

Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an "Operational Group B. amyloliquefaciens" within the B. subtilis Species Complex

Ben Fan¹, Jochen Blom², Hans-Peter Klenk³ and Rainer Borriss^{4,5*}

¹ Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China, ² Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, Giessen, Germany, ³ School of Biology, Newcastle University, Newcastle upon Tyne, UK, ⁴ Fachgebiet Phytomedizin, Institut für Agrar- und Gartenbauwissenschaften, Humboldt Universität zu Berlin, Berlin, Germany, ⁵ Nord Reet UG, Greifswald, Germany

OPEN ACCESS

Edited by:

Rakesh Sharma, Institute of Genomics and Integrative Biology (CSIR), India

Reviewed by:

Prabhu B. Patil, Institute of Microbial Technology (CSIR), India Bo Liu, Fujian Academy of Agaricultural Sciences, China

*Correspondence:

Rainer Borriss rainer.borriss@rz.hu-berlin.de

Specialty section:

This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology

Received: 19 October 2016 Accepted: 04 January 2017 Published: 20 January 2017

Citation:

Fan B, Blom J, Klenk H-P and Borriss R (2017) Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an "Operational Group B. amyloliquefaciens" within the B. subtilis Species Complex. Front. Microbiol. 8:22. doi: 10.3389/fmicb.2017.00022

The plant growth promoting model bacterium FZB42^T was proposed as the type strain of Bacillus amyloliquefaciens subsp. plantarum (Borriss et al., 2011), but has been recently recognized as being synonymous to Bacillus velezensis due to phylogenomic analysis (Dunlap C. et al., 2016). However, until now, majority of publications consider plant-associated close relatives of FZB42 still as "B. amyloliguefaciens." Here, we reinvestigated the taxonomic status of FZB42 and related strains in its context to the free-living soil bacterium DSM7^T, the type strain of *B. amyloliquefaciens*. We identified 66 bacterial genomes from the NCBI data bank with high similarity to DSM7^T. Dendrograms based on complete rpoB nucleotide sequences and on core genome sequences, respectively, clustered into a clade consisting of three tightly linked branches: (1) B. amyloliquefaciens, (2) Bacillus siamensis, and (3) a conspecific group containing the type strains of B. velezensis, Bacillus methylotrophicus, and B. amyloliquefaciens subsp. plantarum. The three monophyletic clades shared a common mutation rate of 0.01 substitutions per nucleotide position, but were distantly related to Bacillus subtilis (0.1 substitutions per nucleotide position). The tight relatedness of the three clusters was corroborated by TETRA, dDDH, ANI, and AAI analysis of the core genomes, but dDDH and ANI values were found slightly below species level thresholds when *B. amyloliquefaciens* DSM7^T genome sequence was used as query sequence. Due to these results, we propose that the B. amyloliquefaciens clade should be considered as a taxonomic unit above of species level, designated here as "operational group B. amyloliquefaciens" consisting of the soil borne B. amyloliquefaciens, and plant associated B. siamensis and B. velezensis, whose members are closely related and allow identifying changes on the genomic level due to developing the plant-associated life-style.

Keywords: phylogenomics, *Bacillus subtilis* group, *Bacillus amyloliquefaciens*, *Bacillus taxonomy*, digital DNA-DNA hybridization, average nucleotide identity (ANI), average amino acid identity (AAI)

1

INTRODUCTION

At the time of writing, the genus *Bacillus* (Gordon et al., 1973), consisted of 318 species with validly published names (http://www.bacterio.net/bacillus.html) with *Bacillus subtilis* as the type species (Cohn, 1872; Skerman et al., 1980). The industrial important species *B. subtilis, Bacillus amyloliquefaciens, Bacillus licheniformis*, and *Bacillus pumilus* are representing a group of phylogenetically and phenetically homogeneous species called, in the vernacular, the *B. subtilis* species complex (Fritze, 2004). For many years, it has been recognized that these species are hardly to distinguish on the basis of traditional phenotypic methods. Moreover, phylogenetic analysis of the 16S rRNA gene also fails to differentiate species within the complex due to the highly conserved nature of the gene (Rooney et al., 2009).

All members of this species complex are placed in 16S rRNA/DNA group 1. Its separation was based mainly on the significantly low DNA relatedness values experimentally determined by DDH, and their different fatty acid profiles (Priest et al., 1987). Besides the "original members" B. subtilis, B. licheniformis, and B. pumilus, early described by Gordon et al. (1973), many novel species belonging to the *B. subtilis* species complex have been described in last decades: B amyloliquefaciens (Priest et al., 1987), Bacillus atrophaeus (Nakamura, 1989), Bacillus mojavensis (Roberts et al., 1994), Bacillus vallismortis (Roberts et al., 1996), Bacillus sonorensis (Palmisano et al., 2001), Bacillus velezensis (Ruiz-García et al., 2005a), Bacillus axarquiensis (Ruiz-García et al., 2005b), Bacillus tequilensis (Gatson et al., 2006), Bacillus aerius, Bacillus aerophilus, Bacillus stratosphericus, Bacillus altitudinis (Shivaji et al., 2006), Bacillus safensis (Satomi et al., 2006), Bacillus methylotrophicus (Madhaiyan et al., 2010), Bacillus siamensis (Sumpavapol et al., 2010), Bacillus xiamenensis (Lai et al., 2014), Bacillus vanillea (Chen et al., 2014), Bacillus paralicheniformis (Dunlap C. et al., 2015), Bacillus glycinifermentas (Kim et al., 2015), Bacillus oryzicola (Chung et al., 2015), Bacillus gobiensis (Liu et al., 2016), and Bacillus nakamurai (Dunlap C. A. et al., 2016). B. vanillea, B. oryzicola, and B. methylotrophicus could not be corroborated as valid species and were identified as later heterotypic synonyms of either B. siamensis (Dunlap, 2015), or B. velezensis (Dunlap C. et al., 2016). B. subtilis has been subdivided into the three subspecies: B. subtilis subsp. subtilis, B. subtilis subsp. spizizenii (Nakamura et al., 1999), and B. subtilis subsp. inaquosorum (Rooney et al., 2009). In recent time, methods based on genome sequences (complete and WGS), such as ANI (Richter and Rosselló-Móra, 2009), AAI (Konstantinidis and Tiedje, 2005), dDDH (Meier-Kolthoff et al., 2013), and TETRA (Teeling et al., 2004), were used to finally discriminate a wide spectrum of bacterial taxons including the B. subtilis species complex (Federhen, 2015).

Some representatives of *B. amyloliquefaciens* were found plant-root-associated and to act beneficial on plant growth (Idriss

et al., 2002). Reva et al. (2004) reported that seven *Bacillus* isolates from plants or soil are closely related to but distinct from *B. amyloliquefaciens* type strain DSM7^T. These strains are more proficient for rhizosphere colonization than other members of the *B. subtilis* group (Hossain et al., 2015). *B. amyloliquefaciens* strains GB03 (Choi et al., 2014), and FZB42 (Chen et al., 2007) are widely used in different commercial formulations to promote plant growth.

With the advent of comparative genomics and the availability of an increasing number of whole genome sequences, it became possible to distinguish two subspecies within *B. amyloliquefaciens*: *B. amyloliquefaciens* subsp. *amyloliquefaciens* (type strain DSM7^T), and *B. amyloliquefaciens* subsp. *plantarum* (type strain: FZB42^T). Spectroscopic DDH performed with hydroxylapatite-purified chromosomal DNA from DSM7^T and FZB42^T yielded DNA-DNA relatedness values ranging between 63.7 and 71.2% which apparently did not sufficiently support discrimination of both taxons on the species level (Borriss et al., 2011). According to this view the subspecies "*plantarum*" represented a distinct ecotype of plant-associated *B. amyloliquefaciens* strains (Reva et al., 2004), which is increasingly used as biofertilizer and biocontrol agents in agriculture (Borriss, 2011).

Whilst many researchers are still using this classification (e.g., Hossain et al., 2015), recent phylogenomic studies showed a high degree of similarity between the genomes of the B. methylotrophicus, B. velezensis, B. oryzicola, and B. vanillea type strains, and the genome of the *B. amyloliquefaciens* subsp. *plantarum* type strain $FZB42^{T}$ (= DSM 23117^T = BGSC 10A6^T). Due to this finding it was proposed that the taxon B. amyloliquefaciens subsp. plantarum should be considered as a later heterotypic synonym of either B. methylotrophicus (Dunlap C. A. et al., 2015) or, more correctly due to priority rule, of B. velezensis (Dunlap C. et al., 2016). In spite of this increasingly complex taxonomic situation, we conducted here an extended phylogenomic analysis based on 66 core genomes displaying a high degree of similarity with the type strain of B. amyloliquefaciens DSM7^T. It ruled out that three tightly linked clades including a conspecific group consisting of FZB42^T, B. methylotrophicus KACC 13103^T, and *B. velezensis* KCTC13012^T, could be distinguished. The tight relatedness of the three clades consisting of representatives of B. amyloliquefaciens, B. velezensis, and *B. siamensis* was validated by *rpoB* gene sequence homology, and, ANI, AAI, dDDH, and TETRA analysis of the core genomes. We propose to introduce the term "operational group B. amyloliquefaciens" to underline their close phylogenomic relationship.

MATERIALS AND METHODS

Retrieval of rpoB Sequences

Complete *rpoB* gene sequences with homology to *B. amyloliquefaciens* DSM7^T were retrieved from the respective genomes of *Bacillus* strains available at NCBI (http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism\$=\$microb). Sequence comparisons were obtained by NCBI BlastN (http://

Abbreviations: AAI, average amino acid identity; ANI, average nucleotide identity; CDS, coding sequence; DDH, DNA–DNA hybridization; dDDH, digital DNA–DNA hybridization; GGDC, Genome-to-Genome Distance Calculator; TETRA, tetranucleotide frequency distribution.

blast.ncbi.nlm.nih.gov/Blast.cgi?CMD\$=\$Web&PAGE_TYPE\$= \$BlastHome).

Alignment of DNA rpoB Sequences

Alignment of DNA *rpoB* sequences was performed by the Clustal Omega program accessible at http://www.ebi.ac.uk/Tools/msa/ clustalo/. A distance matrix was calculated from this alignment by DNA distance matrix calcuation (DNADIST program), and the matrix was then transformed into a tree by the NEIGHBOR program. In order to verify the accuracy of the tree multiple data sets were generated with the SEQBOOT program using 200 bootstrap replicates. A tree was built from each replicate with the DNADIST program, and then bootstrap values were computed with the CONSENSE program. The phylogenetic tree was visualized with TreeViewX (http://taxonomy.zoology. gla.ac.uk/rod/treeview.html). The programs used to construct the phylogenetic tree were obtained from the PHYLIP package, v.3.65 (Felsenstein, 1989), which is accessible at http://evolution. genetics.washington.edu/phylip.html.

Comparative Genome Analysis

Comparative genome analysis was performed using the EDGAR 1.3 software framework. For orthology estimation EDGAR uses a generic orthology threshold calculated from the similarity statistics of the compared genomes (Blom et al., 2016; http:// edgar.computational.bio.uni-giessen.de). A private project was constructed comprising 66 genomes closely related to B. amyloliquefaciens DSM7^T and selected other representatives of the B. subtilis species complex. To construct a phylogenetic tree for this project, around 2000 core genes were computed by pairwise iterative comparison of a set of genomes (Blom et al., 2016). In a following step multiple alignments of the core genes were generated using MUSCLE, non-matching parts of the alignment were masked by GBLOCKS and subsequently removed. The remaining parts of all alignments were concatenated to one large alignment. The PHYLIP package was used to generate a phylogenetic tree of this alignment, represented in newick format.

The EDGAR software framework was also used to calculate average nucleotide identity (ANI) and average amino acid identity (AAI), matrices for a selected set of genomes. The blast hits between the orthologous genes of the core of the selected genome were analyzed for their mean/median percent identity values. The recommended species cut-off was 95% for the ANI and AAI indices (Richter and Rosselló-Móra, 2009). In addition, JSpeciesWS (http://jspecies.ribohost.com/jspeciesws/) was used to determine ANIb (average nucleotide identity based on BLAST+) and ANIm (average nucleotide identity based on MUMmer) values by pairwise genome comparisons. Correlation indexes of their Tetra-nucleotide signatures (TETRA) were determined by using the JSpeciesWS software (Richter et al., 2016).

Digital DNA–DNA Hybridization (dDDH)

The genome-to-genome-distance calculator (GGDC) version 2.1 provided by DSMZ (http://ggdc.dsmz.de/) was used for genome-based species delineation (Meier-Kolthoff et al., 2013)

and genome-based subspecies delineation (Meier-Kolthoff et al., 2014). Distances were calculated by (i) comparing two genomes using the chosen program to obtain HSPs/MUMs and (ii) inferring distances from the set of HSPs/MUMs using three distinct formulas. Next, the distances were transformed to values analogous to DDH. The DDH estimates were based on an empirical reference dataset comprising real DDH values and genome sequences. The DDH estimate resulted from a generalized linear model (GLM) which also provided the estimate's confidence interval (after the \pm sign). Three formulas are available for the calculation: Formula: 1 (HSP length/total length), formula: 2 (identities/HSP length) and formula 3 (identities/total length). Formula 2, which is especially appropriate to analyze draft genomes, was used.

