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Over the past several decades, significant advances have been made in identifying fac-
tors that contribute to the pathogenesis of multiple sclerosis (MS) and have culminated in 
the approval of some effective therapeutic strategies for disease intervention. However, 
the mechanisms by which environmental factors, such as infection, contribute to the 
pathogenesis and/or symptom exacerbation remain to be fully elucidated. Relapse fre-
quency in MS patients contributes to neurological impairment and, in the initial phases 
of disease, serves as a predictor of poor disease prognosis. The purpose of this review 
is to examine the evidence that supports a role for peripheral infection in modulating 
the natural history of this disease. Evidence supporting a role for infection in promoting 
exacerbation in animal models of MS is also reviewed. Finally, a few mechanisms by 
which infection may exacerbate symptoms of MS and other neurological diseases are 
discussed. Those who comprise the majority of MS patients acquire approximately two 
upper-respiratory infections per year; furthermore, this type of infection doubles the risk 
for MS relapse, underscoring the contribution of this relationship as being potentially 
important and particularly detrimental.
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MULTiPLe SCLeROSiS

Multiple sclerosis (MS) is a relatively prominent autoimmune disease identified as the number one 
cause of non-traumatic adult onset neurological disability (1). Moreover, MS is particularly cruel 
insofar as its peak age of onset occurs at a relatively early stage in life and, over time, transitions to 
a progressive disease course that ultimately leads to a loss of neurological function (1). In fact, most 
MS patients experience symptoms that include, but are certainly not limited to, decreased mobil-
ity, vision, and cognitive function as well as increased anxiety, depression, and fatigue. It has been 
estimated that MS incurs an annual cost of $6.8 billion, which amounts to approximately $40,000 
per affected individual. Roughly, 400,000 people are affected by this disease in the US alone, and its 
incidence may be increasing (2, 3).

While the cause of MS remains unknown, this disease is thought to be attributable to an autoreac-
tive attack on myelin and oligodendrocytes by cells of the immune system that have entered the brain 
and/or spinal cord. Results from genome-wide association studies (4, 5) as well as the effectiveness 
of treatment strategies that directly target the activation or trafficking of T-cells and B-cells into the 
CNS (6–9) lend strong support for such a hypothesis.
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Roughly, 8% of all MS patients exhibit a relapsing-remitting 
disease course that is characterized by bouts of clinical disabil-
ity and clinical remission that are separated by time (1). While 
a great deal of research has been focused on mechanisms gov-
erning immunopathology during relapses, much less research 
has addressed the environmental or physiological factors 
that underlie the evolution of clinical relapse. Understanding 
both the environmental triggers that contribute to relapses 
as well as the biological pathways by which immune cells are 
attracted to the CNS, become activated, and contribute to 
neuroinflammatory processes is pertinent to the development 
of therapeutics, both pharmacological and interventional, 
that can reduce relapses and neurodegeneration. Moreover, 
comprehending the basic physiology underlying bidirec-
tional communication pathways between the brain and the 
immune system will likely uncover potential mechanisms for 
intervention for a myriad of inflammatory demyelinating and 
neurodegenerative diseases.

iNFeCTiON AND DiSeASe 
eXACeRBATiON iN MS PATieNTS

influence of Seasons
The earliest evidence that demonstrates a role for upper-
respiratory infections in the promotion of MS exacerbation is 
derived from a study performed by Sibley and Foley that was 
published nearly 40 years ago (10). While this long-term prospec-
tive study comprised only a few patients, the authors were able 
to make several pertinent observations. First, increased serum 
antibody titers to measles, respiratory syncytial, adenovirus, 
herpes simplex, or mumps were not associated with either MS 
onset or exacerbation. Second, they did not demonstrate a cor-
relation between vaccination (Influenza, poliovirus, measles) 
and MS exacerbation. Instead, the authors identified a critical 
link between MS exacerbation and infection. Specifically, it was 
noted that a large proportion of MS exacerbations were associated 
with infection, that is, that exacerbations occurred within 1 week 
prior to and 5 weeks after the appearance of symptoms typical of 
 infection  –  including coryza, sore throat, cough, and diarrhea. 
Finally, they showed that the predilection for relapse is seasonal 
with peak times occurring between the months of March and 
April, then again between July and September.

A link between seasons and increased relapse risk was sub-
sequently described by other groups conducting independent 
studies in multiple countries including the US (11), Switzerland 
(12), and Japan (13), and was further established by data that 
demonstrated that seasonal transitions were associated with fluc-
tuations in gadolinium-enhancing MRI activity in MS patients 
(14). While not all studies reported that MS relapse is dependent 
on seasonality, a meta-analysis study by Jin et  al. has provided 
compelling evidence demonstrating that during the course of a 
year increases in MS relapses show a seasonal preference, particu-
larly for spring (15). These results have recently been confirmed 
by a large multi-investigator study, which queried International 
MSBase Registry data pertaining to over 32,000 relapses from 
>9,000 patients. These data demonstrate that peak relapse risk 

occurs during spring months regardless of the hemisphere from 
which the data originated (16).

However, why MS patients exhibit seasonal increases in 
relapse risk is unknown. Given that vitamin D levels are inversely 
associated with risk of MS, it is tempting to speculate that subtle 
changes in UV exposure during different seasons might influence 
relapse risk. In fact, Spelman et  al. have demonstrated a lag in 
the risk for seasonal influence on exacerbation that is inversely 
correlated with latitude, indicating that vitamin D generation 
is inversely associated with relapse risk (16). However, recent 
meta-analysis data have indicated that vitamin D supplementa-
tion does not affect MS relapse (17). Therefore, while vitamin D 
is associated with disease onset, its role in mitigating exacerbation 
is currently inconclusive. An alternate hypothesis, and one that 
is not necessarily mutually exclusive, is that seasonal changes in 
relapse risk are attributable to viral infection whose incidence is 
also influenced by seasonality.

