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A new multiple orientation event-based neurobiological recognition system is proposed

by integrating recognition and tracking function in this paper, which is used for

asynchronous address-event representation (AER) image sensors. The characteristic of

this system has been enriched to recognize the objects in multiple orientations with

only training samples moving in a single orientation. The system extracts multi-scale

and multi-orientation line features inspired by models of the primate visual cortex. An

orientation detector based onmodified Gaussian blob tracking algorithm is introduced for

object tracking and orientation detection. The orientation detector and feature extraction

block work in simultaneous mode, without any increase in categorization time. An

addresses lookup table (addresses LUT) is also presented to adjust the feature maps

by addresses mapping and reordering, and they are categorized in the trained spiking

neural network. This recognition system is evaluated with the MNIST dataset which

have played important roles in the development of computer vision, and the accuracy is

increased owing to the use of both ON and OFF events. AER data acquired by a dynamic

vision senses (DVS) are also tested on the system, such as moving digits, pokers,

and vehicles. The experimental results show that the proposed system can realize

event-based multi-orientation recognition. The work presented in this paper makes a

number of contributions to the event-based vision processing system for multi-orientation

object recognition. It develops a new tracking-recognition architecture to feedforward

categorization system and an address reorder approach to classify multi-orientation

objects using event-based data. It provides a new way to recognize multiple orientation

objects with only samples in single orientation.

Keywords: address-event representation (AER), visual tracking, dynamic vision senses (DVS), MNIST, spiking

neural network (SNN), multi-orientation object recognition

INTRODUCTION

Visual object recognition is useful in many applications, such as vehicle recognition, face
recognition, digit recognition, posture recognition, and fingerprint recognition. Most object
recognition techniques depend on capturing and processing sequences of still frames, which
limits algorithmic efficiency when dealing with fast-moving objects. If precise object recognition
is required, sequences of computationally demanding operations need to be performed on each
acquired frame. The computational power and speed of such tasks make it difficult to achieve
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real-time autonomous systems (Triesch andMalsburg, 2001; Han
and Feng-Gang, 2005). On the other hand, vision sensing and
object recognition in brains are performed without using the
“frame” concept, but a continuous flow of visual information
in the form of temporal spikes instead. Thus, less information
is required to identify objects, which improves recognition
efficiency. Recent years have witnessed accelerative efforts in
biomimetic visual sensory system for object recognition and
tracking.

Biomimetic visual sensory system based on address-event
representation (AER) was proposed by Mead’s Lab at California
Institute of Technology (Mahowald and Mead, 1991). The AER
vision sensor is a novel type of vision devices like biological
retinas adopting event-based information encoding and data
communication. Notable examples of such biomimetic vision
sensors include the earliest examples of the spiking silicon
retina (Culurciello et al., 2003; Zaghloul and Boahen, 2004),
the more recent Dynamic Vision Sensor (DVS; Lichtsteiner
et al., 2008; Serrano-Gotarredona and Linares-Barranco, 2013),
asynchronous time-based image sensor (ATIS; Posch et al., 2008,
2011), and the DAVIS sensor (Brandli et al., 2014). AnAER vision
sensor contains a pixel array, where each pixel can individually
monitor the relative change of light intensity and output an
event if the change exceeds a user-defined threshold. Events
are asynchronously encoded in x, y coordinates resembling the
precisely timed electrical impulses or spikes of the spatially
arranged optical nerves stemming from the retina to the primary
visual cortex (Serre et al., 2007). An asynchronous row and
column arbitration tree circuits can process the pixel requests
and arrange the output sequence in a fairly random manner
when multiple pixels request to output events at the same time
(Boahen, 2000; Aung Myat Thu et al., 2011). Only one request is
granted at a time. Because only relative change events are output,
biomimetic vision sensors have the advantage of asynchronous,
high temporal resolution, and sparse representation of the scene.

With the emergence of these asynchronous vision sensors,
many studies focusing on event processing were reported.
Hence, many models and variants such as the Neocognitron
(Fukushima, 1980), convolutional neural network (CNN; Lecun
et al., 1998), and Hierarchical model and X (HMAX; Riesenhuber
and Poggio, 1999) are introduced to extract features in a variety
of object recognition tasks. In 2008, Event-driven convolution
chips for neuromorphic spike-based cortical processing have
been designed for feature extraction using programmable kernels
(Serrano-Gotarredona et al., 2008). In addition, the convolution
chips were combined with other AER processing blocks, such
as neural networks, to build larger biomimetic visual sensory
system for classification (Serrano-Gotarredona et al., 2009;
Perezcarrasco et al., 2013). In recent years, the network in the
biomimetic visual sensory system for classification has been
improved. An algorithm for the size and position invariant
categorization of objects, especially for human postures has been
exploited in real-time video sequences from the address-event
temporal-difference image sensors (Chen et al., 2012). Two years
later, an event-driven feedforward categorization system has been
proposed, where a “tempotron” classifier is adopted and amotion
symbol detection module is added to capture motion symbols

(Zhao et al., 2015). A hierarchical spiking neural network model
called HFirst has been developed for object recognition (Orchard
et al., 2015b). Besides, a biologically-inspired Gabor feature
approach based on spiking neural networks with Leaky-Integrate
and Fire neurons has been presented (Tsitiridis et al., 2015). A
Synaptic Kernel Inverse Method (SKIM) based on principles of
dendritic computation is applied to N-MNIST dataset (Orchard
et al., 2015a) to perform a large-scale classification task (Cohen
et al., 2016).