RESULTS

Phylogenomics of the *B. Subtilis* Species Complex

The core genomes of 20 type strains of the B. subtilis species complex were used for phylogenomic analysis applying the EDGAR software package (Figure 1). Four main monophyletic groups were corroborated by 100% bootstrap values. Clade I ("subtilis") is early diverged into two branches comprising B. atrophaeus, and B. subtilis and its close relatives; clade II ("amyloliquefaciens") comprises B. amyloliquefaciens, B. siamensis, and a conspecific group containing the type strains of B. amyloliquefaciens subsp. plantarum, B. velezensis, and B. methylotrophicus; clade III ("licheniformis") consists of B. licheniformis and B. sonorensis; and clade IV ("pumilus") comprises B. pumilus, B. safensis, B. xiamenensis, and a conspecific group involving the type strains of B. altitudinis, B. stratosphericus, and B. aerophilus. The members of clade II appeared closely related. This is indicated by the high number of orthologous CDSs (2794) shared by the five type strains of clade II. A similar cladogram has been published recently (Dunlap C. et al., 2016) suggesting that the B. subtilis species complex can be divided into four groups above species level, which need further characterization. We have directed our further analysis to clade II (named from now on "operational group *B. amyloliquefaciens*"), which clearly shows the highest degree of compactness.

Phylogenetic Analysis of Clade II Based on Complete *rpoB* Nucleotide Sequence

It is obvious, that 16S rRNA sequences are not sufficient to discriminate representatives of the *B. subtilis* species complex. For example, comparison of the complete 16S rRNA sequences of *B. amyloliquefaciens* DSM7^T and *B. subtilis* 168^T revealed 99.48% identity (**Table 1**), which is well above of the recommended threshold of >98.65% for species delineation (Kim et al., 2014). In order to elucidate more precisely the phylogenetic and taxonomic relationship of the members of the *B. subtilis* species complex belonging to the "operational group *B. amyloliquefaciens*," we used two methods. (i) Tetra correlation search (TCS, Richter et al., 2016) was performed with the complete genome of DSM7^T and (ii) the complete

RNA polymerase beta-subunit (rpoB) gene of DSM7^T was used for BLASTN comparison with the corresponding sequences extracted from complete genomes or genome assemblies. Fifty-Two genomes, which were in range with the intraspecific Tetranucleotide signature correlation index (>0.99) were detected in the JSpecies data bank. The TCS value determined for B. subtilis was only 0.954, suggesting that using this alignmentfree parameter allows discriminating of B. subtilis and B. amyloliquefaciens (Table 1). Complete rpoB gene sequencing has been proposed as phylogenetic marker (Klenk et al., 1994) and as a supplement to DDH (Adékambi et al., 2008). The power and potential of complete rpoB gene sequence in taxonomic, phylogenetic and evolutionary studies has been previously reported (Sharma and Patil, 2011). Our BLASTN search revealed that at least 66 genomes present in the NCBI data bank contain rpoB gene sequences with more than 98% identity to the rpoB gene from DSM7^T, the type strain of B. amyloliquefaciens (Priest et al., 1987). For comparison, the rpoB gene from B. subtilis subsp. subtilis 168^T displayed only 90.3% identity to *B. amyloliquefaciens*. The rpoB gene identities among strains assigned as being B. amyloliquefaciens, B. siamensis, B. amyloliquefaciens subsp. plantarum, B. methylotrophicus, B. velezensis, and B. vanillea are listed in Table 1. The list of strains containing rpoB genes with high similarity to *B. amyloliquefaciens* DSM7^T includes also strains obviously not correctly assigned, such as *B. subtilis, Bacillus* sp., or *Paenibacillus polymyxa*. It is interesting to note that majority of the strains representing the conspecific *B. velezensis/B.methylotrophicus/B.amyloliquefaciens* subsp. *plantarum* group were isolated from plant sources, whilst *B. amyloliquefaciens sensu stricto* seems to be soil-borne. The main source of the salt tolerant *B. siamensis/B.vanillea* group was fermented plant food (**Table 1**).

The phylogenetic tree based on complete rpoB gene sequence suggests existence of three tightly connected monophyletic groups: (i) *B. amyloliquefaciens* containing six strains including type strain DSM7^T; (ii) *B. siamensis* cluster consists of three strains: the type strain KCTC 13613^T, strain XY18, originally assigned as type strain for *B. vanillea* (Chen et al., 2014) but recently reclassified as being *B. siamensis* (Dunlap, 2015), and a strain assigned as being *B. amyloliquefaciens* JJC33M; (3) the conspecific complex comprising *B. velezensis*, *B. methylotrophicus*, and *B. amyloliquefaciens* subsp. *Plantarum* contained 57 strains. The tree is robust displaying high bootstrap values for all three groupings, although the three clusters are closely related and separated by only 0.01–0.02 substitutions per nucleotide position. By contrast, taxonomic distance to *B. subtilis* is around tenfold larger (**Figure 2**).

TABLE 1 | Genomes containing *rpoB* sequences displaying \geq 98% similarity to *B. amyloliquefaciens* DSM7^T.

Strain	Accession	rpoB (%)	TETRA	ANIb	AAI	dDDH %	G+C	16S rRNA	Source
B. amyloliquefacie	ens								
DSM7 ^T	FN597644.1	100	1.000	100	100	100 ± 0.0	46.1	100	Soil, fermentation plant
LL3	CP002634.1	100	0.99929	99.47	99.75	96.4 ± 1.12	45.7	99.87	Fermented food (Korean bibimbap)
TA208	CP002627.1	100	0.99945	99.28	99.65	95.2 ± 1.36	45.8	99.87	Lab stock, overproducing guanosine
ATCC 13952	CP009748.1	100	0.9995	99.26	99.64	95.4 ± 1.32	45.8	99.87	Unknown
XH7	NC_017191.1	100	0.9942	99.31	99.66	95.4 ± 1.33	45.8	99.87	Unknown
CMW1	BBLH01000000	99.50	0.99884	97.79	99.04	84.7 ± 2.56	46.0	n.d	Japanese fermented soybean paste
B. siamensis/B. va	nillea								
XY18 ^T	gb LAGT01000040.1	98.44	0.99702	93.36	97.82	55.0 ± 2.72	46.3	99.78	Cured vanilla beans
JJC33M	JTJG01000000	98.49	0.99678	93.19	97.78	54.3 ± 2.71	45.7	n.d	Salted Thai crab product
KCTC 13613 ^T	GCA_000262045.1	98.30	0.99765	93.27	97.83	54.7 ± 2.71	46.3	99.69	Sugar cane, Papaloapan, Mexico
B. velezensis/B.me	ethylotrophicus/B. amylo	liquefacie	ns subsp. /	olantaru	m				
W2	JOKF01000000	98.50	0.99766	93.45	97.83	55.8 ± 2.73	46.5	99.61	Saffron (Crocus sativus)
GR4-5	JYGH01000000	98.49	0.99754	93.14	97.78	55.0 ± 2.72	46.2	99.48	Korean ginseng rhizosphere
UCMB5033	emb HG328253.1	98.49	0.99774	93.41	97.78	56.3 ± 2.74	46.2	99.68	Cotton rhizosphere
Bs-916	gb CP009611.1	98.49	0.9975	93.38	97.84	56.2 ± 2.74	46.4	99.67	Paddy soil (rice)
JS25R	gb CP009679.1	98.49	0.99782	93.39	97.78	56.1 ± 2.74	46.4	99.74	Spikelets of wheat heads
SPZ1	AQGM00000000	98.49	0.9976	93.24	97.77	55.6 ± 2.73	46.2	99.69	Tributyrin enriched medium
ATCC12321	ARYD01000000	98.49	0.99758	93.22	97.19	55.6 ± 2.73	46.0	99.69	Spoiled starch
Bs006	LJAU01000000	98.49	0.99698	93.20	97.81	55.6 ± 2.73	45.8	n.d.	Banana roots, magdalena, colombia
916	AFSU0000000	98.49	0.99697	93.28	97.81	55.7 ± 2.73	46.4	n.d	Soil antagonist of rhizoctonia
B26	NZ_LGAT0000000	98.49	0.99678	93.47	97.79	55.9 ± 2.74	46.6	n.d	Switchgrass (Panicum virgatum I.)
OB9	LGAU0000000	98.49	0.99628	93.38	97.79	55.6 ± 2.73	46.7	n.d	Crude oil
NAU-B3	emb HG514499.1	98.46	0.99744	93.40	97.21	56.1 ± 2.74	45.9	99.81	Wheat rhizosphere
TrigoCor1448	gb CP007244.1	98.46	0.9976	93.48	97.84	55.7 ± 2.73	46.5	99.67	Wheat rhizosphere
EGD-AQ14	AVQH01000000	98.46	0.99688	93.19	97.84	55.7 ± 2.73	45.7	99.67	Saline desert plant rhizosphere
XK-4-1	LJD10000000	98.46	0.99754	93.38	97.84	55.4 ± 2.73	46.0	n.d	Epiphyte cotton (Gossypium spp.)
629	NZ_LGYP0000000.1	98.46	0.99754	93.33	97.79	55.7 ± 2.73	46.5	n.d	Endophyte theobroma cacao
UNC69MF	JQKM01000000	98.46	0.9966	93.44	97.80	55.8 ± 2.73	46.5	n.d	Not reported
FZB42 ^T	gb CP000560.1	98.44	0.99765	93.36	97.84	56.2 ± 2.74	46.5	99.61	Infected sugar beet
CC178	gb CP006845.1	98.44	0.99764	93.41	97.84	56.1 ± 2.74	46.5	99.61	Cucumber phyllosphere
AP183	JXAM0100000	98.44	0.99725	93.02	n.d.	55.3 ± 2.72	46.4	99.67	Cotton rhizosphere
KHG19	gb CP007242.1	98.44	0.99757	93.44	97.82	56.1 ± 2.74	46.6	99.41	Fermented soybean paste
UCMB5036	emb HF563562.1	98.44	0.99727	93.42	97.83	56.1 ± 2.74	46.6	99.67	Inner tissues of the cotton plant
HB-26	AUWK01000000	98.44	0.99771	93.28	97.80	55.5 ± 2.73	46.4	99.61	Soil from china
AH159-1	JFBZ01000000	98.44	0.99815	93.14	96.68	54.9 ± 2.72	46.4	99.61	Mushroom korea
AS43.3	gb CP003838.1	98.41	0.99777	93.51	97.78	55.9 ± 2.74	46.6	99.67	Surface of a wheat spike
UCMB5113	emb HG328254.1	98.41	0.99732	93.50	97.80	56.4 ± 2.75	46.7	99.61	Soil from karpaty mountains
IT-45	gb CP004065.1	98.41	0.99755	93.42	97.18	55.5 ± 2.73	46.6	99.67	Unknown
UASWS BA1	AWQY01000000	98.41	0.99742	93.49	97.83	55.4 ± 2.73	46.6	99.61	Inner wood tissues of platanus tree
GB03*	AYTJ0000000.1	98.38	0.99715	93.29	97.78	55.0 ± 2.72	46.6	n.d	Phyllosphere,douglas fir, australia
Pc3	gb CP010406.1	98.38	0.99745	93.38	97.79	56.0 ± 2.74	46.5	99.67	Antarctic seawater
11-28	ret NZ_KN723307.1	98.38	0.99692	93.26	97.79	55.5 ± 2.73	46.4	99.76	Soybean roots
G341	gb CP011686.1	98.38	0.99793	93.34	97.78	56.0 ± 2.74	46.5	99.61	Korean ginseng rhizosphere
EBL11	<u>JCOC01000000</u>	98.38	0.99746	93.44	97.84	55.9 ± 2.74	46.4	99.61	Rice rhizosphere
LPL-K103	JXAI0100000	98.38	0.99713	93.37	97.80	55.7 ± 2.73	46.6	99.54	Lemon slices
YJ11-1-4	gb CP011347.1	98.38	0.99766	93.07	97.81	55.5 ± 2.73	46.4	99.67	Korean doenjang soybean paste
AICC 19217	gb CPUU9749.1	98.38	0.99737	93.08	97.84	55.6 ± 2.73	46.4	99.67	Industry (producer guanylic acid)
2000		98.38	0.99774	93.34	97.79	55.4 ± 2.73	46.6	99.67	Cherry tree phyliosphere
5QK9	gpjCP006890.1	98.35	0.99753	93.08	97.78	55.6 ± 2.73	46.1	99.67	Cucumper mizosphere

(Continued)

