASD (Russell et al., 1996). In addition, evidence that specific
aspects of executive functioning are similarly impacted by ASD
and SLI remains limited and similarities that have been observed
may be attributable to shared linguistic challenges (Taylor et al.,
2012). Nevertheless, the aforementioned commonalities in terms
of challenges experienced by individuals with ASD and SLI,
in addition to high rates of comorbidity between the two
disorders and evidence of shared genetic risk factors, have led
researchers to postulate that both disorders may arise from shared
underlying mechanisms (Ullman, 2004; Conti-Ramsden et al.,
2006; Nicolson and Fawcett, 2007; Bishop, 2010; Tomblin, 2011;
Bartlett et al., 2012).

Williams et al. (2008) noted that in infancy, SLI and ASD
show similar patterns of development, however, as children grow
older the developmental trajectories of language impairments
in each disorder follow different paths. Williams et al. (2008)
noted impairments in phonology, word retrieval, and grammar
(morphology and syntax) to be more persistent across the lifespan
in individuals with SLI, which contrasts with the pragmatic
difficulties more consistently evident in individuals with ASD (see
also Demouy et al., 2011). The linguistic challenges associated
with each disorder may be heritable, as evidenced by distinctive
patterns of impairments among the first-degree relatives of
people with autism or SLI. For example, Lindgren et al. (2009)
found that first-degree relatives of children with SLI showed
poorer performance on measures of receptive and expressive
language, phonological processing, reading ability, and IQ than
relatives of children with ASD. Similarly, Whitehouse et al. (2007)
found that parents of children with SLI exhibited better pragmatic
language skills but performed more poorly on structural language
measures relative to parents of children with ASD.

NEUROLOGICAL AND BEHAVIORAL
EVIDENCE FOR THE PROCEDURAL
DEFICIT HYPOTHESIS

To evaluate the procedural deficit hypothesis as a unifying
account of impairments in SLI and ASD, one must consider
both neurological and behavioral data as potentially informative.
With regards to neurological evidence, structural atypicalities
of the cerebellum, frontal lobe and basal ganglia have been
documented in both SLI (reviewed by Ullman, 2004) and ASD
(e.g., Sears et al., 1999; Carper and Courchesne, 2000); however,
evidence that these brain structures are atypical in ASD and
SLI remains conflicted (e.g., Brambilla et al., 2003; Mayes et al.,
2015). Moreover, atypicalities in brain activity have not been
well linked to behavioral evidence of impairments in statistical
learning. For instance, a recent study reported “high-functioning”
youth with ASD to exhibit less activity in the basal ganglia during
an implicit language-learning task relative to youth without

Frontiers in Psychology | www.frontiersin.org 2 August 2016 | Volume 7 | Article 1245

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-01245 August 22, 2016 Time: 18:28 # 3

Obeid et al. Meta-Analysis Statistical Learning in ASD and SLI

ASD, yet found no group differences in behavioral learning
outcomes, with both groups performing at chance (Scott-Van
Zeeland et al., 2010). Another recent study, which examined
electrophysiological responses to visual statistical learning among
young children with and without ASD, reported that young
children with ASD as a group exhibited less neural evidence of
statistical learning, yet did not include any behavioral assessments
of learning outcomes (Jeste et al., 2015). In a study that only
assessed behaviors and did not assess brain functioning, faster
than normal use of grammatical rules (with no decrements in
accuracy) by youth with ASD relative to youth without ASD was
interpreted as evidence that atypicalities in the basal ganglia can
lead to either speeding up or slowing down of performance on
language tasks that depend on the procedural memory system
(Walenski et al., 2014).

The behavioral evidence that statistical learning is actually
impaired in ASD appears to be much weaker than the behavioral
evidence that statistical learning is impaired in SLI (e.g., Nemeth
et al., 2010; Lum et al., 2014). In fact, researchers have theorized
that enhanced implicit learning skills might explain savant
abilities in ASD (Mottron et al., 2006). Contradictory assertions
concerning whether statistical learning is impaired in ASD or SLI,
in conjunction with evidence that a subset of individuals with
ASD exhibits a structural language profile that strongly resembles
SLI (Kjelgaard and Tager-Flusberg, 2001; Tager-Flusberg, 2006),
suggests that research is needed to evaluate if statistical learning
is an underlying impairment in both SLI and ASD. The meta-
analyses described in this report were designed to address this
question in order to help inform future interventions. Before
describing the current study, we review findings from two recent
meta-analyses of statistical learning in SLI and ASD.

Statistical Learning in SLI
The literature on statistical learning in SLI provides considerable
support for Ullman and Pierpont’s (2005) procedural deficit
hypothesis (see Evans et al., 2009; Kemeny and Lukacs, 2010;
Hedenius et al., 2011). Lum et al. (2014) used meta-analysis to
evaluate whether impairments in statistical learning, as assessed
using the Serial Reaction Time (SRT) task, constitute a core
deficit in SLI. In a typical SRT task, stimuli appear at one
of four positions on a computer screen with blocks of trials
following either a fixed or random sequence. Participants are
required to press buttons corresponding to the positions of
stimuli as they appear. If learning of the fixed sequence of
stimuli occurs, reaction times (RTs) will be significantly faster
for trials in sequenced as compared to random blocks. Basing
their methodology on a prior meta-analysis of learning deficits
in the SRT task in patients with schizophrenia (Siegert et al.,
2008), Lum et al. (2014) calculated effect sizes by assessing the
difference between the mean RTs in the final sequenced block vs.
the first random block. Lum et al. (2014) showed that 7 out of
the 8 studies comparing SRT task performance of children with
SLI with age-matched controls reported effects in the predicted
direction, corresponding to impaired statistical learning in SLI,
although only two reported statistically significant differences
between groups, due to the small sample sizes of the individual
studies contributing to low statistical power. Given the consistent

direction of the effect across studies, the weighted average effect
size (g = 0.33) indicated a statistically significant impairment
in statistical learning among children with SLI relative to age-
matched peers, in support of Ullman and Pierpont’s (2005)
procedural deficit hypothesis.

Lum et al. (2014) limited their meta-analysis to consider
performance on only a single statistical learning task. However,
the results of a handful of studies employing multiple measures
of statistical learning suggest that performance across tasks is
only weakly interrelated, and may not reflect a unified underlying
capacity (Gebauer and Mackintosh, 2007; Misyak et al., 2010;
Siegelman and Frost, 2015). These discrepancies may partially
reflect the influence of task modality on statistical learning
performance. Typically developing people exhibit a statistical
learning advantage in the auditory domain relative to tactile and
visual modalities (Conway and Christiansen, 2005). Although not
universal, advantages in visual relative to auditory learning have
been reported by people with ASD (Grandin, 1995). Thus, the
current meta-analysis considered performance across a range of
statistical learning tasks to determine the robustness of possible
impairments in statistical learning in SLI and ASD across task
modalities (visual vs. auditory).

Statistical Learning in ASD
Research examining statistical learning in ASD has reported
mixed findings (e.g., Mostofsky et al., 2000; Smith, 2003; Gordon
and Stark, 2007; Barnes et al., 2008; Brown et al., 2010; Nemeth
et al., 2010). Foti et al. (2015) recently conducted three meta-
analyses of implicit learning in ASD, with the first comparing
effects across seven studies using Serial Reaction Time (SRT)
or Alternating Serial Reaction Time (ASRT) tasks, the second
comparing effects across four studies using the Contextual
Cueing (CC) task, and the third comparing effects across two
studies using the Pursuit Rotor (PR) task. Note that the SRT,
ASRT, and CC tasks are considered to be measures of statistical
learning, whereas the PR task is a measure of motor skill learning.
In each of the meta-analyses, Foti et al. (2015) failed to find
evidence that learning was impaired in individuals with ASD.

A limitation with the approach used by Foti et al. (2015)
was their assessment of performance on the SRT and ASRT
tasks. The authors examined reductions in RTs across sequenced
blocks, as opposed to measuring RT differences for sequenced
vs. random blocks, as is conventional (Nissen and Bullemer,
1987). The method adopted by Foti et al. (2015) is problematic
because changes in RT over sequence blocks confound statistical
learning with gains in perceptual and biomechanical efficiency
at responding to visual stimuli. That is, RTs may become
faster on the SRT and ASRT tasks because participants become
faster at pressing a response box button following stimulus
onset as opposed to acquiring information about the repeating
sequence. For this reason sequence-specific effects are examined
by comparing changes in RT from sequenced vs. random blocks
(Gordon and Stark, 2007; Lum et al., 2010, 2012; Travers et al.,
2010; Gabriel et al., 2011, 2013; Lum and Bleses, 2012; Hsu
and Bishop, 2014; Mayor-Dubois et al., 2015). Furthermore,
results from several meta-analyses shows this latter approach
is associated with basal ganglia functioning (Hardwick et al.,
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2013; Clark et al., 2014). Thus the approach used by Foti et al.
(2015) makes it impossible to compare their findings for ASD
with existing meta-analyses demonstrating statistical learning
impairments in other clinical populations (SLI: Lum et al., 2014;
Dyslexia: Lum et al., 2013; Parkinson’s Disease: Siegert et al., 2006;
Clark et al., 2014; Schizophrenia: Siegert et al., 2008).

To draw conclusions about putative similarities or differences
in statistical learning across disorders, researchers must use
the same indices of learning across populations. Therefore, the
current meta-analysis expanded upon the meta-analyses by Lum
et al. (2014) and Foti et al. (2015) by employing the standard
procedures for assessing learning and by including a broader
range of statistical learning tasks. Given the limited number of
studies, to increase statistical power to detect group differences
and precision of effect size estimates, we entered effect sizes for
multiple statistical learning tasks into the same meta-analysis
while examining task modality as a moderator of effects.

THE CURRENT STUDY

We hypothesized that based on common linguistic and non-
linguistic challenges associated with SLI and ASD both disorders
might share a common underlying deficit in statistical learning.
The aims of the current meta-analysis were (1) to examine
whether impairments in statistical learning are a shared challenge
for individuals with SLI and ASD; and (2) to examine whether
task modality and age moderated effect sizes. In the prior
meta-analysis of performance on the SRT task in children
with SLI, Lum et al. (2014) found age to be a significant
moderator of effect sizes, with larger effects apparent in studies
with younger participants. Hence, we used meta-regression
to examine whether age moderated effects across statistical
learning tasks in SLI and ASD. In an effort to replicate and
extend Lum et al.’s (2014) findings of impaired statistical
learning in SLI, we incorporated multiple commonly used
measures of statistical learning, including Serial Reaction Time
(SRT), Alternating Serial Reaction Time (ASRT), Contextual
Cueing (CC), Artificial Grammar Learning (AGL), Observational
Learning (OL) and Probabilistic Classification Learning (PCL).
We also sought to re-evaluate Foti et al.’s (2015) claim
that individuals with ASD do not show impaired statistical
learning by using the standard procedure for measuring
learning in SRT and ASRT tasks (Nissen and Bullemer,
1987).