Despite the success of these methods, it is still challenging to
fully exploit the advantage of AER. The majority of these event-
based categorization systems can only recognize the objects
moving in a specified orientation which limits their application
for classification. If the target object moves in free angles, these
systems may fail in identification. In order to recognize the
identical objects moving in different orientations, a large amount
of multi-orientation samples should be introduced into the
existing event-based categorization systems as training samples,
which increases the sample acquisition time and the training time
significantly. Therefore, we develop a new system architecture
introducing a tracking mechanism into the visual sensory system
in this paper to solve this problem. In fact, several tracking
algorithms have been developed for AER visual sensor. An
event clustering algorithm is introduced for traffic monitoring,
where clusters can change in size, but the shape of clusters is
restricted to a circular form (Litzenberger et al., 2006a,b). In
addition, a fast sensory motor system using a cluster tracker
algorithm has been built to demonstrate dynamic vision sensor’s
high temporal resolution properties in Delbrück and Lichtsteiner
(2007). Several event-based tracking algorithms can also be found
at (Delbrück, 2006). They have been recently applied to track
particles in microrobotics (Ni et al., 2012) and in fluid mechanics
(Drazen et al., 2011). Recently, an asynchronous event-based
multiple kernels algorithm for tracking is presented and it
features high stability and feasibility (Lagorce et al., 2015).

In this paper, a multiple orientation event-based recognition
system is presented based on a modified Gaussian blob tracking
algorithm (Lagorce et al., 2015) and the event-driven feedforward
categorization system (Zhao et al., 2015). In this system, the
ON and OFF events, two different polarity events, transmitted
by the AER vision sensor are separately treated to enhance
the difference of each extract feature type, which can improve
the efficiency of target recognition compared to existing event-
based categorization systems. Only regular samples with single
orientation are adopted for training. In the test process,
an orientation detector is introduced to judge the moving
orientation of the target object, and its extracted feature maps are
adjusted according to its orientation and addresses LUT before
feeding to the classifier. These operations enrich the system
function recognizing objects moving in different orientation
along its positive direction, with training samples only in one
orientation.

The rest of this paper is structured as follows. The next section
describes the system architecture overview as well as its building
blocks. The experimental results are reported in Section Results.
The main application fields, advantages and limitations of this
system are discussed in Section Discussion.
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MATERIALS AND METHODS

In the present event-based object recognition systems, a
biomimetic frame-free vision sensor named DVS is used to
acquire image data, and then the data is transmitted into bio-
inspired feature extraction module. In the bio-inspired feature
extractor, each event is sent in parallel to a battery of orientation
filters based on the Gabor functions, and convolution operation
is performed on the fly. After that, a maximum (MAX) operation
(Zhao and Chen, 2011) is applied to select the maximal response
within its receptive field. A spiking neural network (SNN;
Wulfram and Werner, 2002) is used as a classifier receiving all
the peak responses with time and address information to train the
weights of each address, and then all the weights are stored into
a weights lookup table (weights LUT). In the process of testing,
SNN invokes them for pattern recognition.

In the proposed system, an orientation detector is introduced.
The architecture is illustrated in Figure 1. It consists of three
modules, namely a bio-inspired feature extractor, an orientation
detector, and a classifier. The bio-inspired feature extractor is
used to extract the orientation and scale features. The orientation
detector aims to find the orientation of the moving target. The
classifier, as the name implies, determines the classification of
each detected object.

The workflow of the new proposed system is the same as the
present system mentioned above in the process of training. In
the testing process, AER data is transmitted into bio-inspired
feature extraction module and orientation detection module

simultaneously. Each event successively accesses to the modified
Gaussian blob tracker to calculate the center positions of ON
and OFF events, and then the orientation of motion is estimated.
Moreover, the orientation detector adjusts addresses of the peak
responses generated by bio-inspired feature extraction module
according to the orientation. Spiking neural network receives all
the peak responses with new addresses for pattern recognition.

Features Extraction
The bio-inspired feature extraction block as the foremost part is
a hierarchical architecture inspired by a recent model of object
categorization in the primate visual cortex (Serre et al., 2007).
To simplify the calculation and ensure the precision, architecture
with two layers is adopted to extract line feature information
from the input data. The hierarchical architecture of multiple
feature extraction can be divided into three parts that are event-
driven convolution, forgetting mechanism, and MAX operation.
The overall data flow can be summarized as follows: each input
event acquired by DVS is fed into a group of simple filters named
“S1,” where the event-driven convolution (Chen et al., 2004;
Serre, 2006) and forgetting mechanism (Zhao and Chen, 2011)
are accomplished in this layer. Then the results in “S1” access
to the second layer “C1” (Complex Cells) for maximum (MAX)
operation. Thus, the peak responses are extracted after “C1.” The
detailed operation is described as follows.

Once an event accesses “S1” layer, each convolution kernel
will be added to the corresponding address of its feature map
in parallel. In this paper, convolution kernels are generated by

FIGURE 1 | Architecture of the proposed system.
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Gabor function, since multiple Gabor feature maps can achieve
selectivity in space, spatial frequency, and orientation (Serre
et al., 2007). Sixteen convolution kernels are used to construct a
network with four scales (s= 3, 5, 7, 9) and four orientations (θ =
0◦, 45◦, 90◦, and 135◦) for feature extraction. The four of them are
shown in Figure 2. In order to eliminate the interference between
two polarities of events, ON events and OFF events should be
handled separately, which means that there are 32 feature maps
actually. In the meantime, to mitigate the impact of very old
motion events on current responses, a forgetting mechanism is
used to update event’s responses periodically by decay operation.
The old event’s responses are (decreased or increased) rely on a
linear function connected with time interval. When the previous
value of a point is positive, the value decreases with one decay
operation; and when the previous value is negative, it increases
with one decay operation. In summary, the decay operation
gradually lessens the absolute value of a point. Finally, if the time
interval is long enough, the responses will approach zero. After all
the events flow into “S1” layer, all the neurons in multiple feature
maps send their responses to “C1” layer.

In the next layer referred as “C1” layer, each complex cell
receives the responses from the corresponding feature map
in “S1” layer. Only minority neurons can survive in “C1,”
because the MAX operation picks out the neighboring maximum
responses where the scale of neighborhood is the same as the
size of convolution kernel. The MAX operation benefits to find
out the center of feature and makes further efforts to filter out
the redundancy. At the same time, Threshold comparison works
together to avoid the dispensable background noise events in
the process of event collection and feature extraction. Only if
it is superior to the threshold, the peak response can survive.