TABLE 1 | Continued

Strain	Accession	rpoB (%)	TETRA	ANIb	AAI	dDDH %	G+C	16S rRNA	Source
NJN-6	gb CP007165.1	98.35	0.99823	93.11	97.84	55.3 ± 2.72	46.6	99.61	Banana rhizosphere
LFB112	gb CP006952.1	98.35	0.99772	93.25	97.84	55.6 ± 2.73	46.7	99.61	Chinese herbs
JJ-D34	gb CP011346.1	98.35	0.99779	93.27	97.79	55.3 ± 2.73	46.2	99.61	Deonjang, fermented soybean paste
L-S60	gb CP011278.1	98.32	0.99752	93.44	97.84	55.3 ± 2.73	46.7	99.61	Turfy soil in beijing, china
L-H15	gb CP010556.1	98.32	0.99753	93.41	97.84	55.4 ± 2.73	46.7	99.61	Cucumber seedlings
M27	AMPK01000000	98.32	0.99816	93.32	97.79	55.5 ± 2.73	46.6	99.61	Cotton waste compost
B-1	gb CP009684.1	98.30	0.99749	93.37	97.84	55.2 ± 2.72	46.2	99.48	Oil field
Co1-6	emb CVPA01000001	98.30	0.99781	93.34	97.77	55.4 ± 2.73	46.4	99.67	Calendula officinalis rhizosphere
KCTC13012 ^T	LHCC00000000	98.27	0.99752	93.13	97.78	55.5 ± 2.73	46.4	n.d.	Mouth at the river velez, spain
B9601-Y2	emb HE774679.1	98.27	0.99731	93.16	97.79	55.9 ± 2.74	45.9	99.81	Wheat rhizosphere
BH072	gb CP009938.1	98.27	0.99794	93.32	97.78	56.0 ± 2.74	46.4	99.81	Honey sample
CAU B946	emb HE617159.1	98.27	0.99796	93.39	97.80	55.3 ± 2.73	46.5	99.61	Rice rhizosphere
NKYL29	JPYY01000000	98.24	0.99719	93.27	97.79	55.6 ± 2.73	46.3	n.d.	Ranzhuang tunnel, hebei, china
Lx-11	AUNG0000000.1	98.21	0.99691	93.28	97.21	55.0 ± 2.72	46.4	n.d.	Soil jiangsu province, china
KACC 13105 ^T	AQGM0000000.1	98.21	0.99685	93.29	97.75	55.2 ± 2.72	46.4	99.67	Rice rhizosphere
X1	JQNZ01000000	98.21	0.99741	93.27	97.75	55.3 ± 2.73	46.5	99.78	Soil wuhan province, china
B-1895	JMEG01000000	98.21	0.99816	93.33	97.82	55.8 ± 2.73	46.2	99.67	Unknown
DC-12	AMQI01000000	98.16	0.99785	93.60	97.84	56.2 ± 2.74	46.1	99.67	Fermented soya beans
SK19.001	AOFO01000000	98.13	0.99753	93.55	97.85	56.5 ± 2.75	46.2	99.77	Unknown
<i>B. subtilis</i> subsp.	subtilis								
168	emb AL009126.3	90.26	0.95411	76.32	85.43	20.9 ± 2.33	43.5	99.48	Soil:several rounds of mutagenesis

Similarity (% identity) of the rpoB gene nucleotide sequence and of the 16S rRNA to $DSM7^T$ is shown. AAI matrix median values against. $DSM7^T$ and the G+C % content of the genomes are also presented. The Tetra correlation search (TCS) was performed with $DSM7^T$ yielding 66 strains with \geq 0.989 Z-score (boundary for species delineation). Formula 2 was used to estimate genome-to-genome distance comparisons (GGDC2.1) with the $DSM7^T$ genome. Values exceeding species threshold are presented in bold letters. The type strains B. amyloliquefaciens $DSM7^T$, B. siamensis KTCC 13613^T, B. vanillea XY18^T, B. amyloliquefaciens subsp. plantarum FZB42^T, B. methylotrophicus KACC 13105^T, and B. velezensis KTCC 13012^T are underlined. GB03* and FZB42* are strains used for commercial production of biofertilizers and biocontrol agents.

Phylogenomic Analysis of Clade II (Operational Group *B. amyloliquefaciens*)

In order to confirm the phylogenetic analysis based on rpoB sequences we calculated the core genomes using the EDGAR 1.3 program package. A total of 1998 CDSs were shared by the 66 core genome sequences extracted in that analysis. It ruled out that the phylogenomic tree based on complete core genome sequences (Figure 3) did reflect the phylogenomic distances similar as the phylogenetic tree based on rpoB nucleotide sequences (Figure 2). The same robust monophyletic groups as in Figure 2 were obtained. The B. siamensis cluster consisting of three representatives shared a core genome of 3097 CDSs; the B. amyloliquefaciens cluster consisting of six representatives shared a core genome of 3139 CDSs; and the conspecific group containing 57 plant-growth promoting Bacilli including FZB42^T shared a relatively small core genome consisting of only 2295 CDSs, which is mainly due to the high number of genomes included in this analysis. Subgroups of this cluster shared core genomes ranging from 2659 to 3137 CDSs (Figure 3). Again, the NJ tree suggested that B. amyloliquefaciens subsp. Plantarum, B. methylotrophicus, and B. velezensis formed a monophyletic group corroborating recent findings (Dunlap C. A. et al., 2015; Wu et al., 2015; Dunlap C. et al., 2016).

At next we tried to elucidate the taxonomic status of these closely related genomes. Different phylogenetic and phylogenomic methods were used to analyze relationship of all 65 genomes with that of *B. amyloliquefaciens* DSM7^T. As shown above, *rpoB* sequence similarity, exceeding threshold of species delineation, and the intraspecific Tetra-nucleotide signature correlation index (>0.99) suggested that all strains analyzed belong to the species B. amyloliquefaciens. TETRA analysis (Jspecies) demonstrated that the six type strains of clade II were closely related and yielded pairwise Tetra results (tetranucleotide signature correlation index) in species range (≥ 0.989 , Figure 4 lower part). Deviations of the mean G+C content calculated for the whole genomes were less than one percent which does not contradict species definition (Table 2). Grouping of all strains into a single species, B. amyloliquefaciens, was further supported by the AAI values (Table 1). The mean AAI values of the 66 core genomes selected by their *rpoB* similarity to DSM7^T were >96.5%, exceeding the proposed cut-off of 96% for species delineation. However, parameters, considered recently as being most important for genome-based species delineation, such as ANI and dDDH (Federhen et al., 2016), did not support this conclusion (Table 1).

ANI analysis performed with the EDGAR program package discriminated clearly two clusters corresponding to clades I

FIGURE 2 | NJ phylogenetic tree, extracted from 66 complete *rpoB* nucleotide sequences with high similarity to *B. amyloliquefaciens* DSM7^T (>98% identity). *B. subtilis* subsp. *Subtilis* 168^T was used as outgroup. The consensus tree was reconstructed from 1000 trees according to the extended majority rule (SEQBOOT program). Bootstrap values >90%, based on 1000 repetitions, are indicated at branch points. Strain and accession numbers are indicated. Type strains for *B. amyloliquefaciens* (DSM7^T), *B. siamensis* (KCTC13613^T) and *B. vanillea* (XY18^T), and the conspecific group containing FZB42^T as the type strain for *B. amyloliquefaciens* subsp. *Plantarum, B. velezensis* KCTC13012^T, and *B. methylotrophicus* KACC13105^T are in bold. Bar, 0.01 substitutions per nucleotide position. For further characterization of strains and genomes see **Table 1**.

used as outgroup. The number of core genome CDSs is indicated at the nodes. They were calculated for the respective subsets of genomes. Bootstrap value obtained from 200 repetitions are also indicated at the nodes. Type strains (T) are indicated by bold letters. Bar, 0.02 substitutions per nucleotide position.

and II of the B. subtilis species complex (Figure 4). Clade II representing the B. amyloliquefaciens group was divided into three groups consisting of *B. amyloliquefaciens* $DSM7^{T}$ (i), *B.* siamensis and B. vanillea (ii), and the conspecific complex formed by the type strains *B. methylotrophicus* KACC13105^T, B. velezensis KCTC 13102^{T} and B. amyloliquefaciens subsp. plantarum FZB42^T (iii). The latter group displayed ANI values of >98% exceeding the cut-off for species delineation when compared with each other suggesting that the members of the conspecific complex belong to a single species. B. methylotrophicus KACC 13105^T, B. velezensis KCTC 13102^T, and *B. amyloliquefaciens* subsp. *plantarum* FZB42^T displayed similar median ANI values ranging between 94.3 and 94.8% when compared with *B. amyloliquefaciens* $DSM7^{T}$ (1) and *B.* siamensis KCTC-13613^T (2), respectively. Given a calculated deviation of $\pm 2.2-2.3\%$ the ANI matrix values suggests a high degree of relatedness to B. amyloliquefaciens, B. siamensis and the conspecific group formed by *B. amyloliquefaciens* subsp. plantarum, B. methylotrophicus, and B. velezensis, but did not sufficiently support species delineation (Figure 4, upper part).

According to more recent findings the recommended cut-off point for species delineation corresponds to ~96% ANI (Colston et al., 2014). Similar results were obtained when ANIb and ANIm values were determined by using the JSpecies program package for all the 66 genomes included in this analysis. Threshold values sufficient for species delineation were only obtained, when representatives of B. amyloliquefaciens (6 genomes), B. *siamensis* (3 genomes), and of the conspecific group (57 genomes) were compared with their respective type strains. However, comparison of the 57 strains of the conspecific group (e.g., FZB42, B. velezensis) with either B. amyloliquefaciens DSM7^T or B. siamensis KCTC 13613^T yielded ANI values slightly below the cut-off for species delineation. The same was true when the three members of the B. siamensis group were compared with either FZB42^T or DSM7^T (**Table 2**) suggesting that according to ANI analysis the members of clade II represent three discrete, although closely related, species.

In order to finally decide, whether all strains of clade II belong to one species or not, electronic DNA-DNA hybridization (dDDH) was applied in a quantitative analysis involving all

TABLE 2 Summary of phylogenetic (rpoB) and phylogenomic parameters
calculated for <i>B. amyloliquefaciens</i> , <i>B. siamensis</i> and conspecific group
consisting of B. amyloliquefaciens plantarum, B. methylotrophicus and
B. velezensis against corresponding type strains.

Reference/ Query	G+C	rpoB	TETRA	ANIb	AAI	dDDH
	%	(≥97%)	(≥0.989)	(≥96%)	(≥96%)	(≥70%; ≥79%)
B. amylolique	faciens/	DSM7 ^T				
Mean	45.88	99.92	0.9994	99.19	99.63	94.52
Median	45.83	100	0.9994	99.30	99.91	95.40
SD	0.14	0.20	0.0004	0.74	0.22	5.14
n	6	6	6	6	6	6
B. amylolique	faciens/	FZB42 ^T				
Mean	45.88	98.39	0.9980	93.79	96.63	55.90
Median	45.83	98.44	0.9979	93.75	97.43	55.70
SD	0.14	0.11	0.0003	0.11	0.12	0.13
n	6	6	6	6	6	6
B. amylolique	faciens/	KCTC1361	3			
Mean	45.88	98.27	0.9981	93.57	96.54	54.60
Median	45.83	98.27	0.9989	93.57	97.44	54.60
SD	0.14	0.01	0.0013	0.04	0.18	0.16
n	6	6	6	6	6	6
B. siamensis/	DSM7 ^T					
Mean	46.1	98.41	0.9970	93.27	96.48	54.67
Median	46.3	98.44	0.9950	93.27	97.41	54.70
SD	0.341	0.99	0.0013	0.009	0.08	0.35
n	3	3	3	3	3	3
B. siamensis/	FZB42 ^T					
Mean	46.1	98.67	0.9981	93.87	96.79	56.5
Median	46.3	98.65	0.9989	94.01	97.69	56.8
SD	0.341	0.10	0.0013	0.33	0.92	0.58
n	3	3	3	3	3	3
B. siamensis/	KCTC13	613				
Mean	46.1	99.70	0.9991	99.01	99.56	93.40
Median	46.3	99.64	0.9998	98.84	99.89	94.45
SD	0.341	0.27	0.001	0.92	0.39	5,86
n	3	3	3	3	3	3
CONSPECIFIC	C GROU	P B. amylo B. volozon	liquefacien	s plantaru	т,	
Mean	16 30		0.0075	03 32	96 57	55 70
Median	40.39	90.39	0.9975	93.32	90.37	55.60
SD	0.245	0.00	0.0004	0.13	0.24	0.38
n	55	56	57	56	55	39
CONSPECIFIC		P B. amvlo	liquefacien	s plantaru	<i>m</i> .	00
B. methylotro	phicus,	B. velezen	sis/FZB42 ^T	o prantana	,	
Mean	46.39	99.46	0.9991	98.30	99.11	87.10
Median	46.45	99.52	0.9994	98.28	99.49	86.50
SD	0.245	0.24	0.0004	0.575	0.39	4.89
n	55	56	57	56	55	31
CONSPECIFIC	C GROU	P B. amylo	liquefacien	s plantaru	т,	
B. methylotro	phicus,	B. velezen	sis/ KCTC1	3613		
Mean	46.39	98.46	0.9987	94.11	96.97	56.90
Median	46.45	98.50	0.9989	94.12	97.80	56.85
SD	0.245	0.109	0.0013	0.079	0.23	0.15
n	55	57	57	56	55	33

Threshold values for species and, in case of dDDH, subspecies delineation are given in parentheses. SD, standard deviation; n, number of samples. Values indicating one species are presented in green fields. 66 genomes. As shown previously, dDDH is useful to mimic the wet-lab DDH and can be used for genome-based species delineation and genome-based subspecies delineation (Meier-Kolthoff et al., 2013, 2014). For calculating dDDH three different formulas can be applied (see Materials and Methods), but only results obtained with the recommended formula 2 were used in our analysis (**Table 2**). When comparing members of the "*siamensis* group 2" and the "conspecific *B. velezensis* group" with *B. amyloliquefaciens* DSM7^T, dDDH values of <70%, the defined threshold for species delineation, were obtained. All in all, dDDH supports our previous finding about a close relationship within clade II, but did not support their classification into one single species. The results are summarized in **Table 2** and Supplementary Table 1.

