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INTRODUCTION

Current breakthroughs in high-throughput technologies have propelled the development of
databases that systematically store knowledge of how genes, proteins, and metabolites interact.
To elucidate the mechanisms of molecular interaction, such data can be represented through
networks where nodes are biological entities (e.g., gene, protein, miRNA, transcription factor, and
metabolites) and edges are associations/interactions between them (e.g., co-expression, signaling,
regulation, and physical interaction). One approach to use such networks is to analyze their
topological structure and try to relate this to biological function.

Topological analysis hints at the possible behavior of a network in the regulation of biological
processes or phenotypes and help in unveiling the core mechanisms. Broadly speaking, topological
parameters can be used to explore: (1) collective behaviors (global properties such as diameter,
small-world and scale-free properties of a network), (2) subnetwork behaviors (functional motif
discovery), and (3) individual behaviors (prioritization of important nodes by centrality indices) of
various network components (Ma and Gao, 2012).

One of the first attempts found in the literature considered centrality related to lethality, and
is known as the centrality–lethality rule proposed by Jeong et al. indicating a positive correlation
between connectivity and indispensability in the yeast protein-protein interactionmap (Jeong et al.,
2001). Similarly,Wagner and Fell analyzed the structure of a largemetabolic network of E. coli using
metabolite node degree and shortest mean path length and observed small world like properties
that follow power-law distributions (Wagner and Fell, 2001). In these two comprehensive studies,
an old metric system (centrality index) was applied with different strategies, aiming to answer the
following question: Do centrality indices predict the essential nodes in the biological networks?

Remarkably, topological analyses carried out in transcriptional regulatory (TR) and metabolic
networks have been a valuable guide to identify those biological components, called essential nodes,
that play a major role in vital functional activities for some microorganisms (Resendis-Antonio
et al., 2005, 2012). The relationship between nodes topological features, such as their degree, and
their essentiality remains however debated (Coulomb et al., 2005).

Prediction of essential proteins is a challenging task because it needs experimental approaches
that are expensive, time-consuming, and laborious (Zhong et al., 2013; Li et al., 2014). To
optimize the search of essential nodes in biological networks, a series of computational methods
that include topological criteria have been proposed. In this paper, we review the cutting edge
computational methods by categorizing them according to their underlying strategies to identify

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Frontiers - Publisher Connector

https://core.ac.uk/display/82871151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://dx.doi.org/10.3389/fphys.2016.00375
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2016.00375&domain=pdf&date_stamp=2016-08-26
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:ali.salehzadeh-yazdi@uni-rostock.de
mailto:alimgh@tums.ac.ir
http://dx.doi.org/10.3389/fphys.2016.00375
http://journal.frontiersin.org/article/10.3389/fphys.2016.00375/full
http://loop.frontiersin.org/people/267124/overview
http://loop.frontiersin.org/people/268580/overview
http://loop.frontiersin.org/people/33161/overview
http://loop.frontiersin.org/people/96846/overview


Jalili et al. Centrality and Essential Proteins in Biological Networks

essential components. In each case, we discuss their predictive
experimental power and identify shortcomings.

FIRST STRATEGY: USE OF INDIVIDUAL

CLASSICAL CENTRALITY INDEX

Themost commonly used centrality index is the degree centrality
which is calculated as the number of direct connections to a
node. Many studies suggested that highly connected nodes or
“hubs” are more likely to be essential (Hahn and Kern, 2005;
Joyce and Palsson, 2008). For instance, in 2005, Hann and Kern
compared centrality and essentiality in yeast, worm and fly PPI
networks and concluded that a protein connectivity has an effect
on the probability of being essential (Hahn and Kern, 2005).
Nevertheless, high connectivity does not necessarily imply its
essentiality. In 2005, Mahadevan and Palsson, indicated that
in genome-scale metabolic models of E. coli, S. cerevisiae, and
Geobacter sulfurreducens, the essentiality is not correlated with
node connectivity (Mahadevan and Palsson, 2005). In addition,
in 2007, Tew et al. concluded that in the PPI network a low-
connectivity node could also be considered as essential (Tew
et al., 2007). To improve upon this, other metrics were suggested
to predict essential genes. Thus, almost all classic centrality
indices (Freeman, 1979) that were developed for characterizing
social networks (such as the degree, closeness, and betweenness
centralities) were applied to biological networks. For instance,
in 2004, Koschützki and Schreiber applied five centrality indices
(degree, eccentricity, closeness, random walk betweenness, and
Bonacich’s eigenvector) to the PPI network of Homo sapiens
and gene regulatory network of E. coli. They showed that
eccentricity and eigenvector are highly correlated in the PPI
network while within the TR network a strong correlation
between eigenvector and closeness was observed (Koschützki
and Schreiber, 2004). Betweenness centrality is based upon
the frequency with which a node lies between the shortest
communication path of all other possible pairs of nodes within a
network and highlights the gatekeepers of communication within
the network. Eccentricity centrality of a node is calculated as the
reciprocal of the maximum of shortest path lengths from that
node to all other nodes in the network. Thus, the node with
highest eccentric centrality is considered as the most central node
in a network. In contrast the closeness centrality is measured
by the reciprocal of sum of the geodesic distances from that
node to all other nodes in the network. The basic idea behind
the eigenvector centrality of a node was the assumption that
centrality index of a node is not only determined by its position
in the network but also by the neighboring nodes. Overall degree,
betweenness and closeness centrality measurements were among
the most common topological parameters investigated in terms
of biological network analyses. Potapov et al. introduced a new
centrality measurement, named pairwise disconnectivity index,
to qualify the importance of individual nodes and/or interactions
for sustaining the communications between connected pairs
of nodes in a directed network (Potapov et al., 2008). The
authors discussed some of the limitations of the betweenness
centrality index, mainly the identification of the shortest path

