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Formaldehyde is commonly used in the chemical industry and is present in the
environment, such as vehicle emissions, some building materials, food, and tobacco
smoke. It also occurs as a natural product in most organisms, the sources of which
include a number of metabolic processes. It causes various acute and chronic adverse
effects in humans if they inhale its fumes. Among the chronic effects on human
health, we summarize data on genotoxicity and carcinogenicity in this review, and
we particularly focus on the molecular mechanisms involved in the formaldehyde
mutagenesis. Formaldehyde mainly induces N-hydroxymethyl mono-adducts on guanine,
adenine and cytosine, and N-methylene crosslinks between adjacent purines in DNA.
These crosslinks are types of DNA damage potentially fatal for cell survival if they are not
removed by the nucleotide excision repair pathway. In the previous studies, we showed
evidence that formaldehyde causes intra-strand crosslinks between purines in DNA using
a unique method (Matsuda et al., 1998). Using shuttle vector plasmids, we also showed
that formaldehyde as well as acetaldehyde induces tandem base substitutions, mainly at
5′-GG and 5′-GA sequences, which would arise from the intra-strand crosslinks. These
mutation features are different from those of other aldehydes such as crotonaldehyde,
acrolein, glyoxal, and methylglyoxal. These findings provide molecular clues to improve
our understanding of the genotoxicity and carcinogenicity of formaldehyde.
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INTRODUCTION
Formaldehyde (Methanal, CAS No.: 50-00-0) is abundantly pro-
duced in the chemical industry, and its annual global production
is about 20 million tons (IARC, 2012). It is used in industrial
and consumer products, and is also generated as a byproduct of
biomass and petroleum burning, cigarette smoke and automobile
exhaust. Cigarette smoke contains 12–106 µg of formaldehyde
per cigarette (IARC, 2012). In medical and biological fields, it
has been widely used as a fixative or preservative for patho-
logical specimens. It also occurs as a natural product in most
organisms and in the environment. There are several metabolic
pathways in humans leading to formaldehyde synthesis, in partic-
ular, amino acid and methanol metabolisms, lipid peroxidation,
and P450-dependent demethylation (Swenberg et al., 2013).

The major sources of formaldehyde exposure can be roughly
classified into three categories: fumes generated from industry,
those released in residential housing and those in various occupa-
tional indoor settings (Ma and Harris, 1988). Non-occupational
exposure in the household is mainly due to the fumes released
from formaldehyde-based resin for binding of plywood, particle
board, paint, and textile fibers. Formaldehyde fumes have caused
health problems across the country. People inhaling formalde-
hyde fumes indoors often show symptoms such as headache,

dizziness, wheezing, runny nose, and nausea. In severe cases,
they have sore throat, burning eyes, and skin irritation. These
symptoms are called “sick house syndrome” or “sick building syn-
drome” (Norbäck, 2009). The levels of formaldehyde in the air
inside houses are typically 0.02–0.06 mg/m3, but these levels have
been declining since the late 1980s as a result of standards for
building materials (IARC, 2012). The World Health Organization
now recommends a formaldehyde level of 0.1 mg/m3 in indoor
air (Kaden et al., 2010).

Formaldehyde also has activities that cause chronic adverse
effects, such as genotoxicity, carcinogenicity, and teratogenicity.
The health effects have been extensively studied for a long time
and reviewed in many articles (Ma and Harris, 1988; Conaway
et al., 1996; Swenberg et al., 2013). In this review, we focused
on molecular basis of DNA damage and mutations induced
by formaldehyde exposure. In this sense, our original data on
the mutation spectrum of formaldehyde in human cells, have
been clearly showed further details concerning the mechanism of
formaldehyde carcinogenesis.

CARCINOGENICITY
In animal experiments using mice and rats, chronic inhalation of
formaldehyde at high concentrations caused cancers, particularly,
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squamous cell carcinomas of the nasal cavities (IARC, 2006). In
other studies, the incidences of lymphoma and leukemia were
also increased. In animals administered formaldehyde in drinking
water, increased incidences of forestomach papillomas, leukemias,
and gastrointestinal tract tumors were reported, but their fre-
quencies varied. These studies have been summarized in IARC
Monograph (IARC, 2006).