Understanding whether SLI and ASD share an underlying
processing deficit is essential for identifying potential common
neural circuits that may contribute to a range of different
developmental disorders; as such, the current research is well
aligned with a recent shift toward identifying common pathways
that may be implicated in a range of disorders (Geschwind,
2011; Ullman and Pullman, 2015). A better understanding of
shared and unique mechanisms underlying different disorders
may support the development of more effective interventions by
indicating if interventions developed for one disorder are likely
to be helpful for the other and by identifying specific treatment
targets that may be shared across disorders or unique to each

disorder. If SLI and ASD show varying patterns of statistical
learning, this finding would suggest that common symptoms
in both conditions likely arise from different underlying
mechanisms.

Statistical Learning Tasks
Statistical learning tasks are typically designed so that co-
occurrence patterns and ordering of stimuli are based on complex
sets of rules. The next section describes, in detail, the tasks
represented in this meta-analysis. To be included, studies needed
to have a testing phase with learning assessed by comparing
performance across sequenced vs. random/control trials, using
either RT or accuracy as the dependent variable. Thus, the Pursuit
Rotary task, for example, was excluded from the meta-analysis
because it measures time-on-target across blocks and does not
have a control condition.

Serial Reaction Time (SRT)
The SRT task, introduced by Nissen and Bullemer (1987) is
widely used with clinical populations. In a standard SRT task,
sequences of visual stimuli appear at one of four positions on
a computer screen. Each position corresponds to a button on
a pad; as each stimulus appears, the participant is required to
press the corresponding button as quickly as possible. Across
blocks of trials, stimuli may follow a fixed sequence that, through
learning, leads participants to anticipate the location of each
successive stimulus in the series. Learning is measured through
reductions in RTs for blocks of trials following the fixed sequence,
as compared to blocks of trials following a random sequence
(Nissen and Bullemer, 1987; Robertson, 2007). The Alternating
Serial Reaction Time Task (ASRT; Howard and Howard, 1997) is
similar to the SRT tasks in many respects except that it inserts
random items within the sequence of trials that follow a fixed
order to reduce explicit knowledge or awareness of the recurring
sequences (Brown et al., 2010; Nemeth et al., 2010).

Contextual Cueing (CC)
The CC task is a visual search task where participants are required
to locate a visual target (e.g., a rotated T shape) in a field of
distractors (e.g., ∼10–12 rotated L shapes) (Chun and Jiang,
1998). Across blocks of trials, a fixed sequence of displays is used,
with the location of the target (the rotated T shape) determined
by the configuration of the distractors. Participants are required
to press a key corresponding to the rotation of the target as
quickly as possible. Similar to the SRT task, if learning is achieved,
participants become faster in responding to targets in familiar
configurations, where the target’s location is fully predictable
based on contextual cues, in comparison to random (baseline)
configurations.

Artificial Grammar Learning (AGL)
The AGL task (Miller, 1958; Reber, 1967) involves presenting
participants with meaningless auditory or visual sequences of
stimuli (non-sense syllables, letters) that are generated by a
complex set of rules (e.g., a finite-state grammar). Participants are
instructed to memorize the sequences presented. After a period
of exposure to a representative set of sequences generated by
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the grammar, learners are tested on their implicit learning of
the underlying rules by means of a grammaticality judgment
task in which familiar and unfamiliar sequences generated by
the grammar are contrasted with ungrammatical foils (random
sequences of the same stimuli), with accuracy used as the
dependent measure.

Speech-Stream (SS)
The SS task examines whether participants can use transitional
probabilities between non-sense syllables (i.e., the conditional
probability of one syllable following another) to detect word
boundaries in continuous speech (Saffran et al., 1996).
Participants briefly listen to a speech stream comprising
three-syllable non-sense words concatenated into a random
sequence, with each non-sense word occurring multiple times.
The speech stream is synthesized to eliminate any cues to the
word boundaries besides the recurring three-syllable sequences.
To measure statistical learning, participants are testing on their
ability to distinguish the recurring three-syllable non-sense
words from other three-syllable sequences that occur less often
in the speech stream (i.e., “part-word” sequences that span word
boundaries), with accuracy as the dependent measure. Note that
in some variants of the SS task, tones are used in place of syllables
to evaluate statistical learning across different types of stimuli.

Observational Learning (OL)
The OL task (Fiser and Aslin, 2001) examines statistical learning
of shape co-occurrences in complex visual scenes. Stimuli are
organized into “base pairs” comprising two arbitrary shapes in a
particular spatial arrangement (vertical, horizontal, or diagonal).
During the familiarization phase, participants are briefly exposed
to a series of 3 × 3 arrays, with each array displaying several of
the base pairs in various locations. Note that across arrays, the
location of one shape within each base pair is fully determined by
the location of the other shape within the pair. Participants are
instructed to pay attention to the continuous sequence of arrays
for a later test. During the two-alternative forced-choice test, base
pairs from the familiarization trials were presented along with
novel (random) pairs. Participants were asked to decide which of
the two pairs seems more familiar, with accuracy in selecting the
base pairs as the dependent measure.

Probabilistic Classification Learning (PCL)
In the PCL task, participants learn which of two outcomes is
predicted by combinations of four different cues (Estes et al.,
1957). The Weather Prediction task is a commonly employed
PCL task where trials utilize four different geometrical shapes
presented in various combinations on a computer screen. For
each combination, comprising one to three of the geometrical
shapes, participants are asked to predict whether the combination
is associated with rain or sunshine. Participants respond by
pushing one of two corresponding buttons and are shown the
correct response as feedback to facilitate learning (Knowlton
et al., 1994); note that this contrasts with other statistical
learning tasks, where participants are given no feedback on their
performance. Learning is typically measured by calculating the
number of correct responses (learning the association between

the cue and the outcome) across trials (Mayor-Dubois et al.,
2015).

MATERIALS AND METHODS

Criteria for Study Inclusion
Figures 1 and 2 provide flowcharts depicting, for each meta-
analysis, the main steps of the literature search and selection
of studies in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines
(Moher et al., 2009). As a first step, we searched for published
articles or dissertations on statistical learning in SLI and
ASD using PsycINFO, Academic Search Complete, and Google
Scholar with searches conducted periodically from June 2013
to March 2016. Computerized searches were conducted using
the terms implicit learning, sequence learning, statistical learning,
or procedural learning coupled with the terms: SLI, Language
Impairment, ASD, or Autism. Having identified a large number
of potential articles, the abstracts were screened to determine
whether they were empirical studies on statistical learning.
All studies that met this screening criterion were examined
to determine whether they met eligibility criteria. Eligibility
required the study to use a statistical learning task (see
description of tasks) and to include one diagnostic group of
individuals identified as language impaired or ASD, in addition
to a control group. As a final step, we excluded SRT studies that
did not include a random block of trials. We also excluded two
studies with a general language/learning disabled group that was
not explicitly identified as SLI (e.g., Fletcher et al., 2000; Plante
et al., 2002).

For the SLI sample, a total of 14 studies (15 comparisons)
were included. For the ASD sample, a total of 13 studies (20
comparisons) were included. All lead authors were contacted and
asked to provide further statistical information and unpublished
data, if available. No studies were lost due to missing data, and
no additional unpublished data were identified. Tables 1 and 2
provide summaries of study participants and the tasks employed
for SLI and ASD, respectively.

Meta-Analytic Procedures
Statistical analyses were conducted using the Comprehensive
Meta-Analysis (CMA) program 2.0 (Borenstein et al., 2005). To
examine overall effect size differences between the diagnostic
groups (SLI and ASD) and controls, a random-effects model was
used, which pools effect sizes from individual studies to create
a weighted average effect size (Hedges, 1983). The I2 statistic was
used to determine whether the variability within the sample is due
to heterogeneity between studies and not due to sampling error
(Huedo-Medina et al., 2006). Mixed-effects subgroup analyses
were used to examine whether task modality moderated effect
sizes.

Effect Size Extraction
As mentioned, the most widely accepted method for assessing
learning in the SRT task involves examining whether a
difference exists between the final sequenced block and
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FIGURE 1 | PRISMA flowchart showing the process of SLI article identification.

the first random block (Nissen and Bullemer, 1987). Thus,
when RT was the outcome measure, we were interested in
whether there existed a significant Group (i.e., SLI or ASD
vs. Control) × Condition (Sequenced vs. Random/Baseline)
interaction. When accuracy was the outcome measure, we were
interested in whether the groups differed in distinguishing
grammatical from ungrammatical sequences (AGL task), three-
syllable words from part-words (SS task), base pairs from random
pairs (OL task), or using probabilistic cues to predict outcomes
(PCL task).

Note that when multiple tasks were included in the same
study, we computed an effect size for each task. Hence,
studies with multiple tasks yielded multiple comparisons;
these multiple comparisons were averaged together when
conducting a meta-analysis as the level of studies. We used
Hedge’s g as the computed effect size measure. Note that
positive g values indicate that the control group in the study
showed higher statistical learning compared to the diagnostic
group. This approach has been used in previous meta-
analyses of SRT tasks (e.g., Siegert et al., 2006; Lum et al.,
2014).

Data was extracted from each study so that an effect size
and its variance could be computed. The effect size used for
this meta-analysis was Hedges g, which expressed the difference
between two groups in standard deviation units. For each study

the value was computed so that positive values indicated that
the control group evidenced better statistical learning than
a clinically defined group (ASD or SLI). The data extracted
from primary studies to compute Hedges g were results from
statistical tests, summary data presented in either tables or
figures, or by contacting authors. Conversion of these data to
Hedges g was undertaken using CMA 2.0 (Borenstein et al.,
2005).

Prior to conducting the meta-analysis, we correlated the effect
sizes that we extracted from our studies to those extracted
from the same studies by Foti et al. (2015). A total of 6
studies were included in the correlational analysis of SRT and
ASRT task performance2. We found a marginally significant
negative correlation between our effect size estimates and those
calculated by Foti et al. (2015), r = −0.80, p = 0.06. This
negative correlation strongly suggests that the standard measure
of statistical learning in SRT/ASRT tasks (reported here) is
distinct from measuring changes in RT due to practice (reported
in Foti et al., 2015).

2One study (Müller et al., 2004) was excluded from our meta-analysis because it did
not include a block of random trials (i.e., it was not a conventional SRT task). Note
also that we recoded the effect sizes reported in Foti et al. (2015) prior to conducting
the correlational analysis so that positive values indicated greater learning in the
control group than in the ASD group in both studies.
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FIGURE 2 | PRISMA flowchart showing the process of ASD article identification.

Moderators
The current meta-analysis incorporated multiple tasks as indices
of statistical learning. Tasks varied in whether the stimuli were
visual or auditory in nature. For this reason, we examined task
modality (visual versus auditory) as a potential moderator in both
the SLI and ASD data. To examine whether age moderated group
differences in statistical learning, we conducted a meta-regression
with age as a predictor variable. Age was entered in the analysis as
the mean age for each group (Tables 1 and 2).