FIGURE 2 | Convolution kernel in different scales and orientations.

After the MAX operation and threshold comparison operation,
all survived peak responses from ON and OFF events are
superposed together according to the corresponding maps, and
then they are transmitted to the next block.

Object Categorization
In order to tackle the responses from multiple feature extraction
for categorization, we adopt a hierarchical Spiking Neural
Network (SNN; Wulfram and Werner, 2002). SNN falls into
the third generation of neural network model, increasing the
level of realism in a neural simulation. In addition to neuronal
and synaptic state, it also incorporates the concept of time into
its operating model. Hence, not only the location (address)
of event flow can be communicated within the network, but
also the generated time is correctly modeled by the digital
communication to reflect the spatio-temporal behavior.

In this paper, a simple leaky integrate-and-fire (LIF)
neuron (Wulfram and Werner, 2002) combining spike-Timing-
dependent plasticity (STDP) rule (Markram et al., 1997) is
selected as the neuronmodel. All the responses from “C1” feature
maps need a response-to-spike conversion which is in time-to-
first spike (TFS) mode. And then, the spikes achieve a virtually
fully connected system associated with an address. Each input
spike contributes a postsynaptic potential (PSP) with fast-rising
and slow-decaying to a tempotron neuron via its corresponding
address (Zhao et al., 2015). With respect to an input spike
received at time ti, the normalized PSP kernel K is defined as:

K(t − ti) = V0 ×
[

exp

(

−(t − ti)

τm

)

− exp

(

−(t − ti)

τs

)]

, (1)

where τm and τ s indicate the two decay time constants of
membrane integration and synaptic currents, respectively, and τ s

is set to be τm/4. The membrane time constant τm is set as 0.1.
V0 normalizes PSP, so that the maximum value of the kernel is set
as 1. In addition, the tempotron neuron’s membrane potential is
the weighted summation of the PSPs from all the input spikes:

V(t) =
∑

i

ωi

∑

ti

K(t − ti)+ Vrest. (2)

In equation (2), ωi and ti are the synaptic efficacy (weight) and
the firing time of the ith afferent synapse, respectively. Vrest

is the resting potential of the neuron. As the input of PSPs
increases, the membrane potential of tempotron neuron rises.
When the tempotron neuron’s membrane potential exceeds a
specified threshold, it will fire and trigger the release of further
neurotransmitter such as an output spike. After firing, the
tempotron neuron shunts all the following input spikes and the
potential gradually returns to the resting level. In the training
stage, the weights LUT is initialized with random weights,
and all the weights will be revised by the tempotron learning
rule, as illustrated in Figure 3. According to the known type
of classification, the sequence numbers of fire neuron can be
acquired. Each tempotron neuron in different categorization has
a set of weights and eachweight is initialized with a random value.
If the tempotron neuron is supposed to fire (or not fire, on the

Frontiers in Neuroscience | www.frontiersin.org 4 November 2016 | Volume 10 | Article 498

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Wang et al. Event-Based Multi-Orientation Recognition

FIGURE 3 | The procedure of weights modification.

other hand) but it actually fails to do so (or does fire, vice versa),
the judgment mechanism will send out a signal to modify the
weights. Finally, the optimized weights of address are stored in
weights LUT ready for the use of the testing process.

In fact, thanks to the spatio-temporal AER spikes and the
MAX operation, only very few neurons survive after competition.
Moreover, to reduce computational complexity and improve
power efficiency, only a very small subset of “C1” responses (less
than 100) are selected as the inputs. These responses can fully
represent all the features in different featuremaps. This work uses
the one-hot coding scheme to label the tempotron neurons. If
sample belongs to the first class, then the first tempotron neuron
output is labeled 1 (which means it should fire), and all the other
neuron outputs are labeled 0 (not fire). This encoding is a simple
method to obtain the classification result by checking which
neuron fires. In addition, to further improve the performance,
multiple neurons are used for each category (Yu et al., 2013). The
number of tempotron neurons for each category is set as 10. We
then use the majority voting scheme to make the final decision:
to check which category has the most firing neurons.

Center Tracking and Orientation Detection
The above-mentioned architectures of feature extraction
and classification are inspired by a complete event-driven
feedforward categorization system (Zhao et al., 2015). However,
this architecture is not useful when the detected object moves in
multiple orientations. In this paper, an orientation detector is
introduced to enable biomimetic event-based recognition system
to recognize the same object moving in different orientations
along its forward direction. In the training process, the working
flow is exactly the same with the previous one. All the training
samples are moving along the reference positive orientation,
which is defined as the reverse direction of the x axis. In the
testing process, the orientation detector works parallelly with
the feature extractor. It estimates the centers of ON and OFF

events using a modified algorithm based on Gaussian blob
tracking (Lagorce et al., 2015). The method of Gaussian blob
tracking allows adaptation to the spatial distribution of events
by continuously correcting the Gaussian size, orientation, and
location with each incoming event, so it is easy to track clouds
of events by using bivariate normal distribution. Thus, the
orientation of the moving target can be calculated according
to the center of ON and OFF events as shown in Figure 4.
Moreover, the orientation detection classifies the orientation into
8 classes. Once all the events flow into the orientation detector, a
digital label representing the orientation category is transmitted
to a prepared addresses lookup table (addresses LUT) as shown
in Figure 1.

The main assumption for the evaluation of the event flow is
the invariance of light intensity undergoing a small motion over
infinitesimally short duration. When an object moves, the pixels
generate events which geometrically form an events cloud that
represents the spatial distribution of the observed shape. There
are two trackers to detect the clouds of ON and OFF events,
respectively. Note that if all the events no matter ON or OFF are
tracked together in one tracker, the detected result is the center of
the object.