In the human body, many endogenous and exogenous
compounds release formaldehyde through catabolic reactions.
The primary metabolic system for formaldehyde involves
an initial spontaneous reaction with glutathione to form
S-hydroxymethylglutathione, followed by reaction facilitated
by alcohol dehydrogenase-3 to convert the intermediate to
S-formylglutathione. This intermediate is then further metabo-
lized by S-formylglutathione hydrolase to yield nontoxic formate,
which is excreted in the urine (Hedberg et al., 2002). There have
been numerous cohort and case-control studies on formaldehyde
exposure and an increase in nasopharynx cancer or leukemia in
humans (IARC, 2012). The IARC (2006) judged that there was
sufficient evidence for the carcinogenicity of formaldehyde, based
primarily on its association with nasopharyngeal cancer, and that
there was strong but not sufficient evidence for the leukemogenic
effects of formaldehyde. Owing to advancements via recent epi-
demiological studies (Coggon et al., 2003; Hauptmann et al.,
2004, 2009; Pinkerton et al., 2004; Marsh and Youk, 2005; Marsh
et al., 2007a,b; Beane Freeman et al., 2009) and meta-analyses
(Bosetti et al., 2008; Zhang et al., 2009; Bachand et al., 2010), the
IARC (2012) concluded that occupational exposure to formalde-
hyde causes nasopharyngeal cancer and leukemia, and classified
formaldehyde as a human carcinogen Group 1.

GENOTOXICITY
The genotoxicity of formaldehyde has been examined by var-
ious methods. In most reports using Salmonella typhimurium
strains TA98, TA100, TA1535, TA1537, and TA1538 (Ames
test), formaldehyde induced both base change and frame-shift
mutations without metabolic activation, but its mutagenic-
ity is not as strong as that of typical environmental muta-
gens such as 4-nitroquinoline-1-oxide and N-methyl-2-nitro-
N ′-nitrosoguanidine (Ma and Harris, 1988; Conaway et al.,
1996). Formaldehyde also shows mutagenicity in assays using
Escherichia coli WP2 (Takahashi et al., 1985; O’Donovan and Mee,
1993).

Formaldehyde induced chromosome aberrations (CA) and
sister chromatid exchanges (SCE) in cultured Chinese ham-
ster (Natarajan et al., 1983; Basler et al., 1985; Galloway et al.,
1985; Merk and Speit, 1998, 1999) and human lymphocyte cells
(Kreiger and Garry, 1983). In rats treated with formaldehyde
through inhalation (0.5–12 ppm), no increase in the frequencies
of CA and SCE was observed in lymphocytes (Kligerman et al.,
1984). In rats inhaling 15 ppm formaldehyde, CA was induced
in pulmonary lavage cells but not in bone marrow cells (Dallas
et al., 1992). In mice treated with formaldehyde by oral admin-
istration, no CA or micronucleus (MN) formation was detected
in bone marrow and spleen cells (Gocke et al., 1981; Natarajan
et al., 1983). In rats administered a single dose of 200 mg/kg
formaldehyde by gavage, gastrointestinal organs exhibited local

irritation and their cells formed MN (Migliore et al., 1989).
In people occupationally exposed to formaldehyde, increases in
the frequencies of MN and SCE in the peripheral lymphocytes
were reported (Costa et al., 2008), but no statistically significant
increases were also reported elsewhere (Ye et al., 2005; Pala et al.,
2008).

Formaldehyde induces mutations in human cultured lym-
phoblastoid TK6 cells and Chinese hamster ovary (CHO) cells,
which were detected by resistance to toxic nucleoside analogs, tri-
fluorothymidine (Goldmacher and Thilly, 1983), 8-azaguanine
and 6-thioguanine (Liber et al., 1989; Graves et al., 1996; Speit
and Merk, 2002).