RESULTS

Figures 3 and 4 show preliminary results of possible publication
bias using funnel plots for the SLI and ASD data, respectively.
Funnel plots show publication bias when their individual effect
sizes are distributed in an asymmetrical manner around the
weighted average effect size. Egger’s test of asymmetry was not
significant for either group [SLI: Intercept = 0.33, t(13) = 0.30,
p = 0.77, ASD: Intercept = −0.20, t(18) = 0.14, p = 0.89],
indicating that bias was not found in our search.

Meta-Analysis: Specific Language
Impairment
A mixed-effects meta-analysis addressed the first aim of the
study, to determine whether statistical learning is impaired in
SLI, by extending Lum et al.’s (2014) findings using a larger

dataset that was not restricted to the SRT task. Figure 5 shows
a forest plot depicting effect sizes for each study and weighted
averages for the SLI group. The results of the mixed-effects
analysis examining statistical learning in SLI are reported in
Table 3. Positive effect sizes indicate that the control group
displayed higher learning compared to the SLI group. In line with
Lum et al.’s (2014) meta-analysis, results showed a significant
Hedge’s g of 0.46 at the level of studies and 0.47 at the level of
comparisons (p < 0.001), suggesting that participants with SLI
show significant impairments in statistical learning compared
to controls. A mixed-effects subgroup analysis was computed
to examine whether impairments in statistical learning in SLI
were moderated by task modality (auditory versus visual). This
subgroup analysis was not significant Q(1) = 1.36, p = 0.24,
indicating that task modality did not moderate the effect sizes.

Meta-Analysis: Autism Spectrum
Disorder
A mixed-effects analysis addressed the second aim of the study,
to determine whether statistical learning is impaired in ASD.
We extended Foti et al.’s (2015) meta-analysis by employing
the standard measure of learning for the SRT/ASRT tasks and
including our full set of statistical learning tasks. A forest plot
depicting study effect sizes and weighted averages for the ASD
group is presented in Figure 6. Table 4 presents the results
of the mixed-effects analysis examining statistical learning in
ASD, with positive effect sizes indicating higher learning in the
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TABLE 1 | Summary of studies with SLI studies incorporated into the meta-analysis.

Sample Size

References SLI TD Total Mean Age Task DV Control

Evans et al., 2009 35 78 113 8.75 SS Accuracy Age, Non-verbal IQ

Gabriel et al., 2011 16 16 32 10.3 SRT RT Age, Gender, Non-verbal IQ, SES

Gabriel et al., 2012 15 15 30 10.4 SRT RT Age, Gender, Perceptual Reasoning Index, SES

Gabriel et al., 2013 23 23 46 9.7 SRT RT Age, Gender, Perceptual Reasoning Index, SES

Gabriel et al., 2015 16 16 32 9.9 SRT RT Age, Gender, Perceptual Reasoning Index, SES

Hedenius et al., 2011 31 31 62 10.0 ASRT RT Age, Handedness, Gender

Hsu and Bishop, 2014 24 20 44 8.7 SRT RT Age

Hsu et al., 2014 60 60 120 14.5 AGL Accuracy Age, Non-verbal IQ

Kemeny and Lukacs, 2010 16 16 32 11.3 PCL Accuracy Age

Lum and Bleses, 2012 13 20 33 7.8 SRT RT Age, Gender

Lum et al., 2012 51 51 102 9.9 SRT RT Age, Performance IQ

Lum et al., 2010 14 15 29 7.1 SRT RT Age, Gender, Handedness

Mayor-Dubois et al., 2015 18 65 83 10.0 ASRT RT Not stated

18 65 83 10.0 PCL Accuracy Not stated

Tomblin et al., 2007 38 47 85 14.9 SRT RT Non-verbal IQ

In Evans et al. (2009), we averaged the effect sizes for the tone and speech conditions of the SS task. In Gabriel et al. (2012), we averaged the effect sizes for two
experiments that varied the input device in the SRT task.

control group relative to the ASD group. The Hedge’s g was
not significant at the level of studies, g = −0.11, p = 0.30,
or comparisons, g = −0.13, p = 0.22. This suggests that
ASD participants did not differ significantly in learning when
compared to controls, which is in line with the conclusion
drawn by Foti et al. (2015). Mixed-effects subgroup analyses were
computed to examine whether effect sizes varied significantly by
task modality for the ASD group. This analysis indicated that
task modality did not moderate the finding of intact statistical
learning in ASD, Q(1)= 1.25, p= 0.26.

Between-Groups Meta-Analysis: SLI and
ASD
To examine the final aim of this study, whether impairments in
statistical learning are a common underlying deficit in individuals
with SLI and ASD, we employed random effects models to
examine overall effect size differences between groups (SLI versus
ASD). Two meta-analyses were conducted to examine possible
differences in statistical learning between SLI and ASD. The first
analysis compared all retrieved SLI and ASD studies regardless
of task, thus resulting in 14 studies (15 comparisons) for the SLI
group and 13 studies (20 comparisons) for the ASD group. In the
second analysis we matched the studies in both groups by task.
For this analysis, we included only SRT, ASRT, AGL, SS, and PCL
tasks, as those tasks were included in both SLI and ASD datasets.
That is, CC and OL tasks for the ASD group were dropped from
the analysis as none of our retrieved SLI studies used these tasks.
This resulted in 14 studies (15 comparisons) for the SLI group
and eight studies (12 comparisons) for the ASD group. Results
of the first between-groups analysis showed that there was a
significant difference in statistical learning between the SLI and
ASD groups both at the level of studies, Q(1) = 15.54, p < 0.001,
and at the level of comparisons, Q(1) = 17.84, p < 0.001. Such

between-group differences remained robust even when matching
on type of task (study level: Q(1) = 8.90, p = 0.003; comparison
level: Q(1) = 10.90, p = 0.001). This finding suggests that while
individuals with SLI show impairments in statistical learning, this
ability appears to be intact in individuals with ASD.

Meta-Regression with Age as a
Moderator
The final meta-analysis was a multivariate meta-regression to
evaluate whether participants’ ages predicted the effect sizes
shown in Figures 5 and 6. The predictor variable in the analysis
was participants’ age while controlling for diagnostic group.
Overall, the model was not significant; hence, age was not found
to be a predictor of effect sizes, Q(1) = 0.65, R2

= 0.26, p = 0.42.
Table 5 shows a summary of the coefficients of the regression
model.

DISCUSSION

Deficits in statistical learning have been hypothesized to be
present in SLI and ASD (Frith, 1970a,b; Ullman, 2004; Ullman
and Pierpont, 2005; Walenski et al., 2006; Nicolson and Fawcett,
2007). The procedural deficit hypothesis, proposed by Ullman
(2004) and Ullman and Pierpont (2005), claims that impairments
in language development observed among individuals with SLI
and those with ASD (specifically rule-based processes critical for
phonological and grammatical development) may be explained
by deficits in the neural networks that underpin procedural
memory. However, the degree to which shared symptoms of
ASD and SLI arise from common mechanisms remains disputed
(Frith, 1970a,b; Mottron et al., 2006; Klinger et al., 2007; Nicolson
and Fawcett, 2007; Williams et al., 2008; Lum et al., 2014; Foti
et al., 2015).
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TABLE 2 | Summary of studies with ASD participants incorporated into the meta-analysis.

References Sample size Mean Age Task DV Control ASD
Diagnostic
Measures

Additional Information

ASD TD Total ASD TD

Barnes et al., 2008 14 14 28 11.3 ASRT RT Age,
Gender, IQ

DSM-IV-TR,
CAST,
ADI-R,
ADOS

Full Scale
Intelligence
Quotient (FSIQ)
110.4± 12.6

FSIQ
116.3± 13.8

14 14 28 11.7 CC RT

Brown et al., 2010 26 26 52 11.7 ASRT RT Age;
Gender, IQ

DSM-IV,
and

instruments
such as ADI

FSIQ
99.6± 11.5

Verbal IQ
99.7± 18.5

FSIQ
107.8± 11.5

Verbal IQ
106.9± 11.6

26 26 52 11.7 CC RT

26 26 52 11.7 PCL Accuracy

26 26 52 11.7 AGL Accuracy

Gordon and Stark, 2007 5 5 10 12.7 SRT RT Age DSM-IV,
CARS

Limited
language;
IQ ≥ 44

Not
available

Kourkoulou et al., 2012 16 17 33 19.0 CC RT Age; IQ ADOS,
ADI-R

FSIQ
101.0± 11.3

Verbal IQ
97.8± 14.5

FSIQ
106.4 ± 11.9

Verbal IQ
102.7 ± 14.616 17 33 19.0 CC RT

Mayo and Eigsti, 2012 17 24 41 13.1 SS Accuracy Age, IQ DSM-IV-
TR, ADOS,

ADI-R

FSIQ
103 ± 11.5
Average to

high
performance

on
language
measures

FSIQ
105 ± 11.5
Average to

high
performance

on
language
measures

Mostofsky et al., 2000 11 17 28 12.9 SRT RT Age, IQ DSM-IV,
ADI, ADOS

FSIQ
105

FSIQ
102

Nemeth et al., 2010 6.5 14 20.5 11.7 ASRT RT Age DSM-IV,
ADI, ADOS

FSIQ
93.15± 20.67

FSIQ
109.07± 12.83

6.5 13 19.5 10.5 ASRT RT IQ FSIQ
96.54 ± 17.65

Roser et al., 2015 28 22 50 13.0 OL Accuracy Age DSM-IV,
ICD-10

Not
available

Not
available

10 10 20 38.8 OL Accuracy Age, IQ,
Handedness

Stated as
various

Wechsler
Abbrev.
Scale of

Intelligence
(WASI)

m = 117;
f = 113

WASI
m = 123;
f = 117

Smith, unpublished dissertation 17 23 40 23.1 SRT RT Not
matched

DSM-IV ASD
participants
were verbal

Not
available

Travers et al., 2010 15 18 33 19.0 SRT RT Age, Verbal
IQ

ADI-R,
ADOS

FSIQ
103 ± 17.8
Verbal IQ
81 ± 14.9

FSIQ
100 ± 14.1
Verbal IQ
84 ± 10.2

Travers et al., 2013 16 20 36 19.1 CC RT Age,
Non-verbal

IQ

DSM-IV,
ADI-R,
ADOS

FSIQ
101.7± 18.0

Verbal IQ
97.4± 19.9

FSIQ
101.8± 17.2

Verbal IQ
102.0± 19.1

12 16 28 20.0 CC RT

Studies denoted with a and b refer to separate experiments with different samples within the same paper. Unless noted, studies did not include language assessments.
In their study, Nemeth et al. (2010) used three groups of participants, the results of the same participants in the ASD group were compared to separate age-matched and
IQ-matched typically developing participants. For this reason, we divided the ASD sample by 2 when computing effect sizes for each group.
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FIGURE 3 | Funnel plot of SMD plotted against standard errors for the
SLI comparisons.