Gene Clusters Involved in Nonribosomal Synthesis of Secondary Metabolites

Compared to other members of the B. subtilis species complex, the plant-associated B. amyloliquefaciens possess an enormous potential to synthesize bioactive secondary metabolites. Besides five gene clusters, known from B. subtilis to mediate nonribosomal synthesis of secondary metabolites, four giant gene clusters absent in B. subtilis 168 were identified in FZB42 (Chen et al., 2007). The nine gene clusters that direct the synthesis of bioactive peptides and polyketides by modularly organized mega-enzymes define both nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKS). Three (bmyD, dfn, and mln) are not present in B. subtilis 168, but occur in all members of the "operational group B. amyloliquefaciens." Except for the gene cluster encoding bacilysin synthesis, the functional activities of the remaining gene clusters depend on Sfp, an enzyme that transfers 4'-phosphopantetheine from coenzyme A to the carrier proteins of nascent peptide or polyketide chains. A direct comparison revealed that the nine gene cluster responsible for nonribosomal synthesis of bioactive secondary metabolites including macrolactin are only present in FZB42 and in the other members of the conspecific B. velezensis group, whilst the gene cluster involved in macrolactin synthesis was not detected in *B. siamensis* and *B. amyloliquefaciens* (Table 3). Noteworthy, the gene cluster responsible for synthesis of the polyketide difficidin was present in B. siamensis, but not in any other member of the B. subtilis species complex suggesting a stepwise loss of the ability to synthesize secondary metabolites in the order *B. velezensis* (including FZB42) \rightarrow *B. siamensis* \rightarrow *B.* amyloliquefaciens.

DISCUSSION

The *B. subtilis* species complex consists of a steadily increasing number of validly described species (see Introduction), which display an extremely high degree of similarity. They are very difficult to distinguish by using classical taxonomy parameters: morphological and physiological characteristics, cell wall compositions, 16S rRNA sequence, G+C content, and FAME. Also, experimental determination of DNA-DNA relatedness (DDH), gold-standard of bacterial taxonomy for