Upper-Respiratory infection and  
Relapse Risk
Andersen et al. demonstrated a biannual increase in MS relapse, 
which was nearly superimposable with the occurrence of the 
common cold. Notably, an estimated 50–75% of colds are thought 
to originate from rhinoviral infection of the upper-respiratory 
system (18). This occurrence has led some to speculate that the 
majority of MS relapses are a consequence of upper-respiratory 
infections with members of the Picornaviridae family, such as 
rhinovirus and enterovirus (19, 20). In fact, it has been suggested 
that upper-respiratory infection by members of Picornaviridae 
accounted for most relapse occurrences (19). However, a subse-
quent study failed to confirm these findings (21).

That MS relapses are exclusively associated with an infection 
of a single viral family member, such as rhinovirus, may be far-
fetched. While rhinovirus infections account for a large percent-
age of upper-respiratory infections, it should be pointed out that 
coronavirus, adenovirus, influenza virus, and respiratory syncy-
tial virus are also capable of upper-respiratory infection. In fact, 
influenza virus infection is also associated with increased relapse 
risk, a phenomenon, which is mitigated in patients that received 
previous vaccination (22). Therefore, while it remains uncertain 
whether particular viruses are more or less associated with MS 
relapse risk, what is clearly evident is that relapse occurs in an 
estimated 30–40% of patients subsequent to an upper-respiratory 
infection (10, 18, 19, 22–24) which has been confirmed by studies 
employing the use of MRI (24, 25).

Because many pathogens are associated with upper-respiratory 
infections, it might be anticipated that the biological mechanism 
underlying their effect on MS relapse is similar, although altera-
tions in viral pathogenesis could account for some discrepancy 
(see below). In lieu of this hypothesis, it is noteworthy that 
rhinovirus infections exhibit a biannual peak in incidence, with 
a small increase in infections occurring during spring months, 
then the majority of infections occurring during the autumn 
months (26, 27). Yet data obtained from the meta-analysis by Jin 
et al. as well as the MSBase Registry clearly demonstrate that the 
major increase in MS relapse rate occurs during the months that 
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do not completely overlap with the time frame during which rhi-
noviral incidence would be expected to peak (15, 16). However, 
the seasonality for all viral infections of the upper-respiratory 
system is not temporally conserved. For instance, the time frame 
corresponding to the peak incidence of influenza viral infection, 
coronavirus, adenovirus, and respiratory syncytial viral infec-
tion does not overlap with the time frame of peak rhinoviral 
infections (28). On the other hand, if the occurrence of any 
upper-respiratory viral infection contributes to MS relapse risk, 
it would be anticipated that the increased exacerbation risk time 
frame would correspond to the cumulative increased incidence 
in upper-respiratory infections caused by all viruses that infect 
the upper-respiratory tract. In this regard, it is noteworthy that 
results from multiple epidemiological studies indicate that over 
the course of a year, the high-risk time frame for obtaining any 
upper-respiratory viral infection is very similar to the time frame 
that corresponds to increased relapse risk in MS patients (15, 
16, 28). Moreover, a recent prospective analysis conducted by 
Tremlett et al. demonstrated that annual MS relapse rates were 
positively associated with the occurrence of upper-respiratory 
tract infection and negatively associated with serum 25(OH)D 
levels (29). Together, these data strongly suggest that the effect 
of seasonality is correlated with upper-respiratory infection 
and that upper-respiratory viral infection contributes to relapse 
risk. Nevertheless, this association still requires experimental 
validation.

viral Reactivation and Relapse Risk
Given the association of viral infections with relapse in MS 
patients, it is reasonable to hypothesize that the relapsing– 
remitting pattern of the initial stages of the disease could perhaps 
be explained by the dormancy and reactivation of various chronic 
pandemic viral infections. Particularly, attractive culprits include 
members of Herpesviridae family – including Epstein–Barr virus 
(EBV), Varicella-Zoster virus (VZV), and human herpes virus 
(HHV)6. The history of infection with these viruses and MS 
pathogenesis is extensive. Whether acquired infection with any 
of these viruses contributes to the onset of disease is not the focus 
of this review. Rather, here we focus on the possibility that viral 
reactivation contributes to relapse.

Epstein–Barr virus (Human herpesvirus 4) is a gamma- 
herpesvirus exposure to which causes a life-long infection of 
B-cells that is typically asymptomatic. However, in some cases, 
the virus causes infectious mononucleosis and in fewer incidences 
still, lymphoma. Roughly, 90–95% of the population becomes 
seropositive for EBV antigen by early adulthood. In contrast, 
nearly all adult MS patients and the majority of pediatric cases 
have been exposed to EBV (30–32). The intimate association 
between EBV and MS has sparked great interest in its causal role 
in the onset of disease. At the very least, the prevalence of EBV in 
MS patients identifies this virus as a potential cause of infection-
induced relapse and thus an agent that is capable of modifying the 
progression of the disease. However, whether EBV reactivation 
can promote relapses is uncertain. In fact, only a few studies have 
presented data that suggest that EBV reactivation promotes MS 
exacerbation, and most studies on this topic have queried the 
association between increased EBV-specific serum antibodies 