The current meta-analyses were designed to address
conflicting speculations concerning whether statistical learning
is a shared impairment among individuals with SLI and ASD.
Findings suggest that statistical learning is commonly impaired
in SLI, but not ASD. No evidence of moderation by task modality
or age was observed. While our conclusion regarding intact
learning in ASD was similar to Foti et al.’s (2015), the variables
measured in the two meta-analyses were distinct and trended
toward being negatively correlated. In Foti et al. (2015), non-
significant group differences in implicit learning (assessed via

FIGURE 4 | Funnel plot of SMD plotted against standard errors for the
ASD comparisons.

decreased RTs over blocks of sequenced trials) favored the control
group; in the current study, non-significant group differences in
RTs for sequenced vs. random trials favored the ASD group.

The prior meta-analysis examining performance on the SRT
task in children with and without SLI (Lum et al., 2014) suggested
that impairments in statistical learning may become weaker with
age in participants ranging in age from 7 to 15 years. Given
this prior finding and the different mean ages of participants in
the ASD and SLI studies examined in this report, we conducted
a meta-regression to assess whether age predicted variations in

FIGURE 5 | Forest plot showing study effect size and average weighted effect sizes for individuals with SLI and control individuals. The effect size for
Evans et al. (2009) averages over three experiments, with averaging undertaken using Comprehensive Meta-Analysis 2.
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TABLE 3 | Summary of effect sizes for overall effects for SLI data at the level of studies and comparisons (numbers of studies and comparisons are in
parentheses).

Level of
analysis

Hedge’s g 95% CI Z p-value (Z) Sample size Q df (Q) p-value (Q) I-squared

SLI Controls

Studies (14) Fixed 0.46 [0.32,0.61] 6.32 <0.001 343 472 21.59 13 0.06 39.79

Random 0.46 [0.26,0.65] 4.63 <0.001

Comparisons (15) Fixed 0.46 [0.32,0.61] 6.32 <0.001 408 555 21.82 14 0.08 35.83

Random 0.47 [0.28,0.66] 4.94 <0.001

FIGURE 6 | Forest plot showing study effect size and average weighted effect sizes for individuals with ASD and control individuals.

TABLE 4 | Summary of effect sizes for overall effects for ASD data at the level of studies and comparisons (numbers of studies and comparisons are in
parentheses).

Level of
analysis

Hedge’s g 95% CI Z p-value (Z) Sample size Q df (Q) p-value (Q) I-squared

ASD Controls

Studies (13) Fixed −0.12 [−0.28, 0.03] −1.58 0.11 136 154 17.85 12 0.12 32.78

Random −0.11 [−0.31, 0.10] −1.03 0.30

Comparisons (20) Fixed −0.12 [−0.28, 0.03] −1.58 0.11 226 252 32.76 19 0.03 42.00

Random −0.13 [−0.34, 0.08] −1.23 0.22
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TABLE 5 | Summary of the variables in the meta-regression model.

Variables in the model Coefficient summary

β B 95% CI for B p-value

Constant 0.86 [−1.03, 2.75]

Age −0.51 −0.05 [−0.18, 0.08] 0.42

effect sizes computed. We found no relationship between age
and performance on tasks of statistical learning, thus age of the
participants in the sample did not affect variations in computed
effect sizes. Therefore, we did not replicate an age effect reported
by Lum et al. (2014), wherein implicit learning impairments in
SLI became less apparent with age. Our inability to replicate may
have arisen because the original effect was relatively weak (only
significant with a one-tailed t-test). In addition, performance on
different types of statistical learning tasks may develop differently
with age. For instance, SRT performance tends to improve with
age whereas ASRT performance tends to get worse with age
(Janacsek et al., 2012).

Interpreting Group-Level Differences in
Statistical Learning
The observed group-level difference in statistical learning in
SLI and ASD suggests that the different manifestations of
language impairments in each disorder stem from different
underlying mechanisms. The current findings are consistent
with the procedural deficit hypothesis of Ullman and Pierpont
(2005) wherein impairments in statistical learning account for
deficits in rule-based aspects of language, such as phonological,
morphological, and syntactic processing for SLI but not for ASD.
It is important to note that it is possible that deficits in statistical
learning are apparent in the subgroup of individuals with ASD
who exhibit structural language difficulties reminiscent of SLI
(Kjelgaard and Tager-Flusberg, 2001). We could not evaluate
whether individuals with ASD with lower language abilities than
comparison groups have impaired statistical learning due to the
paucity of studies examining statistical learning among non-
verbal “low-functioning” individuals with ASD and the lack
of detailed information about language skills in most prior
work on statistical learning in ASD. The one study in our
meta-analysis that carefully documented language impairments
among participants with ASD found evidence of impaired
statistical learning in ASD relative to controls (Gordon and Stark,
2007).

Findings suggest that a more focused alternative to Ullman’s
(2004) general procedural deficit hypothesis is needed wherein
statistical learning impairments are not expected to be apparent
across all developmental disorders but rather are expected to be
apparent only among people who exhibit challenges in specific
rule-based aspects of language. Deficits in each of the areas of
language that would be expected to be impaired according to
the procedural learning hypothesis are hallmark characteristics of
SLI (Schwartz, 2009). In contrast, phonology, morphology, and
syntax tend to be relatively intact in ASD, at least at later stages
of language development (Williams et al., 2008; Boucher, 2012).

Indeed, the two domains of language that are most commonly
impaired in ASD, semantics and pragmatics, are either described
by Ullman (2004) as primarily arising from declarative learning
(e.g., semantics) or not discussed in either of his seminal papers
about his procedural deficit hypothesis (e.g., pragmatics: Ullman,
2004; Ullman and Pierpont, 2005).

The current findings highlight the importance of examining
associations between implicit learning, verbal and non-verbal
pragmatic skills and specific domains of language longitudinally
using cross-lagged designs in order to understand the
contributions of each to language development. Unfortunately,
none of the studies included in our meta-analysis focused on
the development stage when the linguistic profiles of individuals
with ASD and SLI are presumed to be most similar; difficulties
with syntax and articulation are apparent early in development
in ASD but typically resolve by the school-age years (Boucher,
2012). Future longitudinal research should be conducted with
individuals with ASD or SLI beginning in preschool in order
to identify potential commonalities that are apparent at that
developmental stage, but not later. Such research could examine
the hypothesis that early commonalities in language profiles
across ASD and SLI are attributable to different underlying
mechanisms, which yield reduced opportunities to learn
language among children with ASD (due to poor joint attention
and coordinated social engagement) versus reduced retention of
information from such opportunities among children with SLI
(due to reduced capacities in statistical learning and/or verbal
working memory).

Evaluating how statistical learning might contribute to
language impairments is complicated by the variety of tasks
used to assess statistical learning. We assumed for the purpose
of group-level meta-analyses that the various tasks measured
the same underlying construct. However, statistical learning is
complex and may not represent a single construct (Erickson
and Thiessen, 2015; Siegelman and Frost, 2015), and some tasks
(or task variants) allowing learners to rely on explicit strategies,
such as chunking sequences of elements in memory, to achieve
apparent success in statistical learning (cf. Nemeth et al., 2010).
Although we found no moderating effect of task modality on
effect sizes for either SLI or ASD groups, we cannot rule out
the possibility that different tasks relate to language outcomes in
fundamentally different ways.

To understand relationships between statistical learning and
language impairments, one needs to look not only at group-level
differences, but also at relationships between statistical learning
and individual differences in different aspects of language
development and processing. Such correlational designs should
control for other variables, such as non-verbal (fluid) intelligence,
that are likely to impact performance on a broad range of tasks.
Perhaps due to claims that implicit forms of learning are robust
across populations differing widely in age and intelligence (e.g.,
Reber, 1993; Stanovich et al., 2009), studies focusing on individual
differences in statistical learning in relation to language outcomes
are still relatively few in number. In the following subsections,
we review this research in order to highlight its implications
for distinguishing the impairments associated with SLI and
ASD.
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Statistical Learning in Relation to
Grammar, Phonology, and Reading
Under the procedural deficit hypothesis, statistical learning
is presumed to play a critical role in the mastery of rule-
based aspects of language, such as grammar (morphology
and syntax) and phonology. Several studies have explored
the putative relationship between statistical learning and
grammatical development with mixed results. In a study
involving typically developing 4–6-year-olds, Kidd (2012)
linked performance on the SRT task with syntactic priming,
i.e., increased likelihood of producing complex passive-voice
sentences (e.g., the guitar was played by the man) as descriptions
of pictures after hearing another person use the passive-voice
construction as a description of a different scene. Similarly, in a
study of typically children of ages 6–8 years, Kidd and Arciuli
(2016) linked performance on a visual statistical learning task
with comprehension of complex sentence structures (passives
and object relative clauses). In contrast, two other studies
failed to find a relationship between SRT task performance
and morphology acquisition—i.e., rule-based production of past-
tense forms for regular and novel verbs in Finnish children
between 4 and 7 years of age (Kidd and Kirjavainen, 2011) and
in English-speaking children at around 5 years of age (Lum and
Kidd, 2012).

To date, only one study has linked individual differences in
statistical learning directly to aspects of phonological processing.
Using the SS task with a group of 8–12-year-olds (half with SLI,
half age-matched controls), Mainela-Arnold and Evans (2014)
found statistical learning to predict the extent to which children
experienced intrusions from phonologically related words in a
spoken word recognition task. This study used a gating procedure
in which children heard progressively longer fragments of words
(starting from the word onset) and attempted to identify the
words based on partial information. Poor performance on the SS
task was associated with greater lexical-phonological competition
in the word recognition task. In contrast, performance on the
SS task was unrelated to the richness of children’s semantic
representations, as indexed by a word definition task.

Other evidence suggesting a relationship between
phonological processing and statistical learning comes from
studies of individual differences in reading—a process that relies
on phonological awareness to achieve fluency in decoding letter
sequences into sound patterns. In support of the procedural
deficit hypothesis, Arciuli and Simpson (2012) reported
correlations between performance on a visual analog of the SS
task and reading ability in a group of 6- to 12-year-old children
(N = 38) as well as in an adult sample (N = 37). In a recent
meta-analysis, Lum et al. (2013) synthesized results of 14 studies
comparing SRT task performance in dyslexic (N = 314) and
age-matched controls (N = 317) and found robust evidence of a
deficit in implicit learning associated with dyslexia, g = 0.45, 95%
CI [0.20, 0.69], p < 0.001. These studies appear to contradict an
earlier large-scale study of 422 children of ages 7–11 years (Waber
et al., 2003), wherein SRT performance failed to distinguish good
and poor readers. Given the complexity of learning to read, and
its reliance on other aspects of language development such as

vocabulary growth, additional research is required to elucidate
how specific components of reading, such as the acquisition of
grapheme-to-phoneme correspondence rules, might be linked to
underlying statistical learning mechanisms.