We treat the spatial distribution of events cloud as a bivariate
normal distribution which is also called bivariate Gaussian
distribution (Valeiras et al., 2015). The probability density
function generated by the Gaussian distribution around the
tracker can be calculated with the incoming events. If the
computed result is superior to a predefined threshold, which
indicates the position of the current event is close to the tracker,
the parameters of tracker should be corrected using a simple
weighting strategy that combines the last distribution and the
current event information. Therefore, the position and size of a
Gaussian tracker are updated.

After all the corrections by the incoming events, we can obtain
the detected object’s position p = (x, y)T and the orientation
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FIGURE 4 | The procedure of center tracking and orientation detection. The events first flow into the center tracking unit to calculate the centers of ON and

OFF events and obtain the angle An. And then the orientation classifier categorizes the angle An into the nearest class m. m represents the number of categories

which is from 1 to 8.

of motion. The orientation of motion is the vector between the
center of OFF events and ON events ( −−−→p−p+ or −−→p+p− ), where
the subscripts (“+” and “−”) represent ON and OFF events.
The use of −−→p−p+ or −−−→p+p− depends on the light intensity of
the object and the background, which should be determined by
combining with the deviation between these two events center.
Then the deviation angle An indicating the motion orientation
off the reference positive orientation clockwise can be defined as
follows:

An =















180
π
arccos

(

−1x√
(1x)2+(1y)2

)

1y ≥ 0

360− 180
π
arccos

(

−1x√
(1x)2+(1y)2

)

1y < 0
(3)

The results of the arcsine are always less than 90◦, thus the real
deviation angle An should be judged combining with1x and1y,
which are the deviation between these two events center on the x
and y direction, respectively.

In order to recognize objects moving in multiple orientations,
the feature maps of testing samples need to be rotated back to 0◦

after feature extraction. To simplify the operation, 45◦ is chosen
as a step. The orientation detector divides all angels into 8 classes
(0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦). If the angle belongs to
a certain class within ±22.5◦, it will be classified into the class of
nearest angle. The detailed classification principle is summarized
in Figure 5. After angel classification, the orientation detector
sends the category label to the addresses LUT.

The aim of addresses LUT is finding out the corresponding
relations of addresses between classified image and un-
rotated image by rotation operation, and restoring the address
information to the un-rotated image as much as possible. The
mapped addresses of 8 classes are stored in the addresses
LUT. These addresses are generated by the rotation matrix and
the nearest neighbor interpolation, with which the relationship
of position transformation can be figured out. The center
of the input image is set as the origin of coordinates and
the rotation angle is one of the 8 classified angles. As
the maps in “C1” layer are rotated, the order of these
maps has to be adjusted to make sure the orientation

FIGURE 5 | The principle of orientation classification.

TABLE 1 | Orientation correspondence.

Class No. Angle range 0◦ 45◦ 90◦ 135◦

1 −22.5◦ ∼ 22.5◦ 0◦ 45◦ 90◦ 135◦

2 22.5◦ ∼ 67.5◦ 45◦ 90◦ 135◦ 0◦

3 67.5◦ ∼ 112.5◦ 90◦ 135◦ 0◦ 45◦

4 112.5◦ ∼ 157.5◦ 135◦ 0◦ 45◦ 90◦

5 157.5◦ ∼ 202.5◦ 0◦ 45◦ 90◦ 135◦

6 202.5◦ ∼ 247.5◦ 45◦ 90◦ 135◦ 0◦

7 247.5◦ ∼ 292.5◦ 90◦ 135◦ 0◦ 45◦

8 292.5◦ ∼ 337.5◦ 135◦ 0◦ 45◦ 90◦

features match the corresponding features of training samples.
The correspondence for each orientation feature is shown
in Table 1. After the address transformation, the response
spikes are conveyed to the neural network block. The neural
network is trained in advance with samples in only reference
orientation. With the operations described above, the features
of the object moving in certain orientation are converted
as that in reference orientation. Thus, the classifier can
recognize it.
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RESULTS

On MNIST Image Dataset
Input Generation
The multiple orientation event-based recognition system was

implemented in MATLAB. In order to investigate the system
performance, it is tested against a standard handwritten digit

dataset from the Mixed National Institute of Standards and

Technology (MNIST; Lecun et al., 1998) containing 10 digits
(0–9) illustrated at the top of Figure 6. Note that the digits’ order

has been disrupted to ensure the randomness of input samples.

To simulate the moving state of objects, we use a differencing
method to form a new image just as shown in the center of

Figure 6. In the differencing method, each column minuses

another column with a certain interval. In this experiment, the
interval is set as three. For example, the gray value of the first

column is the difference between the fourth column and the
first column. After the gray values of all columns are altered, a

new image has been formed. In the meantime, the new image is

converted to events via two encoding methods, in which the gray
values map to one event or multiple events, respectively.

The first encoding method compares each pixel with a
threshold, and labels it with a positive (ON) or negative (OFF)
polarity according to the comparison result. Thus, each pixel only
generates one event. In fact, due to the difference of the light
intensity change in each pixel, the number of events generated
by different pixels may vary. In the second method, each pixel
is assigned a number of events between 0 and 16 depending on
its gray level, which means that 16 events correspond pixel gray
value of 255. The events generated by two encoding methods are
restored to images in Figure 7.

The original size of a sample image is 28 × 28. Due to
the influence of rotation, the 28 × 28 image is enlarged to be
a 40 × 40 image when it is rotated 45◦ which leads to the
greatest difference in image size among all rotations. To keep all
the images with identical size, all of the images are transferred
from 28 × 28 to 40 × 40 by only adding 0 at four sides as
background. The MNIST dataset possesses 70,000 pictures. In
this experiment, 60,000 pictures were randomly selected as the
training set and the rest 10,000 pictures are used as the testing
set. The threshold operation in “C1” layer is set as 0.1 through
repeated experiments. The membrane time constant τm and the

FIGURE 6 | Training samples and three groups of rotated samples. The original images adopt a standard handwritten digit dataset from the Mixed National

Institute of Standards and Technology (MNIST). The collected images simulate the moving state of objects by a differencing method. The remaining three groups of

images are obtained by rotating the collected images in specific angle.
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FIGURE 7 | Restored picture in different encoding methods. (A) Original image. (B) One pixel one event encoding. (C) One pixel multiple event encoding.

leakage rate in the event-driven convolution is set as 1/τm = 5×
104 s−1. The max epoch of training is set as 10.