for the communication between a pair of nodes. They argued
that the importance of a path does not depend on the length
but on other factors, such as the concentration of the species,
rate constant etc. Thus, even the longer path can be faster
and efficient in biological scenarios. Moreover, the peripheral
nodes were not considered. However, in 2014, Raman et al.
analyzed the PPI network of a diverse set of 20 organisms. They
computed parameters such as degree, betweenness, closeness,
and pairwise disconnectivity indices and demonstrated that
degree and betweenness centralities correlate with lethality in
many organisms but closeness and pairwise disconnectivity
indices are not strong indicators of essentiality (Raman et al.,
2014).

SECOND STRATEGY: COMBINATION OF

CLASSICAL CENTRALITY MEASURES

Some researchers have also attempted to combine the individual
centrality matrices to achieve more accurate results. They believe
that a single measure of centrality does not solely predict the
essential nodes in biological networks. Therefore, combining
different centrality indices could yield better results. Examples
of such studies include the work of Gabriel del Rio et al.
in 2009 on the prediction of essential genes using a new
score based on the combination of two or more existing
centrality indices (del Rio et al., 2009). They analyzed 16
different centrality measures on 18 reconstructed metabolic
networks for S. cerevisiae and explained that no single centrality
measure identifies essential genes while the combination of
at least two centrality measures achieves a reliable prediction.
More specifically, they observed that combining “1/clustering
coefficient” with either closeness, excentricity, 1/excentricity or
radiality resulted in significant prediction of essential genes
while no improvement was achieved when three or four
centrality measures were combined together (del Rio et al., 2009).
Wang et al. performed principal component analysis (PCA) to
combine eight centralities, and generated a new integrative node
importance measure, structurally dominant proteins index, to
find more important nodes in the PPI networks. The proposed
integrative measure is strongly correlated with eigenvector, semi-
local, network motif, degree, and betweenness measures (Wang
et al., 2014). The most recent study, named composite centrality,
offered a unified scale to measure node, and edge centralities for
general weighted and direct complex evolving networks (Joseph
and Chen, 2014).