Statistical Learning in Relation to
Vocabulary Development
The procedural deficit hypothesis views vocabulary development
as a relative strength in SLI due to its reliance on declarative
as opposed to procedural memory (Ullman and Pullman,
2015). This position contrasts with the perspectives of infancy
researchers focusing on the problem of word segmentation in
relation to vocabulary acquisition (e.g., Romberg and Saffran,
2010; Erickson and Thiessen, 2015). The SS task (Saffran et al.,
1996) originated as an experimental demonstration that infants
could extract word forms from continuous speech solely on the
basis of syllable co-occurrence statistics. Extracting word forms
is considered to be a prerequisite to associating them with their
referents, i.e., learning the meanings of the words. Indeed, several
studies using the SS task have demonstrated links between the
output of statistical learning, i.e., the identification of word forms,
and subsequent mapping of the word forms onto referents by
children (Estes et al., 2007) and adults (Mirman et al., 2008).

If language learners vary with respect to the efficiency of the
underlying word segmentation process, this should impact the
growth of their vocabularies. Using a visual sequence learning
(VSL) task in which 8.5-month-old infants were exposed to three-
element sequences of visual images appearing in predictable
spatial-temporal sequences (e.g., left–center–right, left–center–
right, left–center–right), Shafto et al. (2012) demonstrated
links between infants’ ability to predict the location of the
next element in the sequence and their receptive vocabulary
size, measured using the MacArthur-Bates Communicative
Development Inventories (CDI; Fenson et al., 2006). Infants who
were faster to look at images occurring in predictable, as opposed
to random, locations had greater vocabulary comprehension
(vocabulary production was not assessed) at the time of the test
than infants who responded at chance on the VSL task. Evans
et al. (2009) linked performance on the SS task to individual
differences in receptive and expressive vocabulary in children
with typical language development (age 6–14 years). For children
with SLI, individual differences in performance on the SS task
predicted receptive (but not expressive) vocabulary; furthermore,
this association was only apparent after prolonged exposure
to the SS task, when performance was no longer at chance.
Although more work is needed to identify the contribution
of statistical learning to lexical-semantic development, these
findings suggest that Ullman’s procedural deficit hypothesis may
need to be broadened to recognize greater contributions of
statistical learning to lexical development than his theory initially
accounted for.

Alternative Accounts of Language
Impairments in ASD
Our findings that individuals with ASD have intact statistical
learning suggest that social-communicative deficits associated
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with ASD cannot be explained by an underlying deficit in
statistical learning. In contrast to evidence linking individual
differences in statistical learning to language development in
the domains of grammar, phonology, and vocabulary, we are
not aware of any studies that have demonstrated associations
between implicit learning and pragmatic language development,
which is the area of language development most impacted
by ASD. Although statistical learning might contribute to the
development of semantics—the other language domain that
is most commonly impacted in ASD (Boucher, 2012)—via
word learning (Evans et al., 2009; Shafto et al., 2012), the
current findings suggest that semantic deficits associated with
ASD are unlikely to arise from an impairment in statistical
learning. Indeed, prior research suggests that semantic deficits
in ASD are more likely to arise through their associations with
core social-cognitive symptoms of ASD, such as reduced joint
attention, as early words are often learned in contexts where
children are able to coordinate their attention and interests
with caregivers (Baron-Cohen et al., 1997; Adamson et al.,
2009).

Although Frith (1970a,b) was one of the first researchers
to document statistical learning impairments in ASD, she has
stated in more recent work that pragmatic and semantic language
impairments associated with ASD likely arise from social-
cognitive difficulties in understanding other people’s perspectives
(Perner et al., 1989; Frith and Happé, 1994). Difficulties in sharing
attention and perspective taking may in turn arise from non-
social atypicalities, such as difficulties with motor coordination
(Gernsbacher et al., 2008) and/or reductions in interactional
synchrony arising from atypicalities of time perception among
individuals with ASD (Wimpory et al., 2002; Szelag et al.,
2004).

Atypical timing of responses may also contribute to variations
in performance on statistical learning tasks among individuals
with ASD. In a classical eye-blink conditioning paradigm,
wherein a tone is paired with an air puff to the eye (Clark
and Squire, 1998), Sears et al. (1994) documented rapid classical
conditioning in participants with ASD, who required significantly
fewer trials than controls to associate the tone with the air
puff. However, participants with ASD showed abnormalities
in the timing of their responses. They blinked more rapidly
after hearing the tone than controls, and more often re-opened
their eyes before the air puff, and then blinked again. This
atypical response topography suggests that the ASD group
had difficulties anticipating the exact timing of the air puff
and were unable to modulate their responses accordingly.
However, as other research suggests that timing may not be
atypical among individuals with ASD (Wallace and Happé,
2008), additional studies are needed in order to draw firm
conclusions.

CONCLUSION, FUTURE DIRECTIONS,
AND IMPLICATIONS FOR TREATMENT

The main finding of this report, that SLI, but not ASD, is
associated with deficits in statistical learning, suggests that the

language and communicative difficulties associated with each
disorder have distinct underlying mechanisms. These results
support the procedural deficit hypothesis with implications
for the diagnosis and treatment of SLI, but suggest an
alternative account is needed to explain the social and pragmatic
difficulties associated with ASD. Core social symptoms of ASD,
such as reduced joint attention and difficulty understanding
others’ perspectives, likely contribute to semantic and pragmatic
difficulties among individuals with ASD (Frith and Happé, 1994;
Adamson et al., 2009). However, additional research is needed to
evaluate statistical learning in individuals with ASD with varying
language abilities, including participants who may have language
impairments similar to those associated with SLI. It is a major
limitation of the field that only one study to date has examined
statistical learning in “low-functioning” individuals with ASD
with presumably weak language abilities. In addition to sampling
individuals across the full spectrum of ASD, it would be fruitful
for future studies to utilize a broader range of implicit learning
paradigms, such as syntactic priming (cf. Garraffa et al., 2015),
and to consider attentional control as an additional factor that
may distinguish children with ASD and SLI (Norbury, 2014).

Future work on statistical learning in SLI should involve
longitudinal investigations of late-talking toddlers at risk for
SLI to determine whether age-appropriate measures of statistical
learning, such as the SS task (Saffran et al., 1996), the AGL task
(Gómez and Gerken, 1999), and the VSL task (Shafto et al., 2012),
are predictive of individual differences in language outcomes in
vocabulary, phonology, and grammar. Such studies will inform
decisions as to whether statistical learning should be a direct
target for intervention. If impaired statistical learning proves
to be an early clinical marker of SLI, behavioral interventions
should be designed to help children with SLI develop pattern
extraction and integration skills (Erickson and Thiessen, 2015)
and/or compensatory strategies (Ullman and Pullman, 2015).
Research suggests that children with SLI may experience a
rapid decay rate of auditory traces of speech in short-term
memory (McMurray et al., 2010), may need a greater amount
of exposure to extract recurrent patterns in auditory input
(Evans et al., 2009), and may struggle with consolidating
implicitly learned information over time (Hedenius et al.,
2011). Experimental manipulations that increase the availability
of redundant cues to linguistic structure have been shown
to facilitate pattern extraction and generalization in infants,
children, and adults (e.g., Brooks et al., 1993; Gerken et al.,
2005). Similarly, word-learning studies suggest that inter-sensory
redundancy and temporal synchrony between faces and voices,
and between speech and gesture, aid speech perception and
word-to-world mapping (cf. Gogate and Hollich, 2010, for
a review). Although few studies have evaluated the putative
benefits of providing redundant cues in intervention, in a
promising line of research with a computer-generated avatar,
Massaro and Bosseler (2006) provide evidence that attending
to faces enhances speech perception in children with ASD,
with benefits for vocabulary growth. Whether similar computer-
based programs can be developed to help children with SLI
extract and generalize statistical patterns in speech remains to be
seen.

Frontiers in Psychology | www.frontiersin.org 14 August 2016 | Volume 7 | Article 1245

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-01245 August 22, 2016 Time: 18:28 # 15

Obeid et al. Meta-Analysis Statistical Learning in ASD and SLI

AUTHOR CONTRIBUTIONS

RO played a significant role in all aspects of this project including:
Contributions to the design of the work and the acquisition,
entry, analysis, and interpretation of the data, the write-up,
drafting and revising the work, and submission. PB played a
significant role in all aspects of this project including: Major
contributions to the design of the work, data analysis and data
interpretation, in addition to the write-up, revising the work,
and final approval for publication. KP played major roles when
it came to contributions to the design of the work and the
acquisition, analysis, entry, and interpretation of the data, and
write-up. KG-L played a significant role in many aspects of
this project including: Contributions to the design of the work,

data interpretation, in addition to the write-up, revising the
work, in addition to final approval for publication. JL played
a significant role in all aspects of this project including: Major
contributions to the design of the work, data analysis, data entry,
and data interpretation, in addition to the write-up, revising the
work, and final approval for publication. All authors worked as
collaborators and ensure accountability, integrity, and accuracy
in the work.

FUNDING

This study was funded by the Doctoral Student Research Grant
(DSRG) at the Graduate Center, CUNY.

REFERENCES
Adamson, L. B., Bakeman, R., Deckner, D. F., and Romski, M. (2009). Joint

engagement and the emergence of language in children with autism and
Down syndrome. J. Autism Dev. Disord. 39, 84–96. doi: 10.1007/s10803-008-
0601-7

American Psychiatric Association [APA] (2013). Diagnostic and Statistical Manual
of Mental Disorders, 5th Edn. Arlington, VA: American Psychiatric Publishing.

Arciuli, J., and Simpson, I. C. (2012). Statistical learning is related to reading
ability in children and adults. Cogn. Sci. 36, 286–304. doi: 10.1111/j.1551-
6709.2011.01200.x

∗Barnes, K. A., Howard, D. V., Howard, J. H., Gilotty, L., Kenworthy, L., Gaillard,
W. D., et al. (2008). Intact implicit learning of special context and temporary
sequences in childhood autism spectrum disorder. Neuropsychology 22, 563–
570. doi: 10.1037/0894-4105.22.5.563

Baron-Cohen, S., Baldwin, D. A., and Crowson, M. (1997). Do children with autism
use the speaker’s direction of gaze strategy to crack the code of language? Child
Dev. 68, 48–57. doi: 10.1111/j.1467-8624.1997.tb01924.x

Bartlett, C. W., Flax, J. F., Fermano, Z., Hare, A., Hou, L., Petrill, S. A., et al. (2012).
Gene × gene interaction in shared etiology of autism and specific language
impairment. Biol. Psychiatry 72, 692–699. doi: 10.1016/j.biopsych.2012.05.019

Bishop, D. V. M. (2010). Overlaps between autism and language impairment:
phenomimicry or shared etiology? Behav. Genet. 40, 618–629. doi: 10.1007/
s10519-010-9381-x

Borenstein, M., Hedges, L., Higgins, J., and Rothstein, H. (2005). Comprehensive
Meta-Analysis 2.0. Englewood, NJ: Biostat.