Surfaction BG0000193 Germa Accession bp Accession bp Accession bp Accession bp strMA FBAM_L00880 10726 sep168_L02 10746 BAM_EC312 10745 BR020256 10745 sep168_L02 10746 BAM_EC313 1074 BAME_C313 10745 BAME_C313 10745 BAME_C313 10745 BAME_C313 10745 BAME_C315 10745 BAME_C313 111 BS02025 222 AK110_17500 3837 strMA FBAM_L03030 1139 usp168_L030 1238 BAME_C3112 111 FB302255 1533 AK110_03055 16005 strMA FBAM_L018170 16529 sep168_L030 1538 FB40E_1911 1189 FB302255 1533 AK110_03055 16005 strMA FBAM_L018170 16529 sep168_L040 HAME_1912 11086 FB302255 1533 AK110_03055 16005 10775 AK110_03055 16005 10775 AK110_03015 16005 <th>Lipopeptides</th> <th colspan="2">FZB42</th> <th>B. subtilis</th> <th></th> <th>B. amyloliquefa</th> <th>aciens</th> <th>B. siamensis</th> <th colspan="2">B. siamensis</th> <th colspan="2">B. velezensis</th>	Lipopeptides	FZB42		B. subtilis		B. amyloliquefa	aciens	B. siamensis	B. siamensis		B. velezensis	
Genes Accession bp Accession bp Accession bp Accession bp Accession bp strA RBAL_00380 1078 scr116_LCR 1074 MAH_0037 1078 REX02630 1075 recession 1075 REX02630 1075 recession 1075 recession 1075 REX02630 1075 REX02630 1075 REX02630 1075 REX02630 1075 REX02630 1075 REX01071 1076	Surfactin	BGC0000433										
arAA RBAM_000800 10755 sup168_402 10764 BAME_00312 10765 RB38244 10765 srRAS RBAM_000800 10715 spr168_402 3028 BAME_0313 10761 RB38244 10765 srRAS RBAM_000800 739 spr168_402 3282 BAME_0315 739 RAMF_0314 RB38240 10775 729 AK110_17510 1311 Badd RBAM_018100 1539 sup168_1091 1538 BAME_1911 7581 RB302525 1539 AK110_03636 1539 strp0 RBAM_018100 1530 sup168_1991 1538 BAME_1911 7681 RS30261 10373 AK10_03636 1539 strp0 RBAM_018100 1340 sup168_4194 7681 BAME_1914 1242 RS106021 1037 AK10_03636 1920 strp0 RBAM_01820 780 sup168_4194 788 BAME_1917 1261 RS10620 10378 AK10_02675 1263 yrp1 RBAM_01820	Genes	Accession	bp	Accession	bp	Accession	bp	Accession	bp	Accession	bp	
BRAM_003800 10701 sep162_403 10701 BAXE_0313 10701 BR020240 10701 HEAD srMO RBAM_003800 230 sep168_40.6 398.0 BAXE_0315 732 R502620 732 AVID_17500 8131 srMO RBAM_003800 739 sep168_40.6 729 BAXE_0315 732 R502620 732 AVID_17500 8131 Bacillonoyab BSAM_016150 1539 sep168_1061 1539 BAXE_1910 1536 R502525 1539 AVID_03636 1539 htmyG RBAM_018100 1502 sep168_1191 1530 BAXE_1911 1536 R502525 16083 AVID_03636 16092 htmyG RBAM_01810 1203 sep168_1191 768 BAXE_1914 1222 R516956 1203 AVID_03636 1203 htmyG RBAM_01810 1203 sep168_2006 593 BAXE_1917 11949 R502526 1603 AVID_04845 361 regycla RBAM_018410	srfAA	RBAM_003650	10755	ssp168_402	10764	BAMF_0312	10755	RS09245	10755			
GPMC FRAM_003680 8877 seq 168_405 9887 BAME_0014 8814 FRAM_00280 732 ACID_17906 732 tauxt FRAM_003700 1311 seq 168_407 28 MARE_011 1311 RS0225 1311 ACID_17906 732 tauxt FRAM_018160 1533 sup168_1091 1538 BAME_1910 1538 RS0225 1311 ACID_08905 1539 typC RBAM_018160 1602 sup168_1991 1538 BAME_1911 1538 RS0225 16058 ACID_0890 7809 7851 ACID_0890 7809 7801 7801 7802 7807 ACID_0890 780 7801 7	srfAB	RBAM_003660	10761	ssp168_403	10752	BAMF_0313	10761	RS09240	10761			
shD RBAM_008990 722 sep188_407 729 BAMF_0316 732 RS0220 732 ALIO_17505 732 Basilionyabi BCC_0001090	srfAC	RBAM_003680	3837	ssp168_405	3828	BAMF 0314	3814	RS09235	3837	AKJ10_17500	3837	
tpaul RBAM,003700 1311 sep168,407 BAMF_0316 1311 RB0225 1311 AK.I10_17510 1311 Bacillomycinb ESC0001059 <td>srfAD</td> <td>RBAM_003690</td> <td>732</td> <td>ssp168_406</td> <td>729</td> <td>BAMF 0315</td> <td>732</td> <td>RS09230</td> <td>732</td> <td>AKJ10_17505</td> <td>732</td>	srfAD	RBAM_003690	732	ssp168_406	729	BAMF 0315	732	RS09230	732	AKJ10_17505	732	
Bacillonyciol EGCC001020 xyn/C RBAM_0119180 7280 sop168_1991 1539 BAMF_19101 7281 RS05223 1539 AK10_00856 7800 bmyG RBAM_0119180 1909 19092 BAMF_1911 1608 RS05225 1603 AK10_00856 16082 bmyA RBAM_011910 1203 sop168_11914 766 BAMF_1911 1204 RS05240 1033 AK10_00856 11092 bmyA RBAM_011920 786 sop168_2005 303 BAMF_1917 766 RS16685 766 AK10_00866 1203 prope RBAM_011940 432 sop168_2007 303 BAMF_1937 381 RS1655 767 AK10_00466 3360 reno RBAM_011940 1776 sop168_2007 1012 BAMF_1939 7817 RS1650 7674 AK10_00466 4431 reno RBAM_01140 176 sop168_2007 768 BAMF_1939 7817 RS1650 7764 AK10_00163 <t< td=""><td>tpaat</td><td>RBAM_003700</td><td>1311</td><td>ssp168_407</td><td></td><td>BAMF_0316</td><td>1311</td><td>RS09225</td><td>1311</td><td>AKJ10_17510</td><td>1311</td></t<>	tpaat	RBAM_003700	1311	ssp168_407		BAMF_0316	1311	RS09225	1311	AKJ10_17510	1311	
nynD RBAM_0116150 1539 sp168_1150 1539 BAMF_1911 1536 RS05225 1539 AK110_03935 1539 bmyG RBAM_0116100 11549 115002 BAMF_1911 1203 RS05235 10032 AK110_03935 11002 bmyA RBAM_0161100 11949 BAMF_1914 1242 RS16085 7860 1037 AK110_039375 1203 bmyA RBAM_016110 432 ssp168_2005 383 BAMF_1917 786 RS16025 381 AK110_039375 1203 Fengorin BC20001055 ssp168_2005 383 BAMF_1937 381 RS16575 381 AK110_04945 4431 fenD RBAM_01440 10776 ssp168_2007 10812 BAMF_1938 3607 RS16565 10776 AK110_04945 4431 fenA RBAM_01440 7659 ssp168_2010 7666 RS18565 10776 AK110_04915 4395 fenA RBAM_01430 1261 4773 KA	BacillomycinD	BGC0001090										
bmyG REAM_019160 7860 BAMF_1911 7851 RS05230 7867 AK10_00390 7860 bmyA REAM_019170 10402 BAMF_1914 11949 RS05235 10038 AK10_003970 11949 bmyA REAM_019180 1203 AK10_003970 11949 bmyA REAM_019180 1203 AK10_003970 1203 bmyA REAM_019180 1203 Sp168_4194 786 Sp168_5 786 AK10_003970 1203 Fengycin BG20001095 Sp168_2005 393 BAMF_1937 381 RS16570 381 AK10_00495 381 fenE RBAM_01410 422 sp168_2007 10812 BAMF_1937 381 RS1650 4584 AK10_00496 4831 fenC RBAM_01410 10778 sep168_2007 10812 BAMF_1937 381 RS1650 4584 AK10_01940 1476 AK10_0110 1476 AK10_0110 1476 AK10_0110 1774 AK10_0110 1776 </td <td>xynD</td> <td>RBAM_018150</td> <td>1539</td> <td>ssp168_1991</td> <td>1539</td> <td>BAMF_1910</td> <td>1536</td> <td>RS05225</td> <td>1539</td> <td>AKJ10_09355</td> <td>1539</td>	xynD	RBAM_018150	1539	ssp168_1991	1539	BAMF_1910	1536	RS05225	1539	AKJ10_09355	1539	
bmyA RBAM_018170 10082 BAME_1912 10086 RB05230 10033 AKJ10_05857 11039 bmyA RBAM_018180 1203 sp168_4194 786 BAME_1914 1242 RS16860 10137 AKJ10_05876 1203 yrgL RBAM_018200 786 sp168_4194 786 BAMF_1916 786 RS16855 381 AKJ10_05876 1203 yrgL RBAM_018410 452 sp168_2007 303 BAMF_1937 381 RS16875 381 AKJ10_06486 4831 fenE RBAM_018420 1077 sp168_2007 10812 BAMF_1937 381 RS16850 777 AKJ10_06486 4831 fenA RBAM_018420 1076 sp168_2007 10812 BAMF_1938 3807 RS16850 7776 AKJ10_06146 4335 fenA RBAM_01440 7655 sp168_2010 7685 RS16850 1776 AKJ10_19150 1776 AKJ10_19150 1776 AKJ10_06133 1376 AKJ10_0613	bmyC	RBAM_018160	7860			BAMF_1911	7851	RS05230	7857	AKJ10_09360	7860	
bmyA FBAM_018180 114/9 BAMF_1013 119/9 RB6600 1037 AKJ10_08270 119/9 ydF RBAM_0181200 786 sp168_4194 786 BAMF_1016 726 R5166620 1203 AKJ10_08275 1203 Fengycin BGC0001095 F <	bmyB	RBAM_018170	16092			BAMF_1912	16086	RS05235	16083	AKJ10_09365	16092	
bmyD FBAM_0191800 1203 sep168_4194 786 BAMF_1914 1242 FB16800 1203 ArL10_06875 1203 Fengein BG20001095 Sep168_2005 933 BAMF_1918 786 R516855 786 ArL10_06805 1203 yngL RBAM_01420 3804 sep168_2005 933 BAMF_1938 3807 R516570 3804 ArL10_06480 3804 fenD RBAM_014420 1076 sep168_2007 10812 BAMF_1938 3807 R516560 4584 ArL10_06480 4431 fenC RBAM_014407 7659 sep168_2010 7668 R51580 1776 ArL10_06485 4431 fenA RBAM_014400 7659 sep168_2010 7668 R51580 1776 ArL10_06135 2037 fenB RBAM_014400 7630 sep168_2010 7668 RS1680 1476 ArL10_06135 2037 fenB RBAM_014300 2307 RS1680 RS1680 1476	bmyA	RBAM_018180	11949			BAMF_1913	11949	RS05240	10137	AKJ10_09370	11949	
yyF RBAM_018200 786 ssp168_4194 786 BAMF_1916 786 RS16685 786 AKJ10_09380 Fengycin BG20001095 renE RBAM_018410 452 ssp168_2005 383 BAMF_1937 381 RS16575 381 AKJ10_09485 381 renE RBAM_018420 10776 skp168_2007 10812 BAMF_1939 7677 RS16570 3804 AKJ10_09485 4431 fenC RBAM_018400 7669 ssp168_2007 7683 RS16580 4764 AKJ10_19615 1476 dacC RBAM_018470 1476 ssp168_2017 1476 BAMF_1930 1476 RS0800 1476 AKJ10_06145 1476 Macrolactin GO2000181_c1 1476 ssp168_1616 672 BAMF_1532 663 RS0102445 663 AKJ10_06145 2307 minA RBAM_01430 2307 Ssp168_1616 672 BAMF_1532 663	bmyD	RBAM_018190	1203			BAMF_1914	1242	RS16690	1203	AKJ10_09375	1203	
Pengycin BG20001095 vnjL RBAM_018410 432 ssp168_2005 393 BAMF_1937 381 RS16575 381 AKJ10_09485 381 fenE RBAM_018420 10776 ssp168_2007 10812 BAMF_1938 3807 RS166570 381 AKJ10_09485 4341 fenD RBAM_01840 1767 ssp168_2007 7683 RS16650 1776 AKJ10_1950 4343 fenA RBAM_01840 7698 ssp168_2011 1476 BAMF_1940 1476 RS16820 1770 AKJ10_19550 17698 fenA RBAM_01840 7698 ssp168_2011 1476 BAMF_1940 1476 RS0800 147 KJ10_06145 1476 POLYKETDES MacAloga 1476 BAMF_1532 663 RS010245 663 AKJ10_06140 210 minA RBAM_014320 1287 AKJ10_0615 1297 AKJ10_0615 1297 minB RBAM_01430 1287 AKJ10_0615 1297 AKJ1	ухјF	RBAM_018200	786	ssp168_4194	786	BAMF_1916	786	RS16685	786	AKJ10_09380		
NgL RBAM_018410 432 ssp168_2005 383 BAMF_1937 381 RS16675 381 AKJ10_09485 381 fenE RBAM_018420 3804 ssp168_2007 10812 BAMF_1938 3807 RS16670 3804 AKJ10_09490 3804 fenD RBAM_018430 7656 ssp168_2007 7681 BAMF_1939 7677 RS16650 10776 AKJ10_09490 3804 fenA RBAM_018460 7669 ssp168_2009 7683 RS15650 7704 AKJ10_19155 1476 dacC RBAM_018470 1476 ssp168_2010 7686 RS15820 1476 AKJ10_19155 1476 POLYKETIDES Macrolactin BACC000181_c1 4476 RS0800 1476 AKJ10_06145 639 mInA RBAM_01430 2207 AKJ10_06145 639 AKJ10_06145 2307 mInB RBAM_01430 12261 AKJ10_06152 2377 AKJ10_06172 4773 mInC RBAM_014300 7705	Fengycin	BGC0001095										
fenE REAM_018420 3804 ssp186_2007 10812 BAMF_1338 3807 R516670 3804 AKJ10_08400 3804 fenD RBAM_018420 10776 ssp186_2007 10812 BAMF_1939 7677 R516665 10776 AKJ10_08490 7683 fenA RBAM_01840 7669 ssp168_2009 7683 R515850 7704 AKJ10_19590 7698 fenA RBAM_018407 7679 ssp168_2010 7686 R515845 4605 4604 AKJ10_19150 7698 fenA RBAM_018407 1476 ssp168_2011 1476 BAMF_1940 1476 R501602415 663 R50102445 663 AKJ10_0145 639 gacrolactim gGC0000181_c1 168 672 BAMF_1552 663 R50102445 663 AKJ10_06130 12258 mInA RBAM_014300 12251 XAI10_06130 12258 XAI10_06130 12258 mInC RBAM_014300 7733 XAI10_06170	yngL	RBAM_018410	432	ssp168_2005	393	BAMF_1937	381	RS16575	381	AKJ10_09485	381	
fenD RBAM_018430 10776 ssp168_2007 10812 BAMF_1939 7677 R516650 10776 AKJ10_08405 4431 fenC RBAM_018440 7650 ssp168_2008 7688 R516560 4584 AKJ10_18615 4395 fenA RBAM_018400 7659 ssp168_2010 7686 R515865 4605 7764 AKJ10_19155 1476 POLYKETDES Macrolactil BGC0000181_c1 1476 R50800 1476 AKJ10_06145 639 RBAM_014310 639 ssp168_1616 672 BAMF_1532 663 R5010245 663 AKJ10_06145 639 minA RBAM_014300 1261 - - - AKJ10_06115 2007 minA RBAM_014300 1261 - - - AKJ10_00110 1228 minA RBAM_014304 12261 - - - AKJ10_00110 1228 minB RBAM_014300 3773 - - - -	fenE	RBAM_018420	3804	ssp168_2006	3840	BAMF_1938	3807	RS16570	3804	AKJ10_09490	3804	
fenC RBAM_018440 7650 ssp168_2008 7668 RS16560 4584 AKJ10_19615 4395 fenB RBAM_018450 7698 ssp168_2010 7683 RS15850 7704 AKJ10_19590 7698 dacC RBAM_018470 1476 ssp168_2010 7666 RS15845 4605 4604 Macrolactin BGC0000181_c1 V VKVKTIDES Macrolactin BGC000181_c1 C V ykyA RBAM_01430 639 ssp168_1616 672 BAMF_1532 663 RS10245 663 AKJ10_06140 2107 mihA RBAM_01430 1261 AKJ10_0615 2307 mihB RBAM_01430 1261 AKJ10_0615 673 mihC RBAM_01430 773 AKJ10_0615 7705 mihC RBAM_01430 765 AKJ10_0615 7713	fenD	RBAM_018430	10776	ssp168_2007	10812	BAMF_1939	7677	RS16565	10776	AKJ10_09495	4431	
fenB RBAM_018450 7698 ssp168_2009 7683 PS15850 7704 AKJ10_19590 7698 fenA RBAM_018470 7659 ssp168_2010 7666 RS15845 4605<	fenC	RBAM_018440	7650	ssp168_2008	7668			RS16560	4584	AKJ10_19615	4395	
fenA RBAM_018460 7659 ssp168_2010 7686 RS15845 4605 POLYKETIDES Macrolacit BCC000181_c1 1476 BAMF_1940 1476 RS0800 1476 AKJ10_19155 1476 Macrolacit BCC000181_c1 Sp168_1616 672 BAMF_1532 663 RS0102445 663 AKJ10_06145 639 Macrolacit RBAM_014320 168 Sp168_1616 672 BAMF_1532 663 RS0102445 663 AKJ10_06145 639 MIA RBAM_014320 168 Sp168_1616 672 BAMF_1532 663 RS0102445 663 AKJ10_06145 639 MIA RBAM_014320 12261 Sp168_1617 Sp168_1617 Sp168_1617 Sp168_1617 Sp168_1617 Sp168_1617 Sp168_1617 AKJ10_0610 Sp168_170 MIA RBAM_014380 Sp168_1617 1116 BAMF_1733 1116 RS15370 1116 AKJ10_0610 Sp168_170 MIA RBAM_014420 3852 Sp168_1817 <	fenB	RBAM_018450	7698	ssp168_2009	7683			RS15850	7704	AKJ10_19590	7698	
dacC RBAM_018470 1476 ssp168_2011 1476 BAMF_1940 1476 RS0800 1476 AKJ10_19155 1476 POLYKETIDES Macrolactin BGC0000181_c1 Kul10_06145 633 ykyA RBAM_014310 639 ssp168_1616 672 BAMF_1532 663 RS0102445 663 AKJ10_06145 639 mInA RBAM_014330 2307 S AKJ10_06115 2307 mInA RBAM_014330 2307 AKJ10_06112 2307 mInB RBAM_014330 2307 AKJ10_06112 2307 mInC RBAM_014360 8709 AKJ10_06112 2307 mInE RBAM_014360 8709 AKJ10_06110 5712 mInF RBAM_014300 383 AKJ10_0610 3849 mInB RBAM_01480 1725 sp168_1617 1116 <td>fenA</td> <td>RBAM_018460</td> <td>7659</td> <td>ssp168_2010</td> <td>7686</td> <td></td> <td></td> <td>RS15845</td> <td>4605</td> <td></td> <td></td>	fenA	RBAM_018460	7659	ssp168_2010	7686			RS15845	4605			
POLYKETIDES Macrolactin EGC0000181_c1 ykyA RBAM_014310 639 ssp168_1616 672 BAMF_1532 663 RS0102445 663 AKJ10_06145 639 mInA RBAM_014320 168 AKJ10_06130 2207 AKJ10_06130 12258 mInA RBAM_014350 4773 AKJ10_06130 12258 mInC RBAM_014360 6709 AKJ10_06110 5712 mInF RBAM_014380 6712 AKJ10_06110 5712 mInG RBAM_014380 7383 AKJ10_06105 7383 mInH RBAM_0144300 3852 AKJ10_06105 7383 mInH RBAM_014410 1092 AKJ10_06100 3849 MInH RBAM_014420 ssp168_1617 1116 BAMF_1773 1884 RS0101170 1878 AKJ10_06090 1116 Bacillaene EGC0001089_C ssp168_1878 678 BAMF_1779 708 RS0101170 1878 AKJ10_04830 678	dacC	RBAM_018470	1476	ssp168_2011	1476	BAMF_1940	1476	RS08800	1476	AKJ10_19155	1476	