Results of MNIST Dataset Moving in Specified

Orientation
In the training and testing experiment without rotation, the
event-based recognition system with the first encoding method
(one pixel one event) achieves an accuracy of 99.10% for the
training set and 92.88% for the testing set. With the second
encoding method (one pixel multiple events), the accuracy is
99.41% for the training set and 93.78% for the testing set. All the
results are summarized in Table 2. As more events are generated
for the moving object, the second encoding method possesses
higher accuracy. The performance of the proposed system is
compared with an original feedforward categorization system
(Zhao et al., 2015). The difference between two systems is the use
of the polarity information of events. The original feedforward
categorization system presented by Zhao only deals with one
polarity events which generate the silhouette of detected objects
when reconstruct frames. In this paper, there are two polarities of
events to describe the motion of objects. Compared with Zhao’s
method, the performance of the proposed system is similar or
even better.

Results of MNIST Dataset Moving in Multiple

Orientations
For further estimating the performance of the proposed system,
three groups of rotated sample have been introduced for testing.
In the first group, the 60,000 training samples and 10,000 testing
samples are rotated in 4 standard orientations (90◦, 180◦, 270◦,
and 360◦) and using a rotation matrix with the nearest neighbor
interpolation in MATLAB as the new testing samples. Each
sample is randomly rotated only once with one of the four
degrees. In addition, the sample size remains 40× 40 to keep the
input of scale invariance. The second group of images are rotated
in another 4 standard orientations (45◦, 135◦, 225◦, 315◦), and
the third group of images are rotated randomly from 0 to 360◦

with a step of 5◦, which is totally 72 orientations. Figure 6 shows
some samples of data in three groups.

All these experiments are performed on a server with Intel
Xeon X5670 and 64 GB physical RAM. In the first encoding
method (one pixel one event), feature extraction time and

TABLE 2 | Accuracy of single orientation object recognition.

Algorithms This work Zhao’s

Encoding 1–1 1–16 1–1

training 99.10% 99.41% 99.36%

testing 92.88% 93.78% 91.29%

orientation detection time are about 0.26 s and 0.042 s with
170 events. In the second encoding method, they are 2.5 s and
0.35 s with 1676 events. The time of orientation detection is
always lower than feature extraction time, which indicates that
orientation detection can be completed before feature extraction
while running in parallel. Therefore, the parallel architecture
that orientation detector works synchronously with the feature
extractor, can be realized without any delay in the classification.

All the accuracies of recognition and orientation detection
are listed in Table 3. The results show that the accuracy of
orientation detection in the first two groups is over 99% or
even achieves 100%, but the accuracy of the last group is
only more than 90 and 95% in different encoding method,
respectively. The reduction of recognition ratio is because some
angles are difficult to define when they lie in between two
adjacent angle classes. In terms of classification, The Group
I has high accuracy and is almost the same as the accuracy
of un-rotated samples. However, it is obvious that the Group
II and the Group III have lower accuracy ranging from 67.98
to 70.54%. Although Group II has a low accuracy, the basic
classification function can be realized. The Group III imitates
free angle pattern, and the accuracy is between Group I and
Group III. Similar with the un-rotated experiment, the second
encoding method (one pixel multiple events) has higher accuracy
than the first encoding method (one pixel one event) in all
rotated angles. Figure 8 illustrates the confusion matrices of
all the digits in different processing methods. The confusion
matrices show the classification distribution. The values in the
tables are the corresponding probability that the actual digit
(column-wise) is identified as the digits as represented row-
wise. From the results, the digits with simple shape “0,” “1,” “2,”
and “7” can attain good accuracy, whereas the more complex
digits like “8” and “9” exhibit lower accuracy. For example, “9”
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TABLE 3 | Accuracy of multiple orientation object recognition.

Class No. Group I Group II Group III

(90◦, 180◦, 270◦, 360◦) (45◦, 135◦, 225◦, 315◦) (72 orientations)

Encoding 1–1 1–16 1–1 1–16 1–1 1–16

(A) ACCURACY OF ORIENTATION

Training 99.96% 100% 99.58% 99.95% 90.47% 95.20%

Testing 99.95% 100% 99.44% 99.90% 90.70% 95.31%

(B) ACCURACY OF CLASSIFICATION

Training 97.81% 99.19% 68.21% 70.35% 68.95% 70.54%

Testing 92.71% 93.68% 67.98% 69.75% 68.37% 69.92%

FIGURE 8 | The confusion matrices of different samples. The resulting confusion matrices from training samples with (A) one pixel one event encoding and (B)

one pixel multiple events encoding. The resulting confusion matrix from testing samples with (C) one pixel one event encoding and (D) one pixel multiple events

encoding. All results show higher accuracy for simple digits (such as 0, 1, 2, and 7) and lower accuracy for difficult digits (such as 8 and 9).

is mostly misclassified as “4” and “7,” since they have similar
features.

Results of MNIST Dataset Collected by DVS
The MNIST dataset is also collected using a dynamic vision
sensor whose input space is 128 × 128 pixels (Lichtsteiner
et al., 2008). The data acquisition method draws lessons from
the MNIST-DVS (Serrano-Gotarredona and Linares-Barranco,
2015b) that an LCD monitor displays moving digits. The testing
digits are the original MNIST digit 28× 28 pixel pictures moving
at constant speed from the right edge of the monitor to the
left (about 2 s). The monitor’s frame frequency is set to 75 Hz,
which is the maximum possible value to reduce artifacts. The
distance from DVS to monitor is fixed to capture digits in 40
× 40 which is the same as the training samples. The captured
events are converted into a video at 30 fps by jAERViewer

software (Delbrück, 2006), and it is displayed on another LCD.
The experiment setup and procedure were shown in Figure 9A.
The digits moving in multiple orientations are acquired as testing
samples which are shown in Figure 9B. The event flow of
one sample is illustrated in Figure 9C. All the testing samples
in Figure 9B could be recognized in this system trained with
MNIST samples only moving in the single referencev orientation.