and the occurrence of relapse. Collectively, the data indicate that 
increased circulating EBV-specific antibodies are associated with 
disease progression and relapse, although few show no association 
(33). For instance, in one study, a higher percentage of MS patients 
had antibodies to EBV early antigen when compared to healthy 
controls, while antibody levels to cytomegalovirus (CMV) were 
indistinguishable between the groups (34). Interestingly, although 
there were no differences in anti-EBV early antigen antibody titers 
between patients in remission versus those undergoing relapse, 
the presence of these antibodies was associated with enhanced 
disease activity as determined by MRI (34). However, in a separate 
study, it was determined that after the first demyelinating event, 
patients that harbored anti-CMV and/or anti-EBV viral capsid-
specific antibodies had a decreased time to relapse when compared 
with those that did not have detectable levels of these antibodies 
(35). Similarly, Kvistad et al. have reported that antibodies with a 
specificity for EBV nuclear antigen 1 (EBNA-1) are also correlated 
with increased disease activity as determined by MRI, indicating 
that viral reactivation is associated with relapse (36).

While serum antibody levels to EBV lytic proteins may predict 
disease progression, they may not be the best tool with which to 
examine the temporal association between viral reactivation and 
relapse. The reasons include both a delay in the measurable anti-
body titer following viral reactivation as well as the relatively long 
half-life of antibodies in the circulation. A more sensitive approach 
might be to measure levels of EBV-specific DNA. Capitalizing on 
this approach, Lindsey et al. investigated the effect of lytic EBV 
infection on MS activity. Interestingly, the authors did not find 
differences in serum viral levels between control samples and 
patients with various types of MS. However, in six patients with 
measurable viral titers at baseline that had blood drawn before 
and during a relapse, four showed an increase in virus-specific 
DNA during relapse (37). Moreover, a recent longitudinal study 
conducted by the same group provided data, which demonstrated 
a positive correlation between peripheral blood EBV-specific 
responses with MRI activity (38). Conversely, the adoptive trans-
fer of ex vivo expanded EBV-specific CD8+ T-cells into a patient 
with severe secondary progressive MS has been shown to aid in 
viral clearance and to reduce disease severity (39). While these 
preliminary studies currently lack statistical power, these data 
may indicate that EBV reactivation is associated with relapse for 
which the virus is either directly or indirectly responsible.

Varicella-zoster virus infection usually occurs early in life and 
is the cause of chicken pox. Varicella-zoster is neurotropic but for 
the most part remains dormant in the sensory ganglia. However, 
immunosuppressive events occurring later in life, such as stress, 
can result in its reactivation, evidenced by shingles and, in severe 
cases, encephalitis. Both the neurotropic potential and the relaps-
ing remitting nature of infection make this virus an attractive 
culprit for influencing the natural history of MS. These traits 
prompted Graciela et al. to investigate the association of this VZV 
with MS. Using conventional PCR techniques to screen peripheral 
blood mononuclear cells (PBMC) for multiple VZV-specific open 
reading frames, the authors demonstrated a transient increase in 
viral reactivation in 85% of patients during acute relapse, an effect 
that was not observed in MS patients during remission (40). These 
results were repeated in a larger cohort of patients, which found 
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VZV-specific DNA in 38/40 (95%) patients during relapse versus 
22/131 (17%) of patients during remission. Using flow cytometry, 
the authors were also able to show that relapse was associated with 
an increase of VZV-positive PBMCs when compared to patients in 
remission or controls (41). In a third study by the same group, the 
levels of genomic VZV were compared between the cerebrospinal 
fluid and PBMCs of the same patients. Strikingly, the authors 
were able to show that VZV viral copy was over 500-fold more 
abundantly expressed in the CSF compared to PBMCs of patients 
during relapse. Conversely, VZV was only marginally expressed 
in the CSF and absent in PBMCs of patients during remission. 
Furthermore, electron microscopy indicated the presence of 
VZV viral particles in the CSF of 15 patients during relapse (42). 
Despite the presence of VZV in both the CSF and PBMCs during 
relapse, it is notable that there were no changes in serum antibody 
levels to the virus. Taken together, these studies link VZV reacti-
vation with the occurrence of relapse. Nevertheless, these results 
should be taken with caution since there has been some difficulty 
replicating the findings (43, 44).

Like EBV, HHV6 infection usually occurs during childhood 
and persists for the duration of life; it has also been associated with 
MS disease pathogenesis (45). In fact, it has been suggested that 
HHV6 reactivation, as determined by measuring both viremia 
and anti-HHV specific antibody levels, is strongly correlated 
with increased disease activity. Moreover, it was demonstrated 
that HHV infection was 2.5-fold higher for patients with HHV6 
reactivation (46). However, results obtained from others indicate 
a weak association with HHV6 reactivation and exacerbation, 
as measured by virus-specific cellular immune responses in the 
blood and MRI activity (38). Others still have provided data 
suggesting that neither serum HHV6 antibody titers nor viral 
load is altered between MS patients and control patients (47, 
48) and that HHV6 reactivation is not associated with clinical 
relapse (33).

effect of Non-viral infections on  
Relapse Risk
Most research has focused on the association between viral infec-
tion of the upper-respiratory system and relapse risk. However, it 
should be mentioned here that bacterial infections have also been 
associated with relapse risk. For instance, Chlamydia pneumonia 
infection has also been linked to exacerbation (49). In addition, 
Staphylococcus aureus enterotoxin A has been suggested to be a 
risk factor for exacerbations, which may indicate that superan-
tigen activation of T-cells is capable of modulating disease (50).