DNA DAMAGE AND REPAIR
Formaldehyde reacts immediately with primary and secondary
amines, thiols, hydroxyls, and amides to form methylol deriva-
tives. It acts as an electrophile and can react with macromolecules
such as DNA, RNA, and protein to form adducts and cross-links.
Guanine, adenine and cytosine have amino group in their
molecules. When deoxyadenosine, deoxyguanosine, deoxy-
cytidine, and thymidine were reacted with formaldehyde, the
major products determined by high-performance liquid chro-
matography and electrospray mass spectrometry (LC-MS/MS)
were N6-hydroxymethyldeoxyadenosine, N4-hydroxymethyl-
deoxycytidine and N2-hydroxymethyldeoxyguanosine (Beland
et al., 1984; Cheng et al., 2003). In human and Chinese hamster
cells treated with formaldehyde, N6-hydroxymethyldeoxy-
adenosine and N2-hydroxymethyldeoxyguanosine were detected
in their genome (Beland et al., 1984; Zhong and Que Hee, 2004).
N6-hydroxymethyldeoxyadenosine was detected in leukocyte
DNA from 29 of 32 heavy smokers (Wang et al., 2009). The
reaction of formaldehyde with deoxyadenosine and deoxyguano-
sine or DNA also produces three major methylene crosslinks:
di-(N6-deoxyadenosyl)methane, (N6-deoxyadenosyl-N2-deoxy
guanosyl)methane and di-(N2-deoxyguanosyl)methane (Huang
et al., 1992; Huang and Hopkins, 1993; Cheng et al., 2003).
In a study of the in vitro reactions between formaldehyde and
all amino acids, deoxyguanosine crosslinks with cysteine were
abundant and stable, while those with lysine were readily formed
but rapidly disintegrated (Lu et al., 2010). There are many reports
showing that formaldehyde-protein crosslinks were detected in
cells treated with formaldehyde (IARC, 2012), but their molec-
ular structures have not been fully clarified. The DNA-protein
crosslinks with protein sizes less than 12–14 kDa can be removed
by the nucleotide excision repair pathway, whereas oversized
DNA-protein crosslinks are processed exclusively by RecBCD-
dependent homologous recombination in bacteria (Nakano et al.,
2007). In mammalian cells, the upper size limit of crosslinked
proteins amendable to the nucleotide excision repair is relatively
small (8–10 kDa), therefore, homologous recombination would
be the major pathway in tolerance of chromosomal DNA-protein
crosslinks (Nakano et al., 2009).

We attempted to determine the likelihood of formaldehyde-
induced intra-strand crosslink formation between four kinds
of nucleotide in DNA using the unique method developed
by Kawanishi (1995) and Matsuda et al. (1998). Single-
strand DNA (175 base pairs) and two 20-mer complementary
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FIGURE 1 | Detection of formaldehyde-induced intra-strand crosslinks.

Single-strand 40 mer DNA bands were formed by binding between the
3′-end of 32P-labeled 20-mer DNA and the 5′-end of non-labeled 20-mer
DNA by formaldehyde crosslinks. Method : The experimental protocol has
been described in Matsuda et al. (1998). Briefly, the 175 base-pair region
of pBluescript KS(-) was amplified by polymerase chain reaction (PCR)
using 5′-biotinylated and non-biotinylated primers. The biotinylated
175-mer DNA was immobilized to Dynabeads M-280 streptavidin. Four
kinds of 20-mer complementary DNA, of which the 5′-ends were labeled
with 32P and the 3′-ends had G, A, or C, were prepared. Four kinds of

unlabeled 20-mer complementary DNA, the sequence of which followed
the 3′-end of the 32P-labeled 20-mer DNA and had G, A, T, or C at the
5′-end, were also prepared. The biotinylated 175-mer DNA, [32P]-labeled
complementary 20-mer DNA and the following non-labeled
complementary 20-mer DNA were annealed by heating and cooling for
detecting GG, CC, and GA-intrastrand crosslinks, as shown in (A). The
annealed DNA was treated with 270 mM formaldehyde for 24 h at 4◦C.
After collecting DNA using a magnet, DNA was purified and subjected to
electrophoresis on denatured polyacrylamide gel. Autoradiography images
of the gel are shown in (B,C).