Macrolactin BGC0000181_c1 ykyA RBAM_014310 639 ssp168_1616 672 BAMF_1532 663 RS0102445 663 AKJ10_06145 633 mIAA RBAM_014320 168 -	POLYKETIDES											
ykyA RBAM_014310 639 ssp168_1616 672 BAMF_1532 663 RS0102445 663 AKJ10_06145 639 mInA RBAM_014330 2307 AKJ10_06130 2307 mInB RBAM_014300 12261 AKJ10_06135 2307 mInC RBAM_014300 4773 AKJ10_06120 4773 mInD RBAM_014300 7705 AKJ10_06115 7005 mInF RBAM_014390 7383 AKJ10_06105 7383 mInG RBAM_014390 7383 AKJ10_06105 7383 mInH RBAM_014400 3852 AKJ10_06105 7383 mInH RBAM_014400 ssp168_1617 1116 BAMF_1733 1116 RS101170 1878 AKJ10_06495 1092 pdhA RBAM_016490 678 sp168_1874 1884 BAMF_1777 1884 RS101170	Macrolactin	BGC0000181_c1	-									
RBAM_014320 168 AKJ10_06140 210 mlnA RBAM_014330 2307 AKJ10_06135 2307 mlnB RBAM_014330 2261 AKJ10_06130 12258 mlnC RBAM_014350 4773 AKJ10_06125 4773 mlnD RBAM_014360 8709 AKJ10_06110 5712 mlnE RBAM_014380 5712 AKJ10_06105 7383 mlnH RBAM_014390 7383 AKJ10_06105 7383 mlnL RBAM_014400 3852 AKJ10_06105 7383 mlnH RBAM_014410 1092 AKJ10_06100 3849 mlnH RBAM_014420 ssp168_1617 1116 BAMF_1533 1116 RS15370 1116 AKJ10_06000 1116 Baldenee BGC001089_c Ssp168_1878 678 BAMF_1777 1884 RS0101170 1878 AKJ10_04835 678 baeB RBAM_016900 678 ssp168_1878 678 BAMF_1779 870 RS0101140 76 AKJ10_04835 678 baeC RBAM_016900 676 ssp168_18	ykyA	RBAM_014310	639	ssp168_1616	672	BAMF_1532	663	RS0102445	663	AKJ10_06145	639	
minA RBAM_014330 2307 AKJ10_06135 2307 minB RBAM_014340 12261 AKJ10_06130 12258 minC RBAM_014360 4773 AKJ10_06120 4773 minD RBAM_014360 8709 AKJ10_06120 4773 minE RBAM_014370 7005 AKJ10_06115 7005 minF RBAM_014380 5712 AKJ10_06100 5712 minG RBAM_014400 3852 AKJ10_06100 3849 minH RBAM_014400 3852 AKJ10_06100 3849 minH RBAM_014420 ssp168_1617 1116 BAMF_1533 1116 RS15370 1116 AKJ10_06090 1116 MINL RBAM_014690 1875 ssp168_1874 1884 BAMF_1777 1884 RS0101170 1878 AKJ10_04835 678 Bacillaene BGC0001089_c 1116 SS9168_1874 1884 BAMF_1777 1884 RS0101170 1878 AKJ10_04835 678 baeB RBAM_016900 678 ssp168_1879 678 BAMF_1778 678		RBAM_014320	168							AKJ10_06140	210	
mlnB RBAM_014340 12261 AKJ10_06130 12258 mlnC RBAM_014350 4773 AKJ10_06125 4773 mlnD RBAM_014360 8709 AKJ10_06120 8712 mlnE RBAM_014380 5712 AKJ10_06115 7005 mlnF RBAM_014390 7383 AKJ10_06100 5712 mlnH RBAM_014400 3852 AKJ10_06010 7383 mlnH RBAM_014410 1092 AKJ10_06095 1092 pdhA RBAM_016890 1875 ssp168_1617 1116 BAMF_1533 1116 RS15370 1116 AKJ10_06090 1116 MulL RBAM_016890 1875 ssp168_1874 1884 BAMF_1777 1884 RS0101170 1878 AKJ10_04875 1875 baeB RBAM_016900 678 ssp168_1878 678 BAMF_1778 678 RS0101170 1878 AKJ10_04835 678 baeC RBAM_016900 678 ssp168_1879 867 BAMF_1778 678 RS0101140 975 AKJ10_04835 678 b	mInA	RBAM_014330	2307							AKJ10_06135	2307	
minC RBAM_014350 4773 AKJ10_06125 4773 minD RBAM_014360 8709 AKJ10_06120 8712 minE RBAM_014370 7005 AKJ10_06115 7005 minF RBAM_014390 7383 AKJ10_06105 7383 minG RBAM_014400 3852 AKJ10_06105 7383 minH RBAM_014410 1092 AKJ10_06005 1092 pdhA RBAM_014420 ssp168_1617 1116 BAMF_1533 1116 RS15370 1116 AKJ10_04075 1116 Bacillaene BGC0001089_c ssp168_1874 1884 BAMF_1777 1884 RS0101170 1878 AKJ10_04875 1875 baeB RBAM_016900 678 ssp168_1878 678 BAMF_1778 678 RS0101170 1878 AKJ10_04835 678 baeC RBAM_016900 678 ssp168_1878 678 BAMF_1779 870 RS0101150 678 AKJ10_04830 870 baeD RBAM_016900 678 ssp168_1880 975 BAMF_1780 975 RS0101140	mlnB	RBAM_014340	12261							AKJ10_06130	12258	
minD RBAM_014360 8709 AKJ10_06120 8712 minE RBAM_014370 7005 AKJ10_06115 7005 minF RBAM_014380 5712 AKJ10_06110 5712 minG RBAM_014390 7383 AKJ10_06105 7383 minH RBAM_014400 3852 AKJ10_06100 3849 minI RBAM_014410 1092 AKJ10_06095 1092 pdhA RBAM_014420 ssp168_1617 1116 BAMF_1533 1116 RS15370 1116 AKJ10_04875 1116 Bacillaene BGC0001089_c BGC0001089_c Ssp168_1874 1884 BAMF_1777 1884 RS0101170 1878 AKJ10_04875 1875 baeB RBAM_016890 1875 ssp168_1874 1884 BAMF_1778 678 RS0101170 1878 AKJ10_04875 1875 baeB RBAM_016900 678 ssp168_1879 867 BAMF_1779 870 RS0101140 975 AKJ10_04825 975 baeC RBAM_016900 678 ssp168_1880 975 BAMF_1780 975	mInC	RBAM_014350	4773							AKJ10_06125	4773	
minE RBAM_014370 7005 AKJ10_06115 7005 minF RBAM_014380 5712 AKJ10_06110 5712 minG RBAM_014390 7383 AKJ10_06105 7383 minH RBAM_014400 3852 AKJ10_06100 3849 minI RBAM_014410 1092 AKJ10_06095 1092 pdhA RBAM_014420 ssp168_1617 1116 BAMF_1533 1116 RS15370 1116 AKJ10_06090 1116 Bacillaene EGC0001089_c ssp168_1874 1884 BAMF_1777 1884 RS0101170 1878 AKJ10_04875 1875 baeB RBAM_016900 678 ssp168_1878 678 BAMF_1778 678 RS0101150 678 AKJ10_04835 678 baeC RBAM_016900 870 ssp168_1879 867 BAMF_1779 870 RS0101145 870 AKJ10_04830 870 baeD RBAM_016902 975 ssp168_1880 975 BAMF_1780 975 RS0101140 975 AKJ10_04825 975 baeE RBAM_016930 <td>mInD</td> <td>RBAM_014360</td> <td>8709</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AKJ10_06120</td> <td>8712</td>	mInD	RBAM_014360	8709							AKJ10_06120	8712	
minF RBAM_014380 5712 AKJ10_06110 5712 minG RBAM_014390 7383 AKJ10_06105 7383 minH RBAM_014400 3852 AKJ10_06005 1092 pdhA RBAM_014410 1092 AKJ10_06095 1092 pdhA RBAM_014420 ssp168_1617 1116 BAMF_1533 1116 RS15370 1116 AKJ10_06090 1116 Bacillaene BGC0001089_c	mInE	RBAM_014370	7005							AKJ10_06115	7005	
minG RBAM_014390 7383 AKJ10_06105 7383 minH RBAM_014400 3852 AKJ10_06100 3849 minI RBAM_014410 1092 AKJ10_06095 1092 pdhA RBAM_014420 ssp168_1617 1116 BAMF_1533 1116 RS15370 1116 AKJ10_06090 1116 Bacillaene BGC0001089_c EmutL RBAM_016890 1875 ssp168_1874 1884 BAMF_1777 1884 RS0101170 1878 AKJ10_04875 1875 baeB RBAM_016900 678 ssp168_1874 1884 BAMF_1777 1884 RS0101170 1878 AKJ10_04875 1875 baeB RBAM_016900 678 ssp168_1879 867 BAMF_1778 678 RS0101150 678 AKJ10_04835 678 baeC RBAM_016900 975 ssp168_1879 867 BAMF_1779 870 RS0101145 870 AKJ10_04825 975 baeB RBAM_016920 975 ssp168_1880 975 BAMF_1781 2241 RS0101130 249 AKJ10_04825 975 <td>mInF</td> <td>RBAM_014380</td> <td>5712</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AKJ10_06110</td> <td>5712</td>	mInF	RBAM_014380	5712							AKJ10_06110	5712	
mini H RBAM_014400 3852 AKJ10_06100 3849 mini RBAM_014410 1092 ssp168_1617 1116 BAMF_1533 1116 RS15370 1116 AKJ10_06090 1116 Bacillaene BGC0001089_C Emut RBAM_016890 1875 ssp168_1874 1884 BAMF_1777 1884 RS0101170 1878 AKJ10_04875 1875 baeB RBAM_016900 678 ssp168_1874 1884 BAMF_1777 1884 RS0101170 1878 AKJ10_04875 1875 baeB RBAM_016900 678 ssp168_1874 1884 BAMF_1777 1884 RS0101170 1878 AKJ10_04875 1875 baeC RBAM_016910 870 ssp168_1879 867 BAMF_1779 870 RS0101145 870 AKJ10_04825 975 baeD RBAM_016920 975 ssp168_1881 2304 BAMF_1781 2241 RS0101140 975 AKJ10_04825 975 baeE RBAM_016930 2241 ssp168_1882 249 BAMF_1781 2241 RS0101130 249 AKJ10_04815 249<	mlnG	RBAM_014390	7383							AKJ10_06105	7383	
mini RBAM_014410 1092 AKJ10_06095 1092 pdhA RBAM_014420 ssp168_1617 1116 BAMF_1533 1116 RS15370 1116 AKJ10_06090 1116 Bacillaene BGC0001089_c ssp168_1874 1884 BAMF_1777 1884 RS0101170 1878 AKJ10_04875 1875 baeB RBAM_016890 678 ssp168_1878 678 BAMF_1778 678 RS0101150 678 AKJ10_04835 678 baeC RBAM_016900 678 ssp168_1879 867 BAMF_1779 870 RS0101150 678 AKJ10_04835 678 baeC RBAM_016910 870 ssp168_1880 975 BAMF_1779 870 RS0101145 870 AKJ10_04830 870 baeD RBAM_016930 2241 ssp168_1881 2304 BAMF_1781 2241 RS0101135 2241 AKJ10_04820 2241 baeK RBAM_016940 249 ssp168_1881 2304 BAMF_1781 2241 RS0101130 249 AKJ10_04815 249 baeG RBAM_016940 <t< td=""><td>mInH</td><td>RBAM_014400</td><td>3852</td><td></td><td></td><td></td><td></td><td></td><td></td><td>AKJ10_06100</td><td>3849</td></t<>	mInH	RBAM_014400	3852							AKJ10_06100	3849	
pdhA RBAM_014420 ssp168_1617 1116 BAMF_1533 1116 RS15370 1116 AKJ10_06090 1116 Bacillaene BGC0001089_c ssp168_1874 1884 BAMF_1777 1884 RS0101170 1878 AKJ10_04875 1875 baeB RBAM_016900 678 ssp168_1874 1884 BAMF_1778 678 RS0101150 678 AKJ10_04875 1875 baeC RBAM_016910 870 ssp168_1879 867 BAMF_1779 870 RS0101145 870 AKJ10_04835 678 baeD RBAM_016920 975 ssp168_1880 975 BAMF_1780 975 RS0101145 870 AKJ10_04825 975 baeE RBAM_016930 2241 ssp168_1881 2304 BAMF_1781 2241 RS0101135 2241 AKJ10_04820 2241 acpK RBAM_016940 249 ssp168_1882 249 BAMF_1783 1263 RS0101130 249 AKJ10_04815 249 baeG RBAM_016950 </td <td>mlnl</td> <td>RBAM_014410</td> <td>1092</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AKJ10_06095</td> <td>1092</td>	mlnl	RBAM_014410	1092							AKJ10_06095	1092	
Bacillaene BGC0001089_c mutL RBAM_016890 1875 ssp168_1874 1884 BAMF_1777 1884 RS0101170 1878 AKJ10_04875 1875 baeB RBAM_016900 678 ssp168_1878 678 BAMF_1778 678 RS0101150 678 AKJ10_04835 678 baeC RBAM_016910 870 ssp168_1879 867 BAMF_1779 870 RS0101145 870 AKJ10_04835 678 baeD RBAM_016920 975 ssp168_1880 975 BAMF_1780 975 RS0101140 975 AKJ10_04825 975 baeE RBAM_016930 2241 ssp168_1881 2304 BAMF_1781 2241 RS0101135 2241 AKJ10_04820 2241 acpK RBAM_016940 249 ssp168_1882 249 BAMF_1782 249 RS0101130 249 AKJ10_04815 249 baeG RBAM_016960 1263 ssp168_1885 780 BAMF_1783 1263 RS0101120 774	pdhA	RBAM_014420		ssp168_1617	1116	BAMF_1533	1116	RS15370	1116	AKJ10_06090	1116	
mutLRBAM_0168901875ssp168_18741884BAMF_17771884RS01011701878AKJ10_048751875baeBRBAM_016900678ssp168_1878678BAMF_1778678RS0101150678AKJ10_04835678baeCRBAM_016910870ssp168_1879867BAMF_1779870RS0101145870AKJ10_04830870baeDRBAM_016920975ssp168_1880975BAMF_1780975RS01011352241AKJ10_04825975baeERBAM_0169302241ssp168_18812304BAMF_17812241RS01011352241AKJ10_048202241acpKRBAM_016940249ssp168_1882249BAMF_1782249RS0101130249AKJ10_04815249baeGRBAM_0169501263ssp168_18841263BAMF_17831263RS01011251263AKJ10_048101263baeHRBAM_016960774ssp168_1885780BAMF_1784774RS0101120774AKJ10_04805774baelRBAM_016970750ssp168_1886750BAMF_1785750RS0101115750AKJ10_04800750	Bacillaene	BGC0001089_c										
baeBRBAM_016900678ssp168_1878678BAMF_1778678RS0101150678AKJ10_04835678baeCRBAM_016910870ssp168_1879867BAMF_1779870RS0101145870AKJ10_04830870baeDRBAM_016920975ssp168_1880975BAMF_1780975RS0101140975AKJ10_04820975baeERBAM_0169302241ssp168_18812304BAMF_17812241RS01011352241AKJ10_048202241acpKRBAM_016940249ssp168_1882249BAMF_1782249RS0101130249AKJ10_04815249baeGRBAM_0169501263ssp168_18841263BAMF_17831263RS01011251263AKJ10_048101263baeHRBAM_016960774ssp168_1885780BAMF_1784774RS0101120774AKJ10_04805774baelRBAM_016970750ssp168_1886750BAMF_1785750RS0101115750AKJ10_04805754	mutL	RBAM_016890	1875	ssp168_1874	1884	BAMF_1777	1884	RS0101170	1878	AKJ10_04875	1875	
baeCRBAM_016910870ssp168_1879867BAMF_1779870RS0101145870AKJ10_04830870baeDRBAM_016920975ssp168_1880975BAMF_1780975RS0101140975AKJ10_04825975baeERBAM_0169302241ssp168_18812304BAMF_17812241RS01011352241AKJ10_048202241acpKRBAM_016940249ssp168_1882249BAMF_1782249RS0101130249AKJ10_04815249baeGRBAM_0169501263ssp168_18841263BAMF_17831263RS01011251263AKJ10_048101263baeHRBAM_016960774ssp168_1885780BAMF_1784774RS0101120774AKJ10_04805774baelRBAM_016970750ssp168_1886750BAMF_1785750RS0101115750AKJ10_04800750	baeB	RBAM_016900	678	ssp168_1878	678	BAMF_1778	678	RS0101150	678	AKJ10_04835	678	
baeDRBAM_016920975ssp168_1880975BAMF_1780975RS0101140975AKJ10_04825975baeERBAM_0169302241ssp168_18812304BAMF_17812241RS01011352241AKJ10_048202241acpKRBAM_016940249ssp168_1882249BAMF_1782249RS0101130249AKJ10_04815249baeGRBAM_0169501263ssp168_18841263BAMF_17831263RS01011251263AKJ10_048101263baeHRBAM_016960774ssp168_1885780BAMF_1784774RS0101120774AKJ10_04805774baelRBAM_016970750ssp168_1886750BAMF_1785750RS0101115750AKJ10_04800750	baeC	RBAM_016910	870	ssp168_1879	867	BAMF_1779	870	RS0101145	870	AKJ10_04830	870	
baeERBAM_0169302241ssp168_18812304BAMF_17812241RS01011352241AKJ10_048202241acpKRBAM_016940249ssp168_1882249BAMF_1782249RS0101130249AKJ10_04815249baeGRBAM_0169501263ssp168_18841263BAMF_17831263RS01011251263AKJ10_048101263baeHRBAM_016960774ssp168_1885780BAMF_1784774RS0101120774AKJ10_04805774baelRBAM_016970750ssp168_1886750BAMF_1785750RS0101115750AKJ10_04800750	baeD	RBAM_016920	975	ssp168_1880	975	BAMF_1780	975	RS0101140	975	AKJ10_04825	975	
acpKRBAM_016940249ssp168_1882249BAMF_1782249RS0101130249AKJ10_04815249baeGRBAM_0169501263ssp168_18841263BAMF_17831263RS01011251263AKJ10_048101263baeHRBAM_016960774ssp168_1885780BAMF_1784774RS0101120774AKJ10_04805774baelRBAM_016970750ssp168_1886750BAMF_1785750RS0101115750AKJ10_04800750	baeE	RBAM_016930	2241	ssp168_1881	2304	BAMF_1781	2241	RS0101135	2241	AKJ10_04820	2241	
baeG RBAM_016950 1263 ssp168_1884 1263 BAMF_1783 1263 RS0101125 1263 AKJ10_04810 1263 baeH RBAM_016960 774 ssp168_1885 780 BAMF_1784 774 RS0101120 774 AKJ10_04805 774 bael RBAM_016970 750 ssp168_1886 750 BAMF_1785 750 RS0101115 750 AKJ10_04800 750	acpK	RBAM_016940	249	ssp168_1882	249	BAMF_1782	249	RS0101130	249	AKJ10_04815	249	
baeH RBAM_016960 774 ssp168_1885 780 BAMF_1784 774 RS0101120 774 AKJ10_04805 774 bael RBAM_016970 750 ssp168_1886 750 BAMF_1785 750 RS0101115 750 AKJ10_04800 750	baeG	RBAM_016950	1263	ssp168_1884	1263	BAMF_1783	1263	RS0101125	1263	AKJ10_04810	1263	
bael RBAM_016970 750 ssp168_1886 750 BAMF_1785 750 RS0101115 750 AKJ10_04800 750	baeH	RBAM_016960	774	ssp168_1885	780	BAMF_1784	774	RS0101120	774	AKJ10_04805	774	
	bael	RBAM_016970	750	ssp168_1886	750	BAMF_1785	750	RS0101115	750	AKJ10_04800	750	