ANiMAL MODeLS OF  
iNFeCTiON-iNDUCeD eXACeRBATiON

Overview of the Animal Models That are 
Used to Study Multiple Sclerosis
To understand the underlying mechanisms that govern 
infection-induced relapse in MS patients, there needs to be 
an effective animal model that recapitulates the pathophysiol-
ogy of human MS. While no animal model achieves this feat, 
several have been useful tools for investigating different aspects 

of the disease process. For example, experimental inoculation 
of genetically susceptible strains of mice with Theiler’s murine 
encephalomyelitis virus (TMEV) results in a progressive inflam-
matory-mediated (51–54) demyelinating disease of CNS (55). 
Likewise, murine infection with neurotropic strains of mouse 
hepatitis virus can also lead to inflammatory demyelination 
(56). As such, these viral models are useful in determining the 
molecular events that are required to overcome tolerance as well 
as in dissecting the interplay between genetic predisposition and 
environmental insults.

The most utilized model of human MS by far is experimental 
autoimmune encephalomyelitis (EAE) and its variants. Typically 
in this model system, animals are injected with encephalito-
genic neuroantigens that have been emulsified in Complete 
Freund’s Adjuvant (57). Subsequently, animals will develop 
ascending flaccid paralysis, which is caused by the infiltration 
and activation of autoreactive T-cells in the CNS parenchyma. 
The disease can also be passively induced by the injection of 
activated autoreactive T-cells into naïve animals (58). The use of 
this model is efficacious for studying the mechanisms governing 
immune cell trafficking, reactivation, and damage to resident 
CNS cells (59).

Finally, both in  vitro and in  vivo models of remyelination 
have been established. Remyelination in animals can be assessed 
using cuprizone intoxication or stereotaxic injection of myelin-
degrading agents (lysolecithin and ethidium bromide) (60). In 
the cuprizone model, mice that are fed the neurotoxicant cupri-
zone for 3–5 weeks develop consistent demyelination of distinct 
anatomical regions of the brain (61–63). Demyelination in this 
model is preceded by oligodendrocyte apoptosis and occurs 
concurrently with intense reactive gliosis (62–64). However, the 
blood–brain barrier remains relatively intact (65). Subsequent 
withdrawal of cuprizone from the diet allows remyelination 
to occur (66, 67). Both the cuprizone and stereotaxic injection 
models have proven to be useful in determining the events that 
control the process of remyelination (60, 68).

Mechanisms Underlying T-Cell Activation 
in Response to infection
Multiple sclerosis is considered to be a T-cell-mediated autoim-
mune disease. As such, it is very likely that autoreactive T-cells 
become activated in response to peripheral infection and that 
this represents one of the initial events that contribute to relapse. 
Mechanisms for how autoreactive T-cells become activated in 
response to infection are described below and are summarized 
in Figure 1.

Molecular mimicry occurs when pathogen-specific TCRs 
display cross-reactivity to self-peptides. Importantly, this 
theoretical frame-work for how self-tolerance is broken and 
autoimmunity generated and/or perpetuated has been validated 
in various models of autoimmune disease. For example, C.AL-20 
mice infected with herpes simplex virus (HSV)-1 develop herpes 
stromal keratitis, an autoimmune disease of the eye. Importantly, 
this disease is recapitulated following the adoptive transfer of 
T-cells from HSV-1 infected mice to naïve syngeneic nu/nu 
mice (69). Similarly, Olson and colleagues showed that central 
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or peripheral infection of SJL mice with a non-pathogenic strain 
of TMEV genetically encoding an epitope that resembled one 
found within the myelin protein proteolipid protein (PLP139–151) 
was sufficient to induce inflammatory demyelinating disease 
of the spinal cord (70). While TMEV itself did not contain a 
molecular mimic, these data are important because they show 
that viruses encoding molecular mimics of self are capable of 
inducing autoimmunity. Relevant to MS, Wucherpfennig and 
Strominger showed that myelin basic protein (MBP)-specific 
T-cell clones isolated from relapsing–remitting MS patients were 
also capable of recognizing epitopes embedded within several 
common viruses, including EBV (71). Similarly, it has been 
shown that microbial antigens derived from Mycobacterium 
avium and Escherichia coli are capable of inducing disease in 
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FiGURe 1 | Potential mechanisms underlying infection induced T-cell activation. (A) Molecular mimicry occurs when there are sufficient overlapping 
structural similarities between a pathogen-specific peptide and self-peptide such that it triggers T-cell activation. (B) Autoimmunity can be triggered by T-cells 
possessing both pathogen-specific and autoreactive T-cell receptors (TCR). (C) Bacterial superantigens can crosslink MHC class II and TCR leading to autoreactive 
T-cell activation and autoimmune disease onset and/or exacerbation. (D) Bystander activation of T-cells by infection could promote exacerbation. Here, infection 
promotes APC activation leading to the activation of CD44hi polyclonal T-cells via cytokine production. (e) Infection via activation of APCs could drive the process of 
epitope spreading wherein on constitutively released self-peptides resulting from chronic inflammation are presented to polyclonal autoreactive T-cells.