On Poker-DVS Dataset
The poker dataset provided by Serrano-Gotarredona and
Linares-Barranco (2015a) consists of 4 card types (spades, hearts,
diamonds, and clubs), and it is captured by a DVS. The poker
dataset is made by fast browsing of a poker deck with all the pips
in black. The training samples are prepared by intercepting about
1200 events in a 40 × 40 array for each pattern. The moving
direction of poker dataset is along the positive direction of the
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FIGURE 9 | Experiment setup of capturing the moving MNIST dataset by DVS. (A) A DVS records the moving digit on an LCD monitor. (B) Example of different

moving MNIST digits captured with DVS. (C) The procedure of the restoration from the collected events to a snapshot.

y axis. Then the addresses of poker dataset were altered to rotate
the initial positive orientation to the reverse direction of the x
axis as that of the MNIST dataset. Samples of the four types were
rotated from 0◦ to 360◦ with a step of 5◦ as the testing samples.
There are 864 testing samples in total, and each pip has 3 samples
in each orientation. The images in the first row of Figure 10 are
restored from the training samples, and the rest images are made
from testing samples.

In the experiments, 864 testing samples were tested several
times with the system trained with 100–800 samples. This
system classified card pips with an accuracy of 59.95% with 100
training samples. When the number of training samples reached
800, the accuracy of recognition rose to 66.09%. Furthermore,
another experiment was done with additional 200 samples,
whose orientations are less than ±20◦. With the better trained
system, the accuracy of recognition approached to 76.39%. All
these results are summarized in Table 4. The results suggest
that using samples with slightly varied orientations can improve
performance in term of recognition accuracy.

On Vehicle-DVS Dataset
This system is suitable for traffic surveillance application, yet
it is too heavy to extract a large amount of formatted vehicle
samples. Therefore, only the Gaussian tracker’s accuracy for
position and orientation are evaluated. A dynamic vision sensor

with 128 × 128 pixels is used to capture the vehicle moving in
different orientations. As an example, AER data with 2894 events
during the time interval about 39,956 ns are transmitted into
the orientation detector of this system. A comparison between
a real time picture captured by a frame-driven camera and a
snapshot mapped by AER events can be found in Figure 11. The
centers of ON and OFF events are figured out by the orientation
detector are marked with crosses in red and blue, respectively,
in Figure 11B. Furthermore, the result of moving orientation is
presented as an arrow in the snapshots and deviation angle is
184.6◦, which is very close to the deviation angle 182.1◦ measured
from the real time picture. This error may not completely come
from the orientation detector, but the position difference of the
two cameras may also contribute to errors. Although the noises
are introduced in the acquired AER data from the DVS, the
orientation detection still has good performance in orientation
detection.

DISCUSSION

This paper presents a multiple orientation event-based
recognition system used for asynchronous AER vision sensors.
In the system, a hierarchical architecture of bio-inspired
feature extraction block extracts multiple orientations and
scales feature. A network of LIF neurons that flexibly simulates
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FIGURE 10 | Poker dataset with DVS mapped as snapshots. The snapshots in the first row are restored from the training samples, and the rest images are made

from testing samples.

TABLE 4 | Accuracy of poker pattern recognition.

Training sample size 100 500 800 800+200

Accuracy 59.95% 64.00% 66.09% 76.39%

mammalian brain classifies the objects according their features.
In this paper, an orientation detector is added to track the
orientation of moving objects. The tracking works with feature
extracting simultaneously, without any increase in classification
time. In this event-driven system, two polarity events (ON
events and OFF events) are introduced to achieve higher
identification and detect moving orientation. The algorithm of
orientation detection and address restoration are presented in
this paper. It makes multi-orientation event-based recognition
possible by training dataset only with certain reference positive
orientation. This system equips a high potential for innovation
and development in architecture, static datasets making, and
multi-orientation recognition function.

Various kinds of objects were tested with this system, such as
MNIST, pokers, and vehicles. For the MNIST dataset, to simulate

FIGURE 11 | The orientation detection of moving vehicle collected by

DVS in real time. (A) Picture taken with a frame-driven camera. (B) Snapshot

mapping by AER events and the arrow shows the orientation of a moving

vehicle.

the moving state of objects, a differencing method is applied to
generate a new image dataset. The AER dataset mapped by image
dataset could be used to classify data acquired by a real DVS,
which shortens the time in gathering training samples one by
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one. As the results illustrate, our system performs well with both
samples converted from static images and collected by DVS.

However, this system is not completely free of problems:
One typical problem is orientation classification. It classifies
angles into 8 classes, which increases the accuracy of orientation
detection, but it also has a negative effect on recognition. The
fault tolerance of 8 angle classes is good when the center of
ON and OFF events are very close such as highly patterned
objects. However, the error between the actual angle and the
classified angle may lead to mistakes in recognition. Therefore,
in the experiment of pokers, additional training samples with
slightly deviated orientations less than ±20◦ were added to
enhance the accuracy of recognition. A further problem is the
recognition result is only close to 70%. As mentioned in the
MNIST experimental results, the group of images rotated in 4
standard orientations (45◦, 135◦, 225◦, 315◦) has lower accuracy
ranging from 67.98 to 70.35%. The primary reasons may be
summarized as follows: the extracting strength of the Gabor filter
between 45◦ and 0◦ features differs a lot, and the rotation of all
the maps in “C1” layer leads to distortion for features.