TABLE 3 | Gene clusters encoding nonribosomal synthesis of lipopeptides and polyketides in type strains of *B. subtilis*, *B. amyloliquefaciens*, *B. siamensis*, and *B. velezensis*.

(Continued)

Lipopeptides	FZB42		B. subtilis		B. amyloliquefaciens		B. siamensis		B. velezensis	
baeR	RBAM_017020	7449	ssp168_1891	7632	BAMF_1790	7446	RS0101090	7455	AKJ10_04775	7458
baeS	RBAM_017030	1212	ssp168_1892	1218	BAMF_1791	1212	RS0101085	1212	AKJ10_04770	1212
baeJ	RBAM_016980	14949	ssp168_1887	15132	BAMF_1786	14952	RS0101110	14931	AKJ10_04795	14946
baeL	RBAM_016990	13428	ssp168_1888	13617	BAMF_1787	13431	RS0101105	13392	AKJ10_04790	13413
baeM	RBAM_017000	10536	ssp168_1889	12789	BAMF_1788	10542	RS0101100	10506	AKJ10_04785	10536
baeN	RBAM_017010	16302	ssp168_1890	16467	BAMF_1789	16314	RS0101095	16293	AKJ10_04780	16305
Difficidin	BGC0000176_c1									
prol	RBAM_021930	840	ssp168_2591	837	BAMF_2277	843	RS0119580	843	AKJ10_01435	840
dfnM	RBAM_021940	747					RS0119585	747	AKJ10_01440	747
dfnL	RBAM_021950	1248					RS0119590	1248	AKJ10_01445	1248
dfnK	RBAM_021960	1155					RS0119595	1155	AKJ10_01450	1155
dfnJ	RBAM_021970	6216					RS0119600	6216	AKJ10_01455	6216
dfnl	RBAM_021980	6153					RS0119605	6156	AKJ10_01460	6156
dfnH	RBAM_021990	7719					RS0119610	7719	AKJ10_01465	7719
dfnG	RBAM_022000	15615					RS0119725	8904	AKJ10_01470	15615
dfnF	RBAM_022010	5727					RS0119720	5727	AKJ10_01475	5727
dfnE	RBAM_022020	6297					RS0119715	6285	AKJ10_01480	6297
dfnD	RBAM_022030	12591					RS0119615	15654	AKJ10_01485	9252
dfnC	RBAM_022040	738					RS0119620	738	AKJ10_01490	738
dfnB	RBAM_022050	1332					RS0119625	1371	AKJ10_01495	1365
dfnX	RBAM_022060	273					RS0119630	273	AKJ10_01500	273
dfnY	RBAM_022070	981					RS0119635	981	AKJ10_01505	981
dfnA	RBAM_022080	2259					RS0119640	2259	AKJ10_01510	2259

TABLE 3 | Continued

The genes occurring in plant-growth-promoting FZB42 were used for reference. The MIBiG specifications (Medema et al., 2015) of the FZB42 gene clusters involved in synthesis of secondary metabolites are indicated.

50 years, yields often erroneous and variable results (Auch et al., 2010). Therefore, the taxonomic status of these species constantly brings confusion to researchers, especially for non-professional taxonomy researchers. Our analysis using the available core genomes of 23 type strains suggests that within the *B. subtilis* species complex four clades can be distinguished: clade I consisting of *B. subtilis* including its three subspecies *subtilis*, *spizenii*, and *inaquosorum*, *B. tequilensis*, *B. vallismortis*, *B. mojavensis*, and *B. atrophaeus*, clade II consisting of *B. siamensis*, *B. amyloliquefaciens*, and a conspecific complex consisting of *B. methylotrophicus*, *B. velezensis*, and *B. amyloliquefaciens* subsp. plantarum, clade III consisting of *B. licheniformis* and related species, and clade IV consisting of *B. pumilus* and related species (Figure 1).

We have chosen here clade II comprising *B. amyloliquefaciens* and related species for a deeper analysis. Due to the high number of available genomic sequences, we applied a quantitative phylogenomic approach including 66 genomes with a high degree of similarity to DSM7^T, the type strain of *B. amyloliquefaciens*. In accordance to Dunlap C. A. et al. (2015) we could demonstrate existence of three distinct monophyletic groups within this clade. Six core genomes represented the species *B. amyloliquefaciens* and three strains were assigned as being *B. siamensis*. The results

of our extensive phylogenomic analysis (Table 2) corroborates the monophyletic nature of the conspecific group consisting of B. amyloliquefaciens subsp. plantarum, B. methylotrophicus, and B. velezensis, suggesting that this unique taxon is closely related to B. amyloliquefaciens (Borriss et al., 2011). B. velezensis is a heterotypic synonym of B. methylotrophicus, B. amyloliquefaciens subsp. plantarum, and Bacillus oryzicola, and is used to control plant fungal diseases. This idea is further supported by a recent phylogenetic and phylogenomic analysis in which B. amyloliquefaciens, B. siamensis, and B. amyloliquefaciens subsp. plantarum were established as closely related monophyletic groups harboring a common ancestor based on their gyrB and core genome (729,383 bp) sequences (Hossain et al., 2015). The conspecific group consisting of *B. amyloliquefaciens* subsp. plantarum, B. methylotrophicus, and B. velezensis was recently classified as being B. velezensis (Dunlap C. et al., 2016), because the valid publication of B. velezensis (Ruiz-García et al., 2005a) predates the publication of B. methylotrophicus (Madhaiyan et al., 2010) and B. amyloliquefaciens subsp. plantarum (Borriss et al., 2011). The tight relatedness of *B. siamensis* and *B. velezensis* with *B. amyloliquefaciens* is indicated by:

 highly conserved *rpoB* nucleotide sequence with more than 98% identity to DSM7^T;

- (ii) Mean G+C % content is only 0.5% different ranging between 45.9% (subsp. *amyloliquefaciens*), 46.1% (subsp. *siamensis*), and 46.4% (subsp. *plantarum*);
- (iii) Tetranucleotide signatures, TETRA, were determined as above the cut-off for species delineation (>0.989);
- (iv) AAI values are well above 96%, representing the intraspecific threshold.

On the other hand, ANIb and ANIm were calculated as around 93 to 94% identity to *B. amyloliquefaciens* on the nucleotide level, which is slightly lower than the threshold proposed for species delineation (95-96% ANI, Kim et al., 2014). Moreover, electronic DDH calculation using formula 2 yielded only 56% identity, which is clearly below the cut-off for species delineation. In spite of these contradictory results, we have to conclude that three discrete species exist within clade II, given that results obtained by ANI and dDDH are more important in modern taxonomy (Auch et al., 2010; Meier-Kolthoff et al., 2013) and outcompete the other results favoring a B. amyloliquefaciens subspecies concept. However, due to the close relationship of all three species comprised in clade II we propose an "operational group B. amyloliquefaciens" comprising B. amyloliquefaciens, B. siamensis, and B. velezensis. The introduction of this "operational group" above species level should improve hierarchical classification within the B. subtilis species complex. The members of the "operational group *B. amyloliquefaciens* are distinguished from B. subtilis and its closest relatives by their ability to synthesize nonribosomally antifungal acting lipopopeptides of the iturin group, mostly bacillomycin D or iturin A. The ecotype of plant-associated B. amyloliquefaciens is well introduced since many years (Reva et al., 2004) and includes the most important biocontrol- and plant-growth-promoting Bacilli, which are successfully used as environmental-friendly means in agriculture (Borriss, 2011). In addition, numerous studies have been published in recent years in order to identify and to understand the specific features of the group of B. amyloliquefaciens strains able to colonize plant organs and to withstand strong plant response reactions. As in B. subtilis it is now widely recognized that a relevant part of metabolism of plant-associated B. amyloliquefaciens is devoted to metabolic interactions with plants (Belda et al., 2013). Metabolites produced by the plantassociated B. amyloliquefaciens FZB42 and other members of the conspecific B. velezensis group represent a substantial part of the diversity of nonribosomal secondary metabolites from the genus Bacillus. For example, they produce three types of polyene polyketides (difficidin, macrolactin, and bacillaene) with strong antibiotic action (Chen et al., 2007). By contrast, B. siamensis does only produce two (difficidin and bacillaene) and soil-borne B. amyloliquefaciens does only produce one polyketide (bacillaene). It is highly desirable to apply a correct taxonomic designation

REFERENCES

Adékambi, T., Shinnick, T. M., Raoult, D., and Drancourt, M. (2008). Complete rpoB gene sequencing as a suitable supplement to DNA-DNA hybridization for bacterial species and genus delineation. *Int. J. Syst. Evol. Microbiol.* 58, 1807–1814. doi: 10.1099/ijs.0.65440-0 to distinguish the plant-associated (= *B. velezensis*) and the soilborne *B. amyloliquefaciens*" (= *B. amyloliquefaciens*) strains, but also to take into consideration their high degree of relatedness. This should be reflected by their grouping into the "operational *B. amyloliquefaciens* group," as a novel taxonomic unit above species level but below the "*B. subtilis* species complex." Introduction of the novel taxonomic unit seems also be recommended in spite of a permanent misuse in describing taxonomy important *Bacillus* biocontrol strains such as GB03 (Choi et al., 2014) and QST713 (Kinsella et al., 2009), which are often designated as *B. subtilis* although they are true representatives of *B. velezensis* and simultaneously members of the "operational group *B. amyloliquefaciens.*"

In summary, due to their differences in ANI and dDDH values, which are slightly below species level thresholds, we propose that *B. amyloliquefaciens*, *B. velezensis*, and *B. siamensis* should keep their status as species of its own, as proposed by Dunlap (Dunlap C. et al., 2016). The close relatedness of the three species is well reflected by the novel taxonomic unit "operational group *B. amyloliquefaciens.*" Introducing of this novel taxonomic unit should improve also understanding of previous and recent scientific investigations performed with "plant-associated *B. amyloliquefaciens*" strains which often have not been designated correctly.

Another less surprising finding from our analysis was that many of the publically available *Bacillus* genomes that we analyzed are inconsistently assigned. Fortunately, a recent initiative has been started to correct such mistakes in Genbank entries (Federhen et al., 2016).

AUTHOR CONTRIBUTIONS

BF, JB, HK, and RB performed phylogenomic analyses. All authors were involved in preparing the manuscript. The final version of the manuscript was prepared by RB.