a humanized transgenic mouse model of MS (72). Likewise, 
peptides derived from Dictyostelium fasciculatum and Emiliania 
huxleyi are also capable of inducing EAE in a separate human-
ized transgenic mouse model of MS (73). Recently, it has 
become clear that structural mimicry of peptide bound to MHC 
is a major determinant of this process (72). However, while 
molecular mimicry is viable hypothesis for how infections can 
induce MS onset or relapse, several major obstacles impede 
the establishment of this phenomenon as a key component 
driving MS pathogenesis. These obstacles include the fact that 
(1) the autoantigen underlying MS is not known, (2) over time 
the process of epitope spreading may mask the identity of the 
molecular mimic (54), and (3) dual TCR expressing CD8+ T cells 
can facilitate disease (74).
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Bystander activation represents another means by which 
peripheral infection could promote MS onset or exacerbation. 
According to this theory, infection would result in the activation of 
heterologous T-cells, which have TCR specificity for self epitopes. 
Bystander activation of T-cells was originally reported to occur 
in response to peripheral lipopolysaccharide (LPS) and poly(I:C) 
injections in both CD8+ and CD4+ T-cell subsets with the former 
being more susceptible to activation (75, 76). Mechanistically, 
the cytokines responsible for the bystander effect include IFNα, 
IFNβ, IFNγ, IL-12, IL-18, and IL-15 (77). As such, this represents 
a plausible means for explaining how peripheral injections of TLR 
agonist injections induce disease in TCR transgenic models of 
EAE.

Another mechanism whereby infection could induce MS 
relapse is through the release of superantigen. Superantigens act 
by binding both Vβ regions of the T-cell receptor (TCR) and MHC 
class II and result in T-cell activation. Indeed, Staphylococcus 
aureus enterotoxin A has been suggested to be a risk factor for 
exacerbations (50). Moreover, results obtained from studies 
involving EAE indicate that superantigens can exacerbate or ame-
liorate disease. Specifically, it has been shown that injection of the 
superantigen staphylococcal enterotoxin B (SEB) into mice that 
are in remission from EAE was sufficient to exacerbate disease 
in 55% of mice compared to 11% of mice receiving an injection 
of phosphate buffered saline (78, 79). Interestingly, prior infec-
tion with a superantigen containing strain of S. aureus protected 
against EAE in a manner that was associated with decreased 
antigen-specific Th17 responses (80).

Finally, epitope spreading is a process by which chronic inflam-
mation results in the release of self-antigens that are then used to 
prime self-reactive T-cells. It is likely that peripheral infection, 
through the activation of antigen-presenting cells perpetuates the 
process of epitope spreading and facilitates relapse. However, this 
hypothesis has yet to be thoroughly tested.

viral infections exacerbate Active eAe
In order to study how peripheral infection can exacerbate MS, 
some have attempted to model the effect using the various EAE 
model systems. The results from these studies demonstrate that 
peripheral infection can exacerbate the pathogenesis of EAE. Of 
relevance is one study that investigated the role of murine gamma-
herpesvirus (γHV-68) infection on the pathogenesis of relapsing-
remitting EAE in SJL mice. The results demonstrate that infection 
with live γHV-68 but not UV-inactivated virus exacerbated the 
disease course. Importantly, this effect was not attributable to 
viral infection of the CNS and could be recapitulated following 
adaptive transfer of encephalitogenic MBP-specific T-cells from 
non-infected animals into animals that were infected with γHV-
68 several days prior to transfer (81). However, a follow-up study 
by Casiraghi et al. found that infection with γHV-68 5 weeks prior 
to EAE induction was capable of exaggerating the pathogenesis 
of active EAE in a manner that was independent of viral reactiva-
tion but was associated with heightened T-cell (CD4+ and CD8+) 
responses within the CNS (82). Notably, it was concluded that 
γHV-68 was capable of altering antigen-presenting cells in such 
a way that infection promoted IFNγ production from encepha-
litogenic T-cells (81, 82). The combined results from both studies 

indicate that reactivation of herpes viruses may not be required 
to influence the pathogenesis of EAE. However, the effect of EBV 
reactivation on the pathogenesis of human MS remains to be 
determined.

effect of Systemic inflammation on viral 
Models of Demyelination
As mentioned, intracerebral inoculation of TMEV into genetically 
susceptible strains of mice (H-2s,v,q,r,f) results in viral persistence 
and the onset of T-cell-mediated inflammatory demyelination, 
which ensues approximately 70 days post injection. Conversely, 
the virus is effectively cleared from the CNS following inocula-
tion of demyelination resistant strains (H-2d,b,k), which do 
not develop demyelination (55). Interestingly, intraperitoneal 
injection of the TLR4 agonist LPS rendered the prototypical 
TMEV-induced demyelination-resistant mouse strain (C57BL6) 
susceptible to inflammatory demyelination. Moreover, the 
authors demonstrated that injection of recombinant IL-1β was 
sufficient to recapitulate the results obtained following LPS injec-
tion (83). Subsequent studies by the same group suggest that the 
mechanism whereby peripheral IL-1β promotes demyelination in 
this normally TMEV-resistant strain entails the generation of a 
more robust Th17 cell response. However, it should also be noted 
that the IL-1R1 deficient mice of the same resistant background 
also became susceptible to demyelination, a paradox, which the 
authors attribute to the anti-viral properties of IL-1β, which 
resulted in increased viral persistence within the CNS (84).