oligonucleotides: one a 5′ [32P]-labeled sequence and the other
an unlabeled sequence following the [32P]-labeled sequence, were
annealed as shown in Figure 1A. If the oligonucleotides are
bound between the 3′-end base of the [32P]-labeled oligonu-
cleotide and the adjacent 5′-end base of the unlabeled oligonu-
cleotide by a formaldehyde crosslink, a 40-mer single-strand
oligonucleotide band should appear on the denatured polyacry-
lamide gel. As shown in Figures 1B,C, formaldehyde formed
crosslinks between deoxyguanosines (5′-GG) of the ends of
the oligonucleotides. Fewer crosslinks were formed between
deoxyguanosine and deoxyadenosine (5′-GA), but no crosslinks
were formed between deoxycytidines (5′-CC). Figures 1B,C
also shows formaldehyde-produced inter-strand crosslinks. The
repair mechanism of the formaldehyde-induced DNA inter-
strand crosslinks has not been reported so far, but the inter-
strand crosslinks might be removed by the Fanconi ane-
mia (FA) pathway and homologous recombination, which is
shown in the studies of mitomycin C-induced inter-strand
crosslinks (Kottemann and Smogorzewska, 2013; Unno et al.,
2014).

Human and Chinese hamster mutant cells deficient in
XPF or ERCC1 are hypersensitive to formaldehyde (Kumari
et al., 2012), and E. coli uvrA mutant is more sensitive to
formaldehyde than wild-type E. coli (Takahashi et al., 1985).
These lines of evidence indicate that intra-strand crosslinks
constitute a type of damage that could be fatal to cell survival

and are removed by the nucleotide excision repair pathway;
whereas mono-adducts, hydroxymethyldeoxyadenosines and
hydroxymethyldeoxyguanosines, would be removed by the base
excision repair pathway. Types of DNA damage induced by
formaldehyde and their repair pathways are summarized in
Figure 2.

MUTATION SPECTRUM
In E. coli, mutations induced by formaldehyde in the xanthine
guanine phosphoribosyl transferase (gpt) gene were characterized
(Crosby et al., 1988). Exposure of E. coli to 4 mM formaldehyde
induced insertions (41%), deletions (18%), and point mutations
(41%). DNA sequencing revealed that most of the point muta-
tions were transversions at the G:C base pair in the gene. In con-
trast, exposure of E. coli to 40 mM formaldehyde produced point
mutations (92%), 62% of which were transitions at the single A:T
base-pair in the gene, indicating that there were concentration-
dependent variations in mutation spectra. When naked pSV2gpt
plasmid was exposed to 3.3 or 10 mM formaldehyde and trans-
fected into E. coli, most mutations were frameshifts, which also
suggests the presence of various mechanisms in formaldehyde-
induced mutation.

In human lymphoblastoid TK6 cells treated with 150 µM
formaldehyde, 30 hprt mutant colonies were characterized by
Southern blot analysis (Liber et al., 1989). Fourteen (47%) of
these mutants had large deletions, while the other 16 mutants
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FIGURE 2 | Types of DNA damage induced by formaldehyde and their repair pathways.

(53%) showed normal restriction patterns. Of these, 12 mutants
produced hprt mRNA and 3 mutants produced no detectable
mRNA. Sequence analyses of the mRNA showed that 6 mutants
had base substitutions occurring at the A:T base pair. Four
mutants had A:T to C:G transversions at a specific site that
appears to be a mutation hot spot. The remaining 2 mutants lost
exon 8 of the hprt gene.

CHO cells treated with 1 mM formaldehyde increased the
hprt mutation frequency to 4.7-fold higher than the spontaneous
mutation frequency, and mutations of 6 mutant clones were iden-
tified. All mutations were single base transversions with 3 A:T to
T:A, 2 A:T to C:G, and 1 G:C to T:A (Graves et al., 1996).