This system can recognize objects with various orientations
moving along its positive direction. With respect to objects

moving in an arbitrary direction, this system may fail.
Furthermore, it may also fail to recognize targets with different
orientation displaying in a flashing way, due to the lack of
ON and OFF events pairs. Therefore, the application field of
this proposed method is limited in monitoring targets with
various orientations that has a certain moving direction like
vehicles, vessels, airplanes, and so on. Future work is to improve
the recognition accuracy and extend the ability to recognize
more kind of objects with various orientations and moving
directions.

AUTHOR CONTRIBUTIONS

Models/experiments design: HW, JX, and ZG. Mathematical and
theoretical analysis: SY and JM. Experimental investigations:
HW, ZG, and CL. Manuscript preparation: HW and ZG. All
authors reviewed the manuscript.

ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China (61434004, 61604107).

REFERENCES

Aung Myat Thu, L., Do Anh, T., Chen, S., and Yeo, K. S. (2011). “Adaptive

priority toggle asynchronous tree arbiter for AER-based image sensor,” in

2011 IEEE/IFIP 19th International Conference on VLSI and System-on-Chip

(Kowloon), 66–71.

Boahen, K. A. (2000). Point-to-point connectivity between neuromorphic chips

using address events. IEEE Trans. Circ. Syst. II Analog Digit. Signal Process. 47,

416–434. doi: 10.1109/82.842110

Brandli, C., Berner, R., Yang, M., Liu, S.-C., and Delbruck, T. (2014). A

240× 180 130 db 3 µs latency global shutter spatiotemporal vision

sensor. IEEE J. Solid State Circ. 49, 2333–2341. doi: 10.1109/JSSC.2014.

2342715

Chen, L. P., Lu, G. J., and Zhang, D. S. (2004). “Effects of different Gabor Filter

parameters on image retrieval by texture,” inMultimedia Modelling Conference

(Brisbane, QLD), 273–278.

Chen, S., Akselrod, P., Zhao, B., Carrasco, J. A. P., Linares-Barranco, B., and

Culurciello, E. (2012). Efficient feedforward categorization of objects and

human postures with address-event image sensors. IEEE Trans. Pattern Anal.

Mach. Intell. 34, 302–314. doi: 10.1109/TPAMI.2011.120

Cohen, G. K., Orchard, G., Leng, S. H., Tapson, J., Benosman, R. B., and van Schaik,

A. (2016). Skimming digits: neuromorphic classification of spike-encoded

images. Front. Neurosci. 10:184. doi: 10.3389/fnins.2016.00184

Culurciello, E., Etienne-Cummings, R., and Boahen, K. A. (2003). A

biomorphic digital image sensor. IEEE J. Solid State Circ. 38, 281–294.

doi: 10.1109/JSSC.2002.807412

Delbrück, T. (2006). Available online at: http://sourceforge.net/projects/jaer/

Delbrück, T., and Lichtsteiner, P. (2007). “Fast sensory motor control based

on event-based hybrid neuromorphic-procedural system,” in 2007 IEEE

International Symposium on Circuits and Systems (New Orleans, LA), 845–848.

Drazen, D., Lichtsteiner, P., Häfliger, P., Delbrück, T., and Jensen, A. (2011).

Toward real-time particle tracking using an event-based dynamic vision sensor.

Exp. Fluids 51, 1465–1469. doi: 10.1007/s00348-011-1207-y

Fukushima, K. (1980). Neocognitron: a self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biol. Cybern.

36, 193–202. doi: 10.1007/BF00344251

Han, S., and Feng-Gang, H. (2005). “Human gait recognition based on

motion analysis,” in 2005 International Conference on Machine Learning and

Cybernetics (Guangzhou), 4464–4468.

Lagorce, X., Meyer, C., Ieng, S. H., Filliat, D., and Benosman, R. (2015).

Asynchronous event-based multikernel algorithm for high-speed visual

features tracking. IEEE Trans. Neural Netw. Learn. Syst. 26, 1710–1720. doi:

10.1109/TNNLS.2014.2352401

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324. doi:

10.1109/5.726791

Lichtsteiner, P., Posch, C., andDelbrück, T. (2008). A 128×128 120dB 15µs latency

asynchronous temporal contrast vision sensor. IEEE J. Solid State Circ. 43,

566–576. doi: 10.1109/JSSC.2007.914337

Litzenberger, M., Kohn, B., Belbachir, A. N., Donath, N., Gritsch, G., Garn, H.,

et al. (2006a). “Estimation of vehicle speed based on asynchronous data from

a silicon retina optical sensor,” in 2006 IEEE Intelligent Transportation Systems

Conference (Toronto, ON), 653–658.

Litzenberger, M., Posch, C., Bauer, D., Belbachir, A. N., Schon, P., Kohn,

B., et al. (2006b). “Embedded vision system for real-time object tracking

using an asynchronous transient vision sensor,” in 2006 IEEE 12th Digital

Signal Processing Workshop & 4th IEEE Signal Processing Education Workshop

(Los Alamitos, CA: IEEE), 173–178.

Mahowald, M. A., and Mead, C. (1991). The silicon retina. Sci. Am. 264, 76–82.

doi: 10.1038/scientificamerican0591-76

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of

synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275,

213–215. doi: 10.1126/science.275.5297.213

Ni, Z., Pacoret, C., Benosman, R., Ieng, S., and Régnier, S. (2012). Asynchronous

event-based high speed vision for microparticle tracking. J. Microsc. 245,

236–244. doi: 10.1111/j.1365-2818.2011.03565.x

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015a). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N.,

and Benosman, R. (2015b). HFirst: a temporal approach to object

recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 2028–2040. doi:

10.1109/TPAMI.2015.2392947

Pérez-carrasco, J. A., Zhao, B., Serrano, C., Acha, B., Serrano-Gotarredona, T.,

Chen, S., et al. (2013). Mapping from frame-driven to frame-free event-

driven vision systems by low-rate rate coding and coincidence processing–

Application to feedforward ConvNets. IEEE Trans. Pattern Anal. Mach. Intell.