effect of Systemic inflammation on 
Cuprizone-induced Pathology
As mentioned previously, cuprizone intoxication results in demy-
elination despite the integrity of the blood–brain barrier’s being 
maintained (65, 85). Thus, delineating the effect of peripheral 
infection on either disease progression or remyelination might 
contribute to understanding of glial physiology during the course 
of MS. To date, only a few studies have examined the effect of 
peripheral inflammation on the pathogenesis of disease follow-
ing cuprizone intoxication. None have yet investigated the effects 
of peripheral viral infection on the pathogenesis of cuprizone 
intoxication. As an important first step, it was demonstrated that 
cuprizone intoxication does not affect the degree of the peripheral 
acute phase response that occurs subsequent to LPS injection 
(86). Interestingly, Il6 was increased in the corpus callosum 
of LPS-injected mice while Tnf and Il1b were not significantly 
affected although this could be attributable to the timing in 
which the samples were tested (2 h after the final LPS challenge). 
Remarkably, it was found that repeated peripheral LPS challenge 
delayed the process of demyelination and promoted remyelina-
tion, despite an increase in the number of intralesional RCA-1+ 
microglia. Mechanistically, the effect of LPS was associated with 
TLR4 upregulation on microglia, increased ciliary neurotrophic 
factor (Cntf) expression, and oligodendrocyte precursor cell 
proliferation (87). The gp130R ligands CNTF (88–90), leukemia 
inhibitory factor (LIF) (91–93), and IL-11 (94, 95) are potent 
inducers of oligodendrocyte proliferation and maturation. As 
such, these results indicate that in the absence of infiltrating 
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immune cells, peripheral infection-induced glial activation may 
be beneficial for promoting repair.

Bacterial infection exacerbates eAe
As in viral models of inflammatory demyelination, peripheral LPS 
injection at 1, 3, and 6 weeks post EAE onset has been shown to cause 
relapse (96). Aside from LPS injection, other bacterial components 
and bacteria themselves have also been shown to influence the 
pathogenesis of inflammatory demyelinating disease. Early studies 
pertaining to bacterial infection and MS exacerbation focused on 
the production of superantigenic activation of encephalitogenic 
T-cells. These studies indicated that peripheral injection of the 
superantigen SEB was capable of exacerbating relapsing-remitting 
EAE (79, 97–99). However, it has recently been shown that com-
mensal bacteria are needed to induce EAE (100–102). Moreover, 
transgenic mice harboring myelin-specific TCR are less susceptible 
to spontaneous EAE under germ-free conditions (103). Finally, the 
bacteria-derived toxin, pertussis toxin, is known to lower suscepti-
bility to EAE, and its injection is, in fact, needed to induce disease 
in some strains of mice (59). However, it is pertinent to mention 
here that polysaccharide A derived from the capsule of Bacteroides 
fragilis is capable of activating TLR2 on intestinal-derived cells 
and promotes expansion of Treg cells, decreases Th17 responses, 
and mitigates EAE onset (100). Likewise, prior infection with a 
superantigen containing strain of S. aureus protected against EAE 
in a manner that was associated with decreased antigen-specific 
Th17 responses (80). Together, these studies suggest that systemic 
inflammation or changes in communalization greatly influence 
disease susceptibility of classically induced EAE and may point to 
an underlying theme governing relapses that occur as part of the 
natural history of MS.

Genetic Models of eAe and infection
Nearly 25  years ago, Goverman and colleagues created a 
transgenic mouse line that expressed a TCR that is specific for 
MBP. Interestingly, it was noted that mice kept in pathogen-free 
conditions were impervious to the development of spontaneous 
EAE, despite the presence of circulating autoreactive cells (103). 
However, mice maintained in non-pathogen-free conditions 
spontaneously developed disease between 5 and 23  weeks of 
age. These results indicate that the exposure to environmental 
pathogens may provoke autoimmune exacerbation. Along 
these lines, the authors found that peripheral injection of the 
Gram-negative bacterial component and TLR4 agonist LPS into 
mice housed in pathogen-free conditions triggered disease in 
approximately 60% of mice. Similarly, injection of Complete 
Freund’s Adjuvant containing heat-killed Mycobacterium 
tuberculosis was sufficient to cause disease in 30% of mice. 
Finally, peripheral injection of pertussis toxin induced disease 
in all mice tested (103). Subsequently, Waldner et  al. created 
two transgenic mouse lines (4E3 and 5B6) that harbored a 
TCR that is specific for the encephalitogenic myelin epitope 
PLP139–151 (104). Both mouse lines were crossed onto the highly 
EAE susceptible SJL mouse line. Unlike the MBP-specific 
TCR transgenic mice described above, both the 4E3 and 
5B6 mouse lines developed spontaneous EAE despite being 
housed in specific pathogen-free conditions and being kept 

on a diet consisting of irradiated food. Interestingly, like the 
MBP-specific TCR transgenic mouse, injection of pertussis 
toxin into the PLP-specific TCR line (5B6) readily induced 
EAE. Furthermore, in a subsequent study, it was noted that the 
incidence of spontaneous EAE was substantially reduced by 
90% when 5B6 mice (on an SJL background) were backcrossed 
onto the EAE-resistant B10.S background for five generations. 
Nevertheless, peripheral injections of the TLR9 agonist CpG 
ODN, the TLR4 agonist LPS, recombinant IL-12, and pertussis 
toxin were capable of triggering EAE onset (105). Similarly, the 
transgenic 2D2 mouse line, which possesses an autoreactive 
TCR to the myelin protein myelin oligodendrocyte glyco-
protein (MOG), also exhibits a high incidence of EAE when 
given pertussis toxin (106). Together, these data indicate that 
systemic activation of the innate immune response increases 
the occurrence of spontaneous EAE in transgenic mouse lines 
that express autoreactive myelin-specific TCR (103–106).