Boucher, J. (2012). Research review: structural language in autistic spectrum
disorder–characteristics and causes. J. Child Psychol. Psychiatry 53, 219–233.
doi: 10.1111/j.1469-7610.2011.02508.x

Brambilla, P., Hardan, A., di Nemi, S. U., Perez, J., Soares, J. C., and Barale, F.
(2003). Brain anatomy and development in autism: review of structural MRI
studies. Brain Res. Bull. 61, 557–569. doi: 10.1016/j.brainresbull.2003.06.001

Brooks, P. J., Braine, M. D. S., Catalano, L., Brody, R. E., and Sudhalter, V.
(1993). Acquisition of gender-like noun subclasses in an artificial language: the
contribution of phonological markers to learning. J. Mem. Lang. 32, 76–95. doi:
10.1006/jmla.1993.1005

∗Brown, J., Aczel, B., Jimenez, L., Kaufman, S. B., and Grant, K. P. (2010).
Intact implicit learning in autism spectrum conditions. Q. J. Exp. Psychol. 163,
1789–1812. doi: 10.1080/17470210903536910

Carper, R. A., and Courchesne, E. (2000). Inverse correlation between frontal
lobe and cerebellum sizes in children with autism. Brain 123, 836–844. doi:
10.1093/brain/123.4.836

Chun, M. M., and Jiang, Y. (1998). Contextual cueing: implicit learning and
memory of visual context guides spatial attention. Cogn. Psychol. 36, 28–71. doi:
10.1006/cogp.1998.0681

*ASD studies included in meta-analysis.
**SLI studies included in meta-analysis.

Clark, G. M., Lum, J. A., and Ullman, M. T. (2014). A meta-analysis and meta-
regression of serial reaction time task performance in Parkinson’s disease.
Neuropsychology 28, 945–958. doi: 10.1037/neu0000121

Clark, R. E., and Squire, L. R. (1998). Classical conditioning and brain
systems: the role of awareness. Science 280, 77–81. doi: 10.1126/science.280.
5360.77

Conti-Ramsden, G., Simkin, Z., and Botting, N. (2006). The prevalence of
autistic spectrum disorders in adolescents with a history of specific language
impairment (SLI). J. Child Psychol. Psychiatry 47, 621–628. doi: 10.1111/j.1469-
7610.2005.01584.x

Conway, C. M., and Christiansen, M. H. (2005). Modality-constrained statistical
learning of tactile, visual, and auditory sequences. J. Exp. Psychol. Learn. Mem.
Cogn. 31, 24–39. doi: 10.1037/0278-7393.31.1.24

Dawson, G., Munson, J., Estes, A., Osterling, J., McPartland, J., Toth, K., et al.
(2002). Neurocognitive function and joint attention ability in young children
with autism spectrum disorder versus developmental delay. Child Dev. 73,
345–358. doi: 10.1111/1467-8624.00411

De Fossé, L., Hodge, S. M., Makris, N., Kennedy, D. N., Caviness, V. S. Jr.,
McGrath, L., et al. (2004). Language-association cortex asymmetry in autism
and specific language impairment. Ann. Neurol. 56, 757–766. doi: 10.1002/ana.
20275

Demouy, J., Plaza, M., Xavier, J., Ringeval, J., Chetouani, M., Périsse, D.,
et al. (2011). Differential language markers of pathology in autism, pervasive
developmental disorder not otherwise specified and specific language
impairment. Res. Autism Spect. Dis. 5, 1402–1412. doi: 10.1016/j.rasd.
2011.01.026

Durkin, K., Conti-Ramsden, G., and Simkin, Z. (2012). Functional outcomes of
adolescents with a history of specific language impairment (SLI) with and
without autistic symptomatology. J. Autism Dev. Disord. 42, 123–138. doi:
10.1007/s10803-011-1224-y

Erickson, L. C., and Thiessen, E. D. (2015). Statistical learning of language: theory,
validity, and predictions of a statistical learning account of language acquisition.
Dev. Rev. 37, 66–108. doi: 10.1016/j.dr.2015.05.002

Estes, K. G., Evans, J. L., Alibali, M. W., and Saffran, J. R. (2007). Can
infants map meaning to newly segmented words? Statistical segmentation
and word learning. Psychol. Sci. 18, 254–260. doi: 10.1111/j.1467-9280.2007.
01885.x

Estes, W. K., Burke, C. J., Atkinson, R. C., and Frankmann, J. P. (1957).
Probabilistic discrimination learning. J. Exp. Psychol. 54, 233–239. doi:
10.1037/h0048585

∗∗Evans, J. L., Saffran, J. R., and Robe-Torres, K. (2009). Statistical learning in
children with specific language impairment. J. Speech Lang. Hear Res. 52,
321–335. doi: 10.1044/1092-4388

Fenson, L., Marchman, V., Thal, D., Dale, P. S., Bates, E., and Reznick, J. S.
(2006). MacArthur-Bates Communicative Development Inventories (CDI), 2nd
Edn. Baltimore, MD: Brookes.

Fiser, J., and Aslin, R. N. (2001). Unsupervised statistical learning of higher-
order spatial structures from visual scenes. Psychol. Sci. 12, 499–504. doi:
10.1111/1467-9280.00392

Frontiers in Psychology | www.frontiersin.org 15 August 2016 | Volume 7 | Article 1245

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-01245 August 22, 2016 Time: 18:28 # 16

Obeid et al. Meta-Analysis Statistical Learning in ASD and SLI

Fletcher, J., Maybery, M. T., and Bennett, S. (2000). Implicit learning differences:
a question of developmental level? J. Exp. Psychol. Learn. Mem. Cogn. 26,
246–252. doi: 10.1037/0278-7393.26.1.246

Foti, F., De Crescenzo, F., Vivanti, G., Menghini, D., and Vicari, S.
(2015). Implicit learning in individuals with autism spectrum disorders:
a meta-analysis. Psychol. Med. 45, 897–910. doi: 10.1017/S00332917140
01950

Frith, C. D., and Frith, U. (2008). Implicit and explicit processes in social cognition.
Neuron 60, 503–510. doi: 10.1016/j.neuron.2008.10.032

Frith, U. (1970a). Studies in pattern detection in normal and autistic children: I.
Immediate recall of auditory sequences. J. Abnorm. Psychol. 76, 413–420. doi:
10.1037/h0020133

Frith, U. (1970b). Studies in pattern detection in normal and autistic children:
II. Reproduction and production of color sequences. J. Exp. Child Psychol. 10,
120–135. doi: 10.1016/0022-0965(70)90049-4

Frith, U., and Happé, F. (1994). Language and communication in autistic disorders.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 346, 97–104. doi: 10.1007/s10803-005-
0039-0

∗∗Gabriel, A., Maillart, C., Guillaume, M., Stefaniak, N., and Meulemans,
T. (2011). Exploration of serial structure procedural learning in children
with language impairment. J. Int. Neuropsychol. Soc. 17, 336–343. doi:
10.1017/S1355617710001724

∗∗Gabriel, A., Maillart, C., Stefaniak, N., Lejeune, C., Desmottes, L., and
Meulemans, T. (2013). Procedural learning in specific language impairment:
effects of sequence complexity. J. Int. Neuropsychol. Soc. 19, 264–271. doi:
10.1017/S1355617712001270

∗∗Gabriel, A., Maillart, C., Stefaniak, N., Lejeune, C., Desmottes, L., and
Meulemans, T. (2015). Procedural learning across modalities in French
speaking children with specific language impairment. Appl. Psycholinguist. 36,
747–769. doi: 10.1017/S0142716413000490

∗∗Gabriel, A., Stefaniak, N., Maillart, C., Schmitz, X., and Meulemans, T. (2012).
Procedural visual learning in children with specific language impairment. Am.
J. Speech Lang. Pathol. 21, 329–341. doi: 10.1044/1058-0360(2012/11-0044)

Garraffa, M., Coco, M. I., and Branigan, H. P. (2015). Effects of immediate
and cumulative syntactic experience in language impairment: evidence from
priming of subject relatives in children with SLI. Lang. Learn. Dev. 11, 18–40.
doi: 10.1080/15475441.2013.876277

Gebauer, G. F., and Mackintosh, N. J. (2007). Psychometric intelligence dissociates
implicit and explicit learning. J. Exp. Psychol. Learn. Mem. Cogn. 33, 34–54. doi:
10.1037/0278-7393.33.1.34

Gerken, L., Wilson, R., and Lewis, W. (2005). Infants can use distributional
cues to form syntactic categories. J. Child Lang. 32, 249–268. doi:
10.1017/S030500090400678

Gernsbacher, M. A., Sauer, E. A., Geye, H. M., Schweigert, E. K., and Hill
Goldsmith, H. (2008). Infant and toddler oral-and manual-motor skills predict
later speech fluency in autism. J. Child Psychol. Psychiatry 49, 43–50. doi:
10.1111/j.1469-7610.2007.01820.x

Geschwind, D. H. (2011). Genetics of autism spectrum disorders. Trends Cogn. Sci.
15, 409–416. doi: 10.1016/j.tics.2011.07.003

Gogate, L. J., and Hollich, G. (2010). Invariance detection within an interactive
system: a perceptual gateway to language development. Psychol. Rev. 117,
496–516. doi: 10.1037/a0019049

Gómez, R. L., and Gerken, L. (1999). Artificial grammar learning by 1-year-
olds leads to specific and abstract knowledge. Cognition 70, 109–135. doi:
10.1016/S0010-0277(99)00003-7

∗Gordon, B., and Stark, S. (2007). Procedural learning of a visual sequence in
individuals with autism. Focus Autism Other Dev. Disabil. 22, 14–22. doi:
10.1177/10883576070220010201

Grandin, T. (1995). Thinking in Pictures and Other Reports from My Life with
Autism. New York, NY: Doubleday.