35, 2706–2719. doi: 10.1109/TPAMI.2013.71

Frontiers in Neuroscience | www.frontiersin.org 12 November 2016 | Volume 10 | Article 498

http://sourceforge.net/projects/jaer/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Wang et al. Event-Based Multi-Orientation Recognition

Posch, C., Matolin, D., andWohlgenannt, R. (2008). “An asynchronous time-based

image sensor,” in 2008 IEEE International Symposium on Circuits and Systems

(ISCAS) (Washington, DC), 2130–2133.

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143dB

dynamic range frame-free PWM image sensor with lossless pixel-level video

compression and time-domain CDS. IEEE J. Solid State Circ. 46, 259–275. doi:

10.1109/JSSC.2010.2085952

Riesenhuber, M., and Poggio, T. (1999). Hierarchical models of object recognition

in cortex. Nat. Neurosci. 2, 1019–1025. doi: 10.1038/14819

Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-

Vicente, R., Gomez-Rodriguez, F., et al. (2009). CAVIAR: a 45k neuron, 5M

synapse, 12G connects/s AER hardware sensory-processing-learning-actuating

system for high-speed visual object recognition and tracking. IEEE Trans.

Neural Netw. 20, 1417–1438. doi: 10.1109/TNN.2009.2023653

Serrano-Gotarredona, R., Serrano-Gotarredona, T., Acosta-Jimenez, A., Serrano-

Gotarredona, C., Perez-Carrasco, J. A., Linares-Barranco, B., et al. (2008).

On real-time AER 2-D convolutions hardware for neuromorphic spike-

based cortical processing. IEEE Trans. Neural Netw. 19, 1196–1219. doi:

10.1109/TNN.2008.2000163

Serrano-Gotarredona, T., and Linares-Barranco, B. (2013). A 128×128 1.5%

contrast sensitivity 0.9% FPN 3µs latency 4mW asynchronous frame-free

dynamic vision sensor using transimpedance preamplifiers. IEEE J. Solid State

Circ. 48, 827–838. doi: 10.1109/JSSC.2012.2230553

Serrano-Gotarredona, T., and Linares-Barranco, B. (2015a). Available online at:

http://www2.imse-cnm.csic.es/caviar/POKERDVS.html

Serrano-Gotarredona, T., and Linares-Barranco, B. (2015b). Poker-DVS and

MNIST-DVS. Their history, how they were made, and other details. Front.

Neurosci. 9:481. doi: 10.3389/fnins.2015.00481

Serre, T. (2006). Learning a Dictionary of Shape-Components in Visual Cortex:

Comparison with Neurons, Humans and Machines. Ph.D. dissertation.

Massachusetts Institute of Technology, Cambridge, MA.

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., and Poggio, T. (2007). Robust

object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal.

Mach. Intell. 29, 411–426. doi: 10.1109/TPAMI.2007.56

Triesch, J., and Malsburg, C. V. D. (2001). A system for person-independent hand

posture recognition against complex backgrounds. IEEE Trans. Pattern Anal.

Mach. Intell. 23, 1449–1453. doi: 10.1109/34.977568

Tsitiridis, A., Conde, C., Diego, I. M. D., Saez, J. S. D. R., Gomez, J. R., and

Cabello, E. (2015). “Gabor feature processing in spiking neural networks from

retina-inspired data,” in 2015 International Joint Conference onNeural Networks

(IJCNN) (Killarney), 1–8.

Valeiras, D. R., Lagorce, X., Clady, X., Bartolozzi, C., Ieng, S. H., and Benosman,

R. (2015). An asynchronous neuromorphic event-driven visual part-based

shape tracking. IEEE Trans. Neural Netw. Learn. Syst. 26, 3045–3059. doi:

10.1109/TNNLS.2015.2401834

Wulfram, G., and Werner, M. K. (2002). Spiking neuron models: single neurons,

populations, plasticity. Encyclopedia Neurosci. 4, 277–280. doi: 10.1017/CBO

9780511815706

Yu, Q., Tang, H., Tan, K. C., and Li, H. (2013). Rapid feedforward

computation by temporal encoding and learning with spiking neurons. IEEE

Trans. Neural Netw. Learn. Syst. 24, 1539–1552. doi: 10.1109/TNNLS.2013.

2245677

Zaghloul, K. A., and Boahen, K. (2004). Optic nerve signals in a neuromorphic

chip I: outer and inner retina models. IEEE Trans. Biomed. Eng. 51, 657–666.

doi: 10.1109/TBME.2003.821039

Zhao, B., and Chen, S. (2011). “Realtime feature extraction using MAX-

like convolutional network for human posture recognition,” in 2011 IEEE

International Symposium of Circuits and Systems (ISCAS) (Rio de Janeiro),

2673–2676.

Zhao, B., Ding, R., Chen, S., Linares-Barranco, B., and Tang, H. (2015).

Feedforward categorization on AERmotion events using cortex-like features in

a spiking neural network. IEEE Trans. Neural Netw. Learn. Syst. 26, 1963–1978.

doi: 10.1109/TNNLS.2014.2362542

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Wang, Xu, Gao, Lu, Yao and Ma. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 November 2016 | Volume 10 | Article 498

http://www2.imse-cnm.csic.es/caviar/POKERDVS.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	An Event-Based Neurobiological Recognition System with Orientation Detector for Objects in Multiple Orientations
	Introduction
	Materials and Methods
	Features Extraction
	Object Categorization
	Center Tracking and Orientation Detection

	Results
	On MNIST Image Dataset
	Input Generation
	Results of MNIST Dataset Moving in Specified Orientation
	Results of MNIST Dataset Moving in Multiple Orientations
	Results of MNIST Dataset Collected by DVS

	On Poker-DVS Dataset
	On Vehicle-DVS Dataset

	Discussion
	Author Contributions
	Acknowledgments
	References