Peripheral injection of PAMPs  
and Lesion Reactivation
Exactly how peripheral infection increases the risk for relapse 
is not yet known. Mechanistically, infection could promote the 
antigen stimulation capacity for peripheral antigen-presenting 
cells (105) including dendritic cells (107), decrease Treg cell func-
tion, activate T-cells with dual TCR, activate T-cells via molecular 
mimicry (71–73, 108), or promote T-cell trafficking and activa-
tion to the CNS. Perhaps, there are biological differences between 
organs that can account for an increased or decreased ability to 
promote neuroinflammatory responses (109). The above all rep-
resent plausible means of contributing to MS relapse and many 
are a prerequisite for EAE disease induction.

The findings that peripheral injection of particular purified 
pathogen-associated molecular patterns is independently capa-
ble of causing relapse indicate that T-cell activation via cognate 
antigen recognition may not represent the first step underlying 
infection-induced relapse (103, 104). To date, several studies have 
examined the effect of systemic inflammation on exacerbation of 
EAE. Almost all have found that intraperitoneal inoculation with 
various pathogen mimics is capable of causing exacerbation to 
varying degrees.

A few studies have examined the effect of peripheral or central 
infection on the onset and progression of EAE. While these studies 
indicate that infection at the time of EAE onset can influence the 
pathogenesis, delineating a distinct role for infection in facilitating 
bidirectional communication between the CNS and the periph-
eral immune system is confounded by the fact that the animal 
has already received a large dose of heat-killed M. tuberculosis. As 
such, it is difficult, if not impossible, to determine if infection has 
contributed to the priming of T-cells rather than their attraction 
and activation within the CNS as would be hypothesized to occur 
in human cases. In attempts to address this question, several 
investigators have taken advantage of the fact that Lewis rats 
develop a monophasic EAE disease course when inoculated with 
guinea pig spinal cord homogenate in complete Freund’s adjuvant 
(96). In this model, animals undergo complete remission from 
disease by day 20 post immunization. Interestingly, peripheral 
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LPS injection 1, 3, or 6 weeks post remission is capable of causing 
clinical and histological EAE remission (96). Importantly, the 
authors demonstrate that microglia/macrophage activation was 
associated with LPS injection and that it preceded disease relapse.

Taking a different approach, Serres et al. have also provided 
some preclinical evidence that suggests that peripheral infection 
can reactivate ongoing CNS lesions. In their model system, EAE 
is induced in rats via subcutaneous injection of neuroantigen 
emulsified in incomplete Freund’s adjuvant. Next, recombinant 
TNF and IFNγ are stereotaxically injected into the cingulate 
gyrus to induce a targeted focal EAE lesion (110). After 4 weeks, 
the rats receiving an intraperitoneal injection of LPS exhibit 
lesion reactivation whereas rats injected with a vehicle demon-
strate signs of lesion resolution and repair (111). Importantly, 
these lesions can be followed by MRI, and the lesion status was 
confirmed by immunohistochemistry. In a follow-up study, the 
group demonstrated that peripheral injection of an adenovirus 
encoding IL-1β, but not a control vector, was also capable of 
reactivating lesions (112).

BRAiN-iMMUNe AXiS AS A MeCHANiSM 
UNDeRLYiNG LeSiON ReACTivATiON 
AND ReLAPSe

effectors of Communication Between the 
Brain and the immune System
It is conceivable that reactivation of certain neurotropic viruses, 
such as HSV6 and VSV, would result in microglial activation and 
subsequent attraction of autoimmune cells to the CNS. However, 
evidence provided here also indicates that peripheral infection 
with non-neurotropic viruses or bacteria also have the potential 
to exacerbate disease in MS patients. Moreover, in transgenic 
animal models of EAE, peripheral injection of bacterial mimics is 
sufficient to induce disease, despite an intact blood–brain barrier. 
These findings indicate that neurotropism is not a prerequisite for 
disease induction.

Several mechanisms underlying the interaction between cells 
of the immune system and the brain have been known for decades 
and have recently been reviewed (113). In brief, peripheral infec-
tion upregulates the acute phase proteins IL-1β, TNF, and IL-6. 
These cytokines are able to be transported across the BBB, to act 
on endothelial cells to induce inflammatory cytokines that are 
released basolaterally, to transduce their signal to the CNS via 
vagal nerve afferent signaling, or to activate cells of the choroid 
plexus (114). The latter is of particular interest since (1) patho-
logically MS lesions are typically associated with periventricular 
white matter destruction (i.e., Dawson’s fingers) (115, 116), and 
(2) the production of CCL20 by the choroid plexus epithelial 
cells has recently been reported to serve as a portal for CCR6+ 
encephalitogenic Th17 cells (117, 118).

induction of Central Cytokine expression 
as a Means for Driving Relapse
That centrally administered recombinant TNF or IFNγ can induce 
lesion formation in areas of the CNS not normally targeted dur-
ing the EAE disease course may indicate that cytokine-mediated 