Hardwick, R. M., Rottschy, C., Miall, R. C., and Eickhoff, S. B. (2013).
A quantitative meta-analysis and review of motor learning in the
human brain. Neuroimage 67, 283–297. doi: 10.1016/j.neuroimage.2012.
11.020

∗∗Hedenius, M., Persson, J., Tremblay, A., Adi-Japha, E., Veríssimo, J., Dye, C. D.,
et al. (2011). Grammar predicts procedural learning and consolidation deficits
in children with specific language impairment. Res. Dev. Disabil. 32, 2362–2375.
doi: 10.1016/j.ridd.2011.07.026

Hedges, L. V. (1983). A random effects model for effect sizes. Psychol. Bull. 93,
388–395. doi: 10.1037/0033-2909.93.2.388

Hill, E. L. (2004). Executive dysfunction in autism. Trends Cogn. Sci. 8, 26–32. doi:
10.1016/j.tics.2003.11.003

Howard, J. H., and Howard, D. V. (1997). Age differences in implicit learning of
higher order dependencies in serial patterns. Psychol. Aging 12, 634–656. doi:
10.1037/0882-7974.12.4.634

∗∗Hsu, H. J., and Bishop, D. V. (2014). Sequence-specific procedural learning
deficits in children with specific language impairment. Dev. Sci. 17, 352–365.
doi: 10.1111/desc.12125

∗∗Hsu, H. J., Tomblin, J. B., and Christiansen, M. H. (2014). Impaired statistical
learning of non-adjacent dependencies in adolescents with specific language
impairment. Front. Psychol. 5:175. doi: 10.3389/fpsyg.2014.00175

Huedo-Medina, T. B., Sánchez-Meca, J., Marin-Martinez, F., and Botella, J. (2006).
Assessing heterogeneity in meta-analysis: q statistic or I2 index? Psychol.
Methods 11, 193–206. doi: 10.1937/1082-989.11.2.193

Im-Bolter, N., Johnson, J., and Pascual-Leone, J. (2006). Processing limitations in
children with specific language impairment: the role of executive function. Child
Dev. 77, 1822–1841. doi: 10.1111/j.1467-8624.2006.00976.x

Janacsek, K., Fiser, J., and Nemeth, D. (2012). The best time to acquire new skills:
age-related differences in implicit sequence learning across the human lifespan.
Dev. Sci. 15, 496–505. doi: 10.1111/j.1467-7687.2012.01150.x

Jeste, S. S., Kirkham, N., Senturk, D., Hasenstab, K., Sugar, C., Kupelian, C.,
et al. (2015). Electrophysiological evidence of heterogeneity in visual
statistical learning in young children with ASD. Dev. Sci. 18, 90–105. doi:
10.1111/desc.12188

∗∗Kemeny, F., and Lukacs, A. (2010). Impaired procedural learning in
language impairment: results from probabilistic categorization. J. Clin. Exp.
Neuropsychol. 32, 249–258. doi: 10.1080/13803390902971131

Kidd, E. (2012). Implicit statistical learning is directly associated with the
acquisition of syntax. Dev. Psychol. 48, 171–184. doi: 10.1037/a0025405

Kidd, E., and Arciuli, J. (2016). Individual differences in statistical learning
predict children’s comprehension of syntax. Child Dev. 87, 184–193. doi:
10.1111/cdev.12461

Kidd, E., and Kirjavainen, M. (2011). Investigating the contribution of
procedural and declarative memory to the acquisition of past tense
morphology: evidence from Finnish. Lang. Cogn. Process. 26, 794–829. doi:
10.1080/01690965.2010.493735

Kjelgaard, M. M., and Tager-Flusberg, H. (2001). An investigation of language
impairment in autism: implications for genetic subgroups. Lang. Cogn. Process.
16, 287–308. doi: 10.1080/01690960042000058

Klinger, L. G., Klinger, M. R., and Pohlig, R. L. (2007). “Implicit learning
impairments in autism spectrum disorders,” in New Developments in Autism:
The Future is Today, eds J. M. Perez, P. M. Gonzalez, M. L. Comi, and C. Nieto
(London: Jessica Kingsley Publishers), 76–103.

Knowlton, B. J., Squire, L. R., and Gluck, M. A. (1994). Probabilistic category
learning in amnesia. Learn. Mem. 1, 106–120. doi: 10.1101/lm.1.2.106

∗Kourkoulou, A., Leekam, S. R., and Findlay, J. M. (2012). Implicit learning of local
context in autism spectrum disorder. J. Autism Dev. Disord. 42, 244–256. doi:
10.1007/s10803-011-1237-6

Landry, R., and Bryson, S. E. (2004). Impaired disengagement of attention in
young children with autism. J. Child Psychol. Psychiatry 45, 1115–1122. doi:
10.1111/j.1469-7610.2004.00304.x

Leyfer, O. T., Tager-Flusberg, H., Dowd, M., Tomblin, J. B., and Folstein, S. E.
(2008). Overlap between autism and specific language impairment: comparison
of autism diagnostic interview and autism diagnostic observation schedule
scores. Autism Res. 1, 284–296. doi: 10.1002/aur.43

Lindgren, K. A., Folstein, S. E., Tomblin, J. B., and Tager-Flusberg, H. (2009).
Language and reading abilities of children with autism spectrum disorders and
specific language impairment and their first-degree relatives. Autism Res. 2,
22–38. doi: 10.1002/aur.63

∗∗Lum, J. A., and Bleses, D. (2012). Declarative and procedural memory in Danish
speaking children with specific language impairment. J. Commun. Disord. 45,
46–58. doi: 10.1016/j.jcomdis.2011.09.001

Lum, J. A., Conti-Ramsden, G., Morgan, A. T., and Ullman, M. T. (2014).
Procedural learning deficits in specific language impairment (SLI): a meta-
analysis of serial reaction time task performance. Cortex 51, 1–10. doi:
10.1016/j.cortex.2013.10.011

Frontiers in Psychology | www.frontiersin.org 16 August 2016 | Volume 7 | Article 1245

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-01245 August 22, 2016 Time: 18:28 # 17

Obeid et al. Meta-Analysis Statistical Learning in ASD and SLI

∗∗Lum, J. A., Conti-Ramsden, G., Page, D., and Ullman, M. T. (2012). Working,
declarative and procedural memory in specific language impairment. Cortex 48,
1138–1154. doi: 10.1016/j.cortex.2011.06.001

∗∗Lum, J. A., Gelgic, C., and Conti-Ramsden, G. (2010). Procedural and declarative
memory in children with and without specific language impairment. Int. J.
Lang. Commun. Disord. 45, 96–107. doi: 10.3109/13682820902752285

Lum, J. A., and Kidd, E. (2012). An examination of the associations among
multiple memory systems, past tense, and vocabulary in typically developing
5-year-old children. J. Speech Lang. Hear Res. 55, 989–1006. doi: 10.1044/1092-
4388(2011/10-0137)

Lum, J. A., Ullman, M. T., and Conti-Ramsden, G. (2013). Procedural learning
is impaired in dyslexia: evidence from a meta-analysis of serial reaction time
studies. Res. Dev. Disabil. 34, 3460–3476. doi: 10.1016/j.ridd.2013.07.017

Mainela-Arnold, E., and Evans, J. L. (2014). Do statistical segmentation abilities
predict lexical-phonological and lexical-semantic abilities in children with and
without SLI? J. Child Lang. 41, 327–351. doi: 10.1017/S0305000912000736

Marton, K. (2008). Visuo-spatial processing and executive functions in children
with specific language impairment. Int. J. Lang. Commun. Disord. 43, 181–200.
doi: 10.1080/16066350701340719

Massaro, D. W., and Bosseler, A. (2006). Read my lips: the importance of the face
in a computer-animated tutor for vocabulary learning by children with autism.
Autism 10, 495–510. doi: 10.1177/1362361306066599

Mayes, A. K., Reilly, S., and Morgan, A. T. (2015). Neural correlates of childhood
language disorder: a systematic review. Dev. Med. Child Neurol. 57, 706–717.
doi: 10.1111/dmcn.12714

∗Mayo, J., and Eigsti, I. M. (2012). Brief report: a comparison of statistical learning
in school-aged children with high functioning autism and typically developing
peers. J. Autism. Dev. Disord. 42, 2476–2485. doi: 10.1007/s10803-012-1493-0

∗∗Mayor-Dubois, C., Zesiger, P., Van der Linden, M., and Roulet-Perez, E.
(2015). Nondeclarative learning in children with specific language impairment:
predicting regularities in the visuomotor, phonological, and cognitive domains.
Child Neuropsychol. 20, 14–22. doi: 10.1080/09297049.2012.734293

McMurray, B., Samelson, V. M., Lee, S. H., and Tomblin, J. B. (2010). Individual
differences in online spoken word recognition: implications for SLI. Cognit.
Psychol. 60, 1–39. doi: 10.1016/j.cogpsych.2009.06.003

Miller, G. A. (1958). Free recall of redundant strings of letters. J. Exp. Psychol. 56,
485–491. doi: 10.1037/h0044933

Mirman, D., Magnuson, J. S., Estes, K. G., and Dixon, J. A. (2008). The link between
statistical segmentation and word learning in adults. Cognition 108, 271–280.
doi: 10.1016/j.cognition.2008.02.003

Misyak, J. B., Christiansen, M. H., and Tomblin, J. B. (2010). On-line individual
differences in statistical learning predict language processing. Front. Psychol.
1:31. doi: 10.3389/fpsyg.2010.00031

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., and The Prisma Group.
(2009). Preferred reporting items for systematic reviews and meta-analyses:
the PRISMA statement. PLoS Med. 6:e1000097. doi: 10.1371/journal.pmed10
00097

∗Mostofsky, S. H., Goldberg, M. C., Landa, R. J., and Denckla, M. B. (2000).
Evidence for a deficit in procedural learning in children and adolescents with
autism: implications for cerebellar contribution. J. Int. Neuropsychol. Soc. 6,
752–759. doi: 10.1017/S1355617700677020

Mottron, L., Dawson, M., Soulieres, I., Hubert, B., and Burack, J. (2006). Enhanced
perceptual functioning in autism: an update, and eight principles of autistic
perception. J. Autism. Dev. Disord. 36, 27–43. doi: 10.1007/s10803-005-0040-7

Müller, R. A., Cauich, C., Rubio, M. A., Mizuno, A., and Courchesne, E.
(2004). Abnormal activity patterns in premotor cortex during sequence
learning in autistic patients. Biol. Psychiatry 56, 323–332. doi:
10.1016/j.biopsych.2004.06.007

∗Nemeth, D., Janacsek, K., Balogh, V., Londe, Z., Mingesz, R., Fazekas, M.,
et al. (2010). Learning in autism: implicitly superb. PLoS ONE 5:e11731. doi:
10.1371/journal.pone.0011731

Nicolson, R. I., and Fawcett, A. J. (2007). Procedural learning difficulties:
reuniting the developmental disorders? Trends Neurosci. 30, 135–141. doi:
10.1016/j.tins.2007.02.003

Nissen, M. J., and Bullemer, P. (1987). Attentional requirements for learning:
evidence from performance measures. Cogn. Psychol. 19, 1–32. doi:
10.1016/0010-0285(87)90002-8

Norbury, C. F. (2014). Sources of variation in developmental language disorders:
evidence from eye-tracking studies of sentence production. Philos. Trans. R. Soc.
Lond. B Biol. Sci. 369, 20120393. doi: 10.1098/rstb.2012.0393

Perner, J., Frith, U., Leslie, A. M., and Leekam, S. R. (1989). Exploration of the
autistic child’s theory of mind: knowledge, belief, and communication. Child
Dev. 60, 689–700. doi: 10.2307/1130734

Perruchet, P., and Pacton, S. (2006). Implicit learning and statistical learning:
one phenomenon, two approaches. Trends Cogn. Sci. 10, 233–238. doi:
10.1016/j.tics.2006.03.006

Plante, E., Gómez, R., and Gerken, L. (2002). Sensitivity to word order cues by
normal and language/learning disabled adults. J. Commun. Disord. 35, 453–462.
doi: 10.1016/S0021-9924(02)00094-1

Provost, B., Lopez, B. R., and Heimerl, S. (2007). A comparison of motor
delays in young children: autism spectrum disorder, developmental delay,
and developmental concerns. J. Autism. Dev. Disord. 37, 321–328. doi:
10.1007/s10803-006-0170-6

Reber, A. S. (1967). Implicit learning of artificial grammars. J. Verbal
Learning Verbal Behav. 6, 855–863. doi: 10.1016/S0022-5371(67)
80149-X

Reber, A. S. (1993). Implicit Learning and Tacit Knowledge: An Essay on the
Cognitive Unconscious. New York, NY: Oxford University Press.