Mutations in the p53 gene from rat primary nasal squamous
cell carcinomas induced by formaldehyde inhalation (15 ppm up
to 2 years) were analyzed (Recio et al., 1992). Five tumors had
point mutations, namely, 3 G:C to T:A transversions, 1 G:C to
A:T transition, and 1 G:C to C:G transversion.

SHUTTLE VECTOR MUTAGENESIS
Since no previous reports had described that formaldehyde
induces tandem base substitutions that would arise from intra-
strand crosslinks, we adopted the shuttle vector plasmid pMY189
(Matsuda et al., 1995; Yagi, 2013) that can be treated with a
high concentration of formaldehyde. The plasmid pMY189 can
replicate in both human and E. coli cells, and has an ampicillin-
resistant marker gene and a mutation marker gene supF that
can be selected as colored colonies on bacterial agar plates. The
result was published by Kawanishi (1995), and we describe its
outline below. The formaldehyde-treated pMY189 propagated
in human fibroblast cells caused reduction of the number of
ampicillin-resistant bacterial colonies and enhanced the mutation
frequency of the supF gene (Figure 3). The mutation frequency of
the plasmid was increased 4- to 50-fold following treatment of the
plasmid with 70–270 mM formaldehyde. Nucleotide sequences of
the supF mutation marker gene of 94 plasmids were determined.
Mutated plasmids induced by 200–270 mM formaldehyde were
classified and are shown in the third column of Table 1. About
half (49%) of the plasmids had tandem base substitutions. Among
the mutant plasmids with single base substitutions, 89% were
substitutions of G:C base pairs (Table 1). The most common type
of single base substitution mutation was G:C to T:A transver-
sions (52%). Types of tandem base substitution are shown in
Figure 4A. Thirty-nine percent were 5′-GG to 5′-TT (5′-CC to 5′-
AA), and 15% were 5′-GA to 5′-AT (5′-TC to 5′-AT), and 5′-GA

FIGURE 3 | Recovery ratio and mutation frequency of

formaldehyde-treated pMY189 plasmid after replication in human

cells. Method : Formaldehyde-treated pMY189 in PBS solution (0.2 mL) was
introduced into human SV40-transformed fibroblast cells WI38-VA13 by
electroporation. The plasmid was also treated with methanol (0.3%) as a
control because commercial formaldehyde solution contains methanol.
After the cells were incubated for 48 h, the plasmids were extracted from
the cells and digested with the restriction endonuclease DpnI to eliminate
the non-replicated plasmids that retain the bacterial methylation pattern.
The plasmids were introduced into the indicator bacteria KS40/pKY241
(Akasaka et al., 1992) and plated on LB agar containing nalidixic acid,
ampicillin and chloramphenicol to select the plasmids containing the
mutated supF gene. A portion of the cells were plated on LB agar
containing ampicillin and chloramphenicol to measure the total number of
transformants. Colonies were counted and plasmid recovery ratio (A) and
mutation frequencies (B) were calculated.

to 5′-TT (5′-TC to 5′-TT) substitutions. About half (47%) of
them occurred at 5′-GG (5′-CC) sequences and 44% occurred at
5′-GA (5′-TC) sequences. The distribution of the formaldehyde-
induced base substitutions in the supF gene is shown in Figure 4B.
Underlined letters indicate that these base changes were found in
the same mutated plasmid. The “d” or “del” means a deletion.
The tandem base substitutions were not randomly distributed
in the supF gene, but appeared preferentially at certain sites.
About half of the tandem base substitutions occurred at 4 5′-
GG (5′-CC) sequences (at base pairs 102–103, 103–104, 109–110,
and 159–160) and 2 5′-GA (5′-TC) sequences (107–108 and
171–172).
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FIGURE 4 | Classification of formaldehyde-induced tandem base