activation of glia is a prerequisite for the initial attraction of 
encephalitogenic T-cells to the CNS parenchyma (110). In further 
support of this hypothesis, Dumas provided convincing evidence 
demonstrating that IL-1β underlies the effects of pertussis during 
EAE (119). Intraperitoneal injection of pertussis toxin lowers the 
activation threshold for EAE induction in many mouse lines and 
is sufficient to induce EAE in autoreactive transgenic mouse lines. 
Exactly how peripheral IL-1β or other cytokines promote neuro-
inflammation is not completely understood. A likely hypothesis 
is that the production of inflammatory cytokines by infection 
serves to induce the antigen-presenting capacity of peripheral 
dendritic cells and B-cells, both of which have been shown to be 
necessary for the establishment of EAE (107, 120). Nevertheless, 
microglial activation has also been shown to contribute to the 
pathogenesis of EAE (121). In fact, a recent temporal analysis 
focusing on myelin antigen presentation during the course of 
EAE demonstrated that CNS-resident microglia likely function as 
the initial antigen-presenting cells as they were shown to contain 
myelin-associated protein peptides associated with MHC prior 
to the arrival of peripheral APCs, including dendritic cells (122). 
Similarly, data obtained from intravital imaging studies employ-
ing the use of two-photon microscopy have also challenged the 
notion that CNS-resident APCs do not present antigen in vivo. 
Specifically, CNS-resident perivascular meningeal cells express-
ing macrophage but not dendritic cell markers activate extrava-
sated myelin specific but not ovalbumin-specific T-cells (123, 
124). Similarly, results from a recent study strongly suggest that 
microglial-specific deletion of TGFβ-activated kinase 1 (TAK1), a 
signaling molecule downstream of the IL-1β receptor, ameliorates 
EAE onset (125). Together, these finding implicate CNS-resident 
microglial/macrophage activation in driving the initiation of 
EAE. Notably, IL-1β and TNF are both produced by resident CNS 
cells in response to peripheral infection and are thus capable of 
signaling to cells that possess the IL-1β receptor (i.e., microglia 
and astrocytes) (126–128). In rats challenged by peripheral LPS 
injection, IL-1β and TNF expression was remarkably increased 
in the CNS prior to the generation of a relapse (96). Also note-
worthy is that stimulation of astrocytes with recombinant IL-1β 
or TNF in culture dramatically increases chemokine expression. 
It is therefore plausible that increased chemokine expression 
within the CNS parenchyma would attract activated T-cells from 
the periphery into the CNS. Indeed, multiple chemokines have 
been shown to be required for EAE onset (117, 118) and CCL2, 
a chemokine that is upregulated in astrocytes after TNF stimula-
tion (129), reportedly sustains immune infiltration after disease 
onset (130). Given the above evidence, it may be logical to suspect 
that the same immunophysiological mechanisms that contribute 
to peripheral infection-induced neuroinflammation and sickness 
behavior underlie infection-induced relapses. A model for how 
this might occur is illustrated in Figure 2. Importantly, this model 
is glial-centric insofar as the activation of glial cells, particularly 
CNS-resident meningeal antigen-presenting cells and possibly 
microglia are necessary for the attraction of autoreactive T-cells 
and professional APCs into the CNS parenchyma. However, while 
necessary glial activation is not sufficient to promote disease, 
which has been shown to rely on the antigen-presenting capacity 
of peripherally derived dendritic cells and B-cells.
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An alternative hypothesis, and one that may not be mutually 
exclusive, is that pulmonary inflammation is somehow linked to 
autoimmune cell activation and trafficking to the CNS. Evidence 
supporting this idea includes the fact that smoking, but not the 
use of other forms of tobacco, is highly associated with MS onset 
and progression (131–133). Additionally, Odoardi et  al. have 
recently generated compelling evidence, which demonstrates 
a requirement for encephalitogenic T-cells to enter the lung 
parenchyma prior to gaining access to the CNS (109). These 
data indicate that the activation status and/or phenotype of the 
resident lung antigen-presenting cells may drastically influence 
the course of MS.

CONCLUSiON AND FUTURe DiReCTiON

In conclusion, a great deal of evidence supports a role for 
peripheral infection in driving MS relapse. This evidence 
stems from both indirect (seasonal influence) and direct 

FiGURe 2 | Model describing how peripheral infection induces neuroinflammation and T-cell-mediated relapse in MS. During peripheral infection, serum 
acute phase proteins enter the parenchyma at the choroid plexus, cross the BBB via cytokine transporters, or activate afferent nerves causing glial activation (1). 
Glial activation induces chemokine (2) and cytokine expression that upregulates endothelial adhesion molecules that promote the extravasation of encephalitogenic 
T-cell and monocyte/dendritic cell trafficking across the BBB (3). T-cells initially encounter resident perivascular meningeal microglia/macrophages, which have been 
“primed” for optimal antigen presentation (i.e., upregulation of CD86/CD80 and MHCII). T-cell activation stimulates the recruitment of professional APCs (including 
CCR4+ dendritic cells) and the production of cytotoxic factors, culminating in demyelination and neurodegeneration (4). Abbreviations: APC, antigen-presenting cell; 
AST, astrocyte; DC, dendritic cell; OL, oligodendrocyte.

(confirmed viral infection at the time of relapse) experimen-
tal animal models. However, the mechanisms by which infec-
tion exacerbates the disease course are not fully understood. 
Uncovering the specific cell signaling pathways that are 
activated within the CNS in response to peripheral infec-
tion may provide some clues as to how infection influences 
disease progression and would complement what is currently 
known about how infection induces relapse. Since people in 
the general population typically acquire one to two upper-
respiratory infections per year, understanding the complex 
biological events that underlie the effect of infection and MS 
relapse has vast potential for therapeutic intervention and 
disease mitigation. Moreover, because neuroinflammation is 
suspected to contribute to the pathophysiology of multiple 
neurological diseases including but not limited to Parkinson’s 
disease, Alzheimer’s disease, epilepsy, and depres-
sion – the effect of peripheral infection on MS relapse is 
a highly significant subject for study.
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