Robertson, E. M. (2007). The serial reaction time task: implicit motor skill learning?
J. Neurosci. 27, 10073–10075. doi: 10.1523/JNEUROSCI.2747-07.2007

Robinson, S., Goddard, L., Dritschel, B., Wisley, M., and Howlin, P. (2009).
Executive functions in children with autism spectrum disorders. Brain Cogn.
71, 362–368. doi: 10.1016/j.bandc.2009.06.007

Romberg, A. R., and Saffran, J. R. (2010). Statistical learning and language
acquisition. Wiley Interdiscip. Rev. Cogn. Sci. 1, 906–914. doi: 10.1002/wcs.78

∗Roser, M. E., Aslin, R. N., McKenzie, R., Zahra, D., and Fiser, J. (2015). Enhanced
visual statistical learning in adults with autism. Neuropsychology 29, 163–172.
doi: 10.1037/neu0000137

Ruffman, T., Taumoepeau, M., and Perkins, C. (2012). Statistical learning as a
basis for social understanding in children. Br. J. Dev. Psychol. 30, 87–104. doi:
10.1111/j.2044-835X.2011.02045.x

Russell, J., Jarrold, C., and Henry, L. (1996). Working memory in children with
autism and with moderate learning difficulties. J.Child Psychol.Psychiatry 37,
673–686. doi: 10.1111/j.1469-7610.1996.tb01459.x

Saffran, J. R., Aslin, R. N., and Newport, E. L. (1996). Statistical learning
by 8-month-old infants. Science 274, 1926–1928. doi: 10.1126/science.274.
5294.1926

Schwartz, R. G. (ed.) (2009). Handbook of Child Language Disorders. New York,
NY: Psychology Press.

Scott-Van Zeeland, A. A., McNealy, K., Wang, A. T., Sigman, M., Bookheimer,
S. Y., and Dapretto, M. (2010). No neural evidence of statistical learning during
exposure to artificial languages in children with autism spectrum disorders. Biol.
Psychiatry 68, 345–351. doi: 10.1016/j.biopsych.2010.01.011

Sears, L. L., Finn, P. R., and Steinmetz, J. E. (1994). Abnormal classical eye-
blink conditioning in autism. J. Autism. Dev. Disord. 24, 737–751. doi:
10.1007/BF02172283

Sears, L. L., Vest, C., Mohamed, S., Bailey, J., Ranson, B. J., and Piven, J. (1999).
An MRI study of the basal ganglia in autism. Prog. Neuropsychopharmacol. Biol.
Psychiatry 23, 613–624. doi: 10.1016/S0278-5846(99)00020-2

Shafto, C. L., Conway, C. M., Field, S. L., and Houston, D. M. (2012). Visual
sequence learning in infancy: domain-general and domain-specific associations
with language. Infancy 17, 247–271. doi: 10.1111/j.1532-7078.2011.00085.x

Siegelman, N., and Frost, R. (2015). Statistical learning as an individual ability:
theoretical perspectives and empirical evidence. J. Mem. Lang. 81, 105–120. doi:
10.1016/j.jml.2015.02.001

Siegert, R. J., Taylor, K. D., Weatherall, M., and Abernethy, D. A. (2006). Is
implicit sequence learning impaired in Parkinson’s disease? A meta-analysis.
Neuropsychology 20, 490–495. doi: 10.1037/0894-4105.20.4.490

Siegert, R. J., Weatherall, M., and Bell, E. M. (2008). Is implicit sequence learning
impaired in schizophrenia? A meta-analysis. Brain Cogn. 67, 351–359. doi:
10.1037/0894-4105.20.4.490

Smith, C. J. (2003). A Method for Testing Implicit Learning in Individuals with an
Autism Spectrum Disorder, Doctoral thesis. New York, NY: The City University
of New York.

Frontiers in Psychology | www.frontiersin.org 17 August 2016 | Volume 7 | Article 1245

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-01245 August 22, 2016 Time: 18:28 # 18

Obeid et al. Meta-Analysis Statistical Learning in ASD and SLI

Stanovich, K. E., Evans, J. S. B., and Frankish, K. E. (eds) (2009). “Distinguishing
the reflexive, algorithmic, and autonomous minds: is it time for a tri-
process theory?,” in In Two Minds: Dual Processes and Beyond, eds
J. S. B. Evans and K. E. Frankish (Oxford: Oxford University Press),
55–88.

Szelag, E., Kowalska, J., Galkowski, T., and Pöppel, E. (2004). Temporal processing
deficits in high-functioning children with autism. Br. J. Psychol. 95, 269–282.
doi: 10.1348/0007126041528167

Tager-Flusberg, H. (2006). Defining language phenotypes in autism. Clin. Neurosci.
Res. 6, 219–224. doi: 10.1016/j.cnr.2006.06.007

Taylor, L. J., Maybery, M. T., and Whitehouse, A. J. (2012). Do children with specific
language impairment have a cognitive profile reminiscent of autism? A review
of the literature. J. Autism Dev. Disord. 42, 2067–2083. doi: 10.1007/s10803-012-
1456-5

Tomblin, J. B. (2011). Co-morbidity of autism and SLI: kinds, kin and
complexity. Int. J. Lang. Commun. Disord. 46, 127–137. doi: 10.1111/j.1460-
6984.2011.00017.x

∗∗Tomblin, J. B., Mainela-Arnold, E., and Zhang, X. (2007). Procedural learning in
adolescents with and without specific language impairment. Lang. Learn. Dev.
3, 269–293. doi: 10.1080/15475440701377477

∗∗Travers, B. G., Kliger, M. R., Mussey, J. L., and Kliger, L. G. (2010). Motor-linked
implicit learning in persons with autism spectrum disorders. Autism Res. 3,
68–77. doi: 10.1002/aur.123

∗Travers, B. G., Powell, P. S., Mussey, J. L., Klinger, L. G., Crisler, M. E.,
and Klinger, M. R. (2013). Spatial and identity cues differentially affect
implicit contextual cueing in adolescents and adults with autism spectrum
disorder. J. Autism. Dev. Disord. 43, 2393–2404. doi: 10.1007/s10803-013-
1787-x

Ullman, M. T. (2004). Contributions of memory circuits to language: the
declarative/procedural model. Cognition 92, 231–270. doi: 10.1016/
j.cognition.2003.10.008

Ullman, M. T., and Pierpont, E. I. (2005). Specific language impairment is not
specific to language: the procedural deficit hypothesis. Cortex 41, 399–433. doi:
10.1016/S0010-9452(08)70276-4

Ullman, M. T., and Pullman, M. Y. (2015). A compensatory role for declarative
memory in neurodevelopmental disorders. Neurosci. Biobehav. Rev. 51, 205–
222. doi: 10.1016/j.neubiorev.2015.01.008

Waber, D. P., Marcus, D. J., Forbes, P. W., Bellinger, D. C., Weiler, M. D., Sorensen,
L. G., et al. (2003). Motor sequence learning and reading ability: is poor reading

associated with sequencing deficits? J. Exp. Child Psychol. 84, 338–354. doi:
10.1016/S0022-0965(03)00030-4

Walenski, M., Mostofsky, S. H., and Ullman, M. T. (2014). Inflectional
morphology in high-functioning autism: evidence for speeded grammatical
processing. Res. Autism Spectr. Disord. 8, 1607–1621. doi: 10.1016/j.rasd.2014.
08.009

Walenski, M., Tager-Flusberg, H., and Ullman, M. T. (2006). “Language in autism,”
in Understanding Autism: From Basic Neuroscience to Treatment, eds S. O.
Moldin and J. L. Rubenstein (Boca Raton, FL: Taylor & Francis), 175–203.

Wallace, G. L., and Happé, F. (2008). Time perception in autism
spectrum disorders. Res. Autism Spectr. Disord. 2, 447–455. doi:
10.1016/j.rasd.2007.09.005

Whitehouse, A. J. O., Barry, J. G., and Bishop, D. V. M. (2007). The
broader language phenotype of autism: a comparison with specific language
impairment. J. Child Psychol. Psychiatry 48, 822–830. doi: 10.1111/j.1469-
7610.2007.01765.x

Whitehouse, A. J. O., Watt, H. J., Line, E. A., and Bishop, D. V. M.
(2009). Adult psychosocial outcomes of children with specific language
impairment, pragmatic language impairment and autism. Int. J.
Lang. Commun. Disord. 44, 511–528. doi: 10.1080/136828208027
08098

Williams, D., Botting, N., and Boucher, J. (2008). Language in autism and specific
language impairment: where are the links? Psychol. Bull. 134, 944–963. doi:
10.1037/a001374

Wimpory, D., Nicholas, B., and Nash, S. (2002). Social timing, clock genes
and autism: a new hypothesis. J. Intellect. Disabil. Res. 46, 352–358. doi:
10.1046/j.1365-2788.2002.00423.x

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Obeid, Brooks, Powers, Gillespie-Lynch and Lum. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Psychology | www.frontiersin.org 18 August 2016 | Volume 7 | Article 1245

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive

	Statistical Learning in Specific Language Impairment and Autism Spectrum Disorder: A Meta-Analysis
	Introduction
	Defining Characteristics Of Sli And Asd
	Neurological And Behavioral Evidence For The Procedural Deficit Hypothesis
	Statistical Learning in SLI
	Statistical Learning in ASD

	The Current Study
	Statistical Learning Tasks
	Serial Reaction Time (SRT)
	Contextual Cueing (CC)
	Artificial Grammar Learning (AGL)
	Speech-Stream (SS)
	Observational Learning (OL)
	Probabilistic Classification Learning (PCL)


	Materials And Methods
	Criteria for Study Inclusion
	Meta-Analytic Procedures
	Effect Size Extraction
	Moderators


	Results
	Meta-Analysis: Specific Language Impairment
	Meta-Analysis: Autism Spectrum Disorder
	Between-Groups Meta-Analysis: SLI and ASD
	Meta-Regression with Age as a Moderator

	Discussion
	Interpreting Group-Level Differences in Statistical Learning
	Statistical Learning in Relation to Grammar, Phonology, and Reading
	Statistical Learning in Relation to Vocabulary Development
	Alternative Accounts of Language Impairments in ASD

	Conclusion, Future Directions, And Implications For Treatment
	Author Contributions
	Funding
	References