FUNDING

The financial support for BF by the National Natural Science Foundation of China (No. 31100081), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, and Natural Science Foundation of Jiangsu Province (No. BK20151514) is gratefully acknowledged.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb. 2017.00022/full#supplementary-material

Auch, A. F., Jan, M., von Klenk, H. P., and Göker, M. (2010). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. *Stand. Genomic Sci.* 2, 117–134. doi: 10.4056/sigs.531120

Belda, E., Sekowska, A., Le Fevre, F., Morgat, A., Mornico, D., Ouzunis, C., et al. (2013). An updated metabolic view of the *Bacillus subtilis* 168 genome. *Microbiology* 159, 757–770. doi: 10.1099/mic.0.064691-0

- Blom, J., Kreis, J., Spänig, S., Juhre, T., Bertelli, C., Ernst, C., et al. (2016). EDGAR 2.0: an enhanced software platform for comparative gene content analyses. *Nucleic Acids Res.* 44, W22–W28. doi: 10.1093/nar/gkw255
- Borriss, R. (2011). "Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents," in *Bacteria in Agrobiology: Plant Growth Response*, ed D. K. Maheshwari (Heidelberg: Springer), 41–76.
- Borriss, R., Chen, X. H., Rueckert, C., Blom, J., Becker, A., Baumgarth, B., et al. (2011). Relationship of *Bacillus amyloliquefaciens* clades associated with strains DSM 7T and FZB42T: a proposal for *Bacillus amyloliquefaciens* subsp. *amyloliquefaciens* subsp. nov. and *Bacillus amyloliquefaciens* subsp. *plantarum* subsp. nov. based on complete genome sequence comparisons. *Int. J. Syst. Evol. Microbiol.* 61, 1786–1801. doi: 10.1099/ijs.0.023267-0
- Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., et al. (2007). Comparative analysis of the complete genome sequence of the plant growth promoting bacterium *Bacillus amyloliquefaciens* FZB42. *Nat. Biotechnol.* 25, 1007–1014. doi: 10.1038/nbt1325
- Chen, Y., Gu, F., Li, J., Xu, F., He, S., and Fang, Y. (2014). Bacillus vanillea sp. nov., isolated from the cured vanilla bean. Curr. Microbiol. 70, 235–239. doi: 10.1007/s00284-014-0707-4
- Choi, S. K., Jeong, H., Kloepper, J. W., and Ryu, C. M. (2014). Genome Sequence of *Bacillus amyloliquefaciens* GB03, an active ingredient of the first commercial biological control product. *Genome Announc*. 2:e01092-14. doi: 10.1128/genomeA.01092-14
- Chung, E. J., Hossain, M. T., Khan, A., Kim, K. H., Jeon, C. O., and Chung, Y. R. (2015). *Bacillus oryzicola* sp. nov., an endophytic bacterium isolated from the roots of rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in rice. *Plant Pathol. J.* 31, 152–164. doi: 10.5423/PPJ.OA.12.2014.0136
- Cohn, F. (1872). Untersuchungen über Bakterien. *Beitr. Biol. Pflanz.* 1, 127–224 (in German).
- Colston, S. M., Fullmer, M., Beka, L., Lamy, B., Gogarten, J. P., and Graf, J. (2014). Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using *Aeromonas* as a test case. *mBio* 5, e02136–e02114. doi: 10.1128/mBio.02136-14
- Dunlap, C. A. (2015). Phylogenomic analysis shows that 'Bacillus vanillea' is a later heterotypic synonym of Bacillus siamensis. Int. J. Syst. Evol. Microbiol. 65, 3507–3510. doi: 10.1099/ijsem.0.000444
- Dunlap, C. A., Kim, S. J., Kwon, S. W., and Rooney, A. P. (2015). Phylogenomic analysis shows that *Bacillus amyloliquefaciens* subsp. plantarum is a later heterotypic synonym of *Bacillus methylotrophicus*. Int. J. Syst. Evol. Microbiol. 65, 2104–2109. doi: 10.1099/ijs.0.000226
- Dunlap, C. A., Saunders, L. P., Schisler, D. A., Leathers, T. D., Naeem, N., Cohan, F. M., et al. (2016). *Bacillus nakam*urai sp. nov., a black pigment producing strain. *Int. J. Syst. Evol. Microbiol.* 66, 2987–2991. doi: 10.1099/ijsem.0. 001135
- Dunlap, C., Kim, S. J., Kwon, S. W., and Rooney, A. (2016). Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens, Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol. 66, 1212–1217. doi: 10.1099/ijsem.0.000858
- Dunlap, C., Kwon, S. W., Rooney, A., and Kim, S. J. (2015). Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste. Int. J. Syst. Evol. Microbiol. 65, 3487–3492. doi: 10.1099/ijsem.0.000441
- Federhen, S. (2015). Type material in the NCBI taxonomy database. *Nucleic Acids Res.* 43, D1086–D1098. doi: 10.1093/nar/gku1127
- Federhen, S., Rossello-Mora, R., Klenk, H. P., et al. (2016). Meeting report: Genbank microbial genomic taxonomy workshop (12–13 May, 2015). Stand. Genomic Sci. 11:15. doi: 10.1186/s40793-016-0134-1
- Felsenstein, J. (1989). PHYLIP: phylogeny interference package. *Cladistics* 5, 154–166.
- Fritze, D. (2004). Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria. *Phytopathology* 94, 1245–1248. doi: 10.1094/PHYTO.2004.94.11.1245
- Gatson, J. W., Benz, B. F., Chandrasekaran, C., Satomi, M., Venkateswaran, K., and Hart, M. E. (2006). *Bacillus tequilensis* sp. nov., isolated from 2000-yearold Mexican shaft-tomb, is closely related to *Bacillus subtilis*. *Int. J. Syst. Evol. Microbiol.* 56, 1475–1484. doi: 10.1099/ijs.0.63946-0

- Gordon, R. E., Haynes, W. C., and Pang, C. H.-N. (1973). *The Genus Bacillus*. Washington, DC: United States Department of Agriculture.
- Hossain, M. J., Ran, C., Liu, K., Ryu, C. M., Rasmussen-Ivey, C. R., Williams, M. A., et al. (2015). Deciphering the conserved genetic loci implicated in plant disease control through comparative genomics of *Bacillus amyloliquefaciens* subsp. plantarum strains. *Front. Plant Sci.* 6:631. doi: 10.3389/fpls.2015.00631
- Idriss, E. E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., Bochow, H., et al. (2002). Extracellular phytase activity of *Bacillus amyloliquefaciens* FZB45 contributes to its plant-growth-promoting effect. *Microbiology* 148, 2097–2109. doi: 10.1099/00221287-148-7-2097
- Kim, M., Oh, H. S., Park, S. C., and Chun, J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. *Int. J. Syst. Evol. Microbiol.* 64, 346–351. doi: 10.1099/ijs.0.059774-0
- Kim, S. J., Dunlap, C. A., Kwon, S. W., and Rooney, A. P. (2015). Bacillus glycinifermentans sp. nov., isolated from fermented soybean paste. Int. J. Syst. Evol. Microbiol. 65, 3586–9350. doi: 10.1099/ijsem.0.000462
- Kinsella, K., Schulthess, C. P., Morris, T. F., and Stuart, J. D. (2009). Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. *Soil Biol. Biochem.* 41, 374–379. doi: 10.1016/j.soilbio.2008.11.019
- Klenk, H. P., Palm, P., and Zillig, W. (1994). DNA dependent RNA polymerases as phylogenetic marker molecules. *Syst. Appl. Microbiol.* 16, 638–647. doi: 10.1016/S0723-2020(11)80335-8
- Konstantinidis, K. T., and Tiedje, J. M. (2005). Towards a genomebased taxonomy for prokaryotes. J. Bacteriol. 2005, 6258–6264. doi: 10.1128/JB.187.18.6258-6264.2005
- Lai, Q., Liu, Y., and Shao, Z. (2014). Bacillus xiamenensis sp. nov., isolated from intestinal tract contents of a flathead mullet (Mugil cephalus). Antonie Van Leeuwenhoek 105, 99–107. doi: 10.1007/s10482-013-0057-4
- Liu, B., Liu, G. H., Cetin, S., Schumann, P., Pan, Z. Z., and Chen, Q. Q. (2016). Bacillus gobiensis sp. nov., isolated from a soil sample collected from Xinjiang of China. Int. J. Syst. Evol. Microbiol. 66, 379–384. doi: 10.1099/ijsem.0.000729
- Madhaiyan, M., Poonguzhali, S., Kwon, S.-W., and Sa, T.-M. (2010). Bacillus methylotrophicus sp. nov., a methanol utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. Int. J. Syst. Evol. Microbiol. 60, 2490–2495. doi: 10.1099/ijs.0.015487-0
- Medema, M. H., Kottmann, R., Yilmaz, P., Cummings, M., Biggins, J. B., Blin, K., et al. (2015). The minimum information about a biosynthetic gene cluster (MIBiG) specification. *Nat. Chem. Biol.* 11, 625–631. doi: 10.1038/nchembio.1890
- Meier-Kolthoff, J. P., Auch, A. F., Klenk, H.-P., and Göker, M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. *BMC Bioinformatics* 14:60. doi: 10.1186/1471-2105-14-60
- Meier-Kolthoff, J. P., Hahnke, R. L., Petersen, J., Scheuner, C., Michael, V., Fiebig, A., et al. (2014). Complete genome sequence of DSM 300837, the type strain (U5/41T) of *Escherichia coli*, and a proposal for delineating subspecies in microbial taxonomy. *Stand. Genomic Sci.* 10:2. doi: 10.1186/1944-3277-9-2
- Nakamura, L. K. (1989). Taxonomic relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. Int. J. Syst. Bacteriol. 39, 295–300. doi: 10.1099/00207713-39-3-295
- Nakamura, L. K., Roberts, M. S., and Cohan, F. M. (1999).Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. Int. J. Syst. Bact. 49, 1211–1215. doi: 10.1099/00207713-49-3-1211
- Palmisano, M. M., Nakamura, L. K., Duncan, K. E., Istock, C. A., and Cohan, F. M. (2001). *Bacillus sonorensis* sp. nov., a close relative of *B. licheniformis*, isolated from soil in the Sonoran Desert, Arizona. *Int. J. Syst. Evol. Microbiol.* 51, 1671–1679. doi: 10.1099/00207713-51-5-1671
- Priest, F. G., Goodfellow, M., Shute, L. A., and Berkeley, W. (1987). Bacillus amyloliquefaciens sp. nov., nom. rev. Int. J. Syst. Bact. 37, 69–71. doi: 10.1099/00207713-37-1-69
- Reva, O. N., Dixelius, C., Meijer, J., and Priest, F. G. (2004). Taxonomic characterization and plant colonizing abilities of some bacteria related to *Bacillus amyloliquefaciens* and *Bacillus subtilis. FEMS Microbiol. Ecol.* 48, 249–259. doi: 10.1016/j.femsec.2004.02.003
- Richter, M., and Rosselló-Móra, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. *Proc. Natl. Acad. Sci. U.S.A.* 106, 19126–19131. doi: 10.1073/pnas.0906412106

- Richter, M., Rosselló-Móra, R., Glöckner, F. O., and Peplies, J. (2016). JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. *Bioinformatics* 32, 929–931. doi: 10.1093/bioinformatics/btv681
- Roberts, M. S., Nakamura, L. K., and Cohan, F. M. (1994). Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int. J. Syst. Bacteriol. 44, 256–264. doi: 10.1099/00207713-44-2-256
- Roberts, M. S., Nakamura, L. K., and Cohan, F. M. (1996). Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis, isolated from soil in death valley, California. Int. J. Syst. Bacteriol. 46, 470–475. doi: 10.1099/00207713-46-2-470
- Rooney, A. P., Price, N. P., Ehrhardt, C., Swezey, J. L., and Bannan, J. D. (2009). Phylogeny and molecular taxonomy of the *Bacillus subtilis* species complex and description of *Bacillus subtilis* subsp. *inaquosorum* subsp. nov. *Int. J. Syst. Evol. Microbiol.* 59, 2420–2436. doi: 10.1099/ijs.0.009126-0
- Ruiz-García, C., Béjar, V., Martinez-Checa, F., Llamas, I., and Quesada, E. (2005a). Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain. Int. J. Syst. Evol. Microbiol. 55, 191–195. doi: 10.1099/ijs.0.63310-0
- Ruiz-García, C., Quesada, E., Martínez-Checa, F., Llamas, I., Urdaci, M. C., and Béjar, V. (2005b). *Bacillus axarquiensis* sp. nov. and *Bacillus malacitensis* sp. nov., isolated from river-mouth sediments in southern Spain. *Int. J. Syst. Evol. Microbiol.* 55, 1279–1285. doi: 10.1099/ijs.0.63567-0
- Satomi, M., La Duc, M. T., and Venkateswaran, K. (2006). Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int. J. Syst. Evol. Microbiol. 56, 1735–1740. doi: 10.1099/ijs.0.64189-0
- Sharma, V., and Patil, P. B. (2011). Resolving the phylogenetic and taxonomic relationship of Xanthomonas and Stenotrophomonas strains using complete rpoB gene sequence. *PLoS Curr.* 3:RRN1239. doi: 10.1371/currents. RRN1239

- Shivaji, S., Chaturvedi, P., Suresh, K., Reddy, G. S., Dutt, C. B., Wainwright, M., et al. (2006). Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int. J. Syst. Evol. Microbiol. 56, 1465–1473. doi: 10.1099/ijs.0.64029-0
- Skerman, V. B. D., McGowan, V., and Sneath, P. H. A. (eds.). (1980). Approved lists of bacterial names. *Int. J. Syst. Bacteriol.* 30, 225–420. doi: 10.1099/00207713-30-1-225
- Sumpavapol, P., Tongyonk, L., Tanasupawat, S., Chokesajjawatee, N., Luxananil, P., and Visessanguan, W. (2010). *Bacillus siamensis* sp. nov., isolated from salted crab (poo-khem) in Thailand. *Int. J. Syst. Evol. Microbiol.* 60, 2364–2370. doi: 10.1099/ijs.0.018879-0
- Teeling, H., Meyerdierks, A., Baurer, M., Amman, R., and Glockner, F. O. (2004). Application of tetranucleotide frequencies for the assignment of genomic fragments. *Environ. Microbiol.* 2004, 938–947. doi:10.1111/j.1462-2920.2004.00624.x
- Wu, L., Wu, H. J., Qiao, J., Gao, X., and Borriss, R. (2015). Novel routes for improving biocontrol activity of Bacillus based bioinoculants. *Front. Microbiol.* 6:1395. doi: 10.3389/fmicb.2015.01395

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Fan, Blom, Klenk and Borriss. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.