substitution mutations (A), and Location of formaldehyde-induced base

substitution and frameshift mutations in supF gene (B). Method : Mutated
plasmids were extracted and purified, and the size of each plasmid was
checked by agarose gel electrophoresis. The nucleotide sequences of the supF
gene of the plasmids of a normal size were determined with the ABI DNA

sequencer. Each letter under the sequence of the supF gene represents a base
substitution. Underlined adjacent letters mean tandem base substitutions
found in a plasmid. The “+” and adjacent letters (in italics) mean base insertion
at the position just to the right of “+.” Multiple letters with long underline show
multiple base substitutions found in a plasmid. Star symbols mean positions of
the targets of mutations that can inactivate the suppressor function.

COMPARISON OF MUTATION SPECTRA WITH OTHER
ALDEHYDES
Mutagenesis of various aldehydes such as acetaldehyde, 2-
chloroacetaldehyde, crotonaldehyde, acrolein, glyoxal, and
methylglyoxal has been examined using supF shuttle vector
plasmids (Matsuda et al., 1995, 1998; Murata-Kamiya et al., 1997,
2000; Kawanishi et al., 1998a,b). These aldehydes react with DNA
and form exocyclic guanines, ethenoguanine, and propanogua-
nine, as major adducts (Minko et al., 2009; Voulgaridou et al.,
2011). These DNA lesions generate mutations mainly at G:C base
pairs, but the spectra of base substitutions differ among aldehydes
with different chemical structures. Table 1 summarizes mutation
spectra of various aldehydes, which are induced in the shuttle
vector plasmids propagated in mammalian cells. All aldehydes
induced base substitutions manly at G:C base pairs. It should
be noted that acetaldehyde induced tandem base substitutions
at 5′-GG sequences like formaldehyde, suggesting that acetalde-
hyde forms intra-strand crosslinks between adjacent guanines,
probably through propanoguanine formation (Matsuda et al.,

1998). Glyoxal is an endogenous mutagen produced abundantly
in the process of DNA oxidation by reactive oxygen free radicals
that have been thought to contribute to the pathogenesis of
many age-related human diseases including cancer. Features of
glyoxal-induced mutations are similar to those of spontaneous
mutations (Table 1), which may suggest that glyoxal is a cause of
spontaneous mutations.

CONCLUSION
Formaldehyde is one of the most abundantly exposed environ-
mental mutagens for humans, and shown to be carcinogenic
in experimental animals. Formaldehyde causes MN, SCE, and
CA in mammalian cells and induces gene mutations in mam-
malian and bacterial cells. Formaldehyde acts as an electrophile
to react mostly with guanine and adenine in DNA, and forms
various kinds of DNA lesions. The DNA lesions are classified
into DNA adducts, DNA intra-strand crosslinks, DNA inter-
strand crosslinks and DNA-protein crosslinks. Organisms have
mechanisms to remove these DNA lesions, which are specific to
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each type of DNA lesions. If these DNA lesions are not repaired,
mutations are induced during DNA replication. Formaldehyde-
induced mutations in human cells were analyzed using shuttle
vector plasmids (Kawanishi, 1995). Interestingly, about half of
the formaldehyde-induced mutations were tandem base substi-
tutions, and most of them occurred at 5′-GG (or 5′-CC) and
5′-GA (or 5′-TC) sequences. These mutation features agree with
the predominance of formaldehyde-induced 5′-GG and 5′-GA
crosslinks, indicating that the intra-strand crosslinks lead to tan-
dem base substitutions. The prevalence of N2-hydroxymethyl
adduct to guanine would lead to the G to T transversion that
is the major single base substitution mutation. In early studies
using bacteria, cultured cells and animals, exposure concentra-
tions of formaldehyde would not have been sufficiently high to
manifest the features of the mutation spectrum because formalde-
hyde mutagenicity is relatively weak and its acute cytotoxic effect
is strong compared with those of other environmental muta-
gens. Our findings as well as the accumulation of molecular data
provide clues to promote our understanding of the mechanisms
behind the genotoxicity and carcinogenicity of formaldehyde.
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