THIRD STRATEGY: USE OF NOVEL

CENTRALITY CONCEPTS

In addition to the use of individual classical centrality measures
and their combinations to identify essential/lethal nodes in
biological networks, new indices were designed using other
features associated with nodes in biological networks. For
instance, Yu et al. in 2004 introduced the notion of marginal
essentiality which states that the essentiality of a gene is directly
associated to its connectivity and the number of functions of
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that gene (Yu et al., 2004). Estrada and Rodriguez-Velazquez,
in 2005 proposed a new index, subgraph centrality (SC) which
characterizes the contribution of each node in all subgraphs
of a network. The authors claimed that SC index is better in
discriminating the nodes of a network than alternate classical
measures such as degree, closeness, betweenness, and eigenvector
centralities and is more highly correlated with the lethality of
individual proteins removed from the proteome (Estrada and
Rodriguez-Velazquez, 2005). Tew et al. defined a functional
centrality as the topological centrality within a subnetwork of
proteins with similar functions, called neighborhood functional
centrality (NFC). NFC predicted the lethal proteins in four S.
cerevisiae PPI datasets and was able to detect low connectivity
lethal proteins that were previously undetected by conventional
methods (Tew et al., 2007). Then, Koschutzki and Schreiber
demonstrated that motif-based centralities yield better results
in gene regulatory networks (Koschützki and Schreiber, 2008).
Efforts were made to better predict and improve the existing
methods for new insights of centrality usage in biology.
For example, Hart et al. used an unsupervised probabilistic
scoring scheme on large-scale yeast mass-spectrometry data,
emphasizing that essentiality is the product of protein complexes
rather than individual proteins (Hart et al., 2007). Piraveenan
et al. used topological connectivity, as well as the percolation
states of individual nodes in network percolation scenarios (such
as infection transmission in a social network of individuals) to
quantify relative impact of nodes (Piraveenan et al., 2013). Simko
and Csermely applied game centrality to design more competent
interventions in cellular networks (Simko and Csermely, 2013),
and Szalay and Csermely developed perturbation centrality to
provide a large variety of novel options to assess signaling,
drug action, environmental, and social interventions (Szalay
and Csermely, 2013). Wuchty recently determined minimum
dominating sets (MDSet) as optimized subsets of proteins that
play a role in the control of the underlying networks by enabling
remaining proteins to be reached in one step.MDSet are enriched
with essential, cancer-related, and virus-targeted genes. The
author also compared the MDSet proteins with hub proteins and
showed a higher impact of MDSet proteins on network resilience
(Wuchty, 2014).

FOURTH STRATEGY: INTEGRATION OF

OMICS DATA WITH CENTRALITY

MEASURES

Until now, we reviewed how mathematical combinations of
various centralities generated from complex networks can predict
essential genes (Roy, 2012). It seems that the integration of
biological knowledge into topological features could create an
improved centrality index to find essential nodes. Some studies
have also been done in that direction; in 2010, Li et al. improved
the prediction of essential proteins 20% more than closeness
and subgraph centralities by construction of a weighted PPI
based on the combination of logistic regression-based model and
function similarity (Li et al., 2010). Li et al. in 2012 introduced
and validated a new centrality measure (PeC) by integration
of gene expression into the yeast PPI network. In this new

method, a weighting of the PPI network was proposed based
on the probability of two proteins to be co-clustered and co-
expressed in a given biological scenario. PeC predicted the
essential proteins significantly better than the other previously
proposed 15 centrality measures: degree, betweenness, closeness,
subgraph, eigenvector, information, bottle neck, density of
maximum neighborhood component, local average connectivity-
based method, sum of edge clustering coefficient, range-limited,
L-index, leader rank, moduland, and normalized α-centralities.
Above all, the enhancement of PeC over the classic centralities
(betweenness, closeness, subgraph, eigenvector, and bottle neck
centralities) is more than 50% for the first 500 predictions (Li
et al., 2012).

Very recently, Jiang et al. in 2015 developed a network-
based method named NEST (Network Essentiality Scoring Tool)
that improved the performance of centrality over previous
related methods. NEST predicted the essential genes according
to the expression level of neighbor genes connected in protein
interaction network. The results obtained by the current
integration showed that the predictive power of essential protein
according to this strategy is much better than the classic
centralities (Jiang et al., 2015).

DISCUSSION

Essential genes (and their products, proteins) imply an intricate
role in a cell survival and development. Topological network
analyses provide opportunities for essential nodes prediction,
evaluation of disease genes, and the discovery of potential drug
targets (Rosamond and Allsop, 2000). Inspired by previous
works in social network analysis (Freeman, 1979; Borgatti et al.,
2009), it was assumed that centrality measures could predict
essential nodes and several strategies have been offered to find
out the relative importance of a node in complex biological
networks. However, the structure of biological networks differs
fundamentally from social networks especially with respect
to modularity (Newman and Park, 2003). Another issue is
the dynamic nature of biological entity relationships. For
instance, not all relationships may exist simultaneously even
in a perfectly mapped network (Han et al., 2004). Therefore,
the results of centrality indices in the prediction of essential
nodes were not satisfactory in various studies. One of the
proposed solutions is to apply functional methods in this
context according to the type of biological networks to be
analyzed. Such methods integrating other aspects of biological
knowledge could be very helpful. In addition, ranking genes
or proteins through more biologically driven features such as
physicochemical properties of bio macromolecules, intrinsic
disorder property of proteins, co-expression of biological entities,
gene clusters, protein complexes, protein localization, gene
ontology, enrichment analysis, two-dimensional annotation of
genomes, different types of promoters, and epistatic interaction
will be of interest. Now that more biological data is available,
it is time to improve over the pure topological measures and
redefine the concept of centrality on the basis of specific
properties of biological functions. A systematic look into the
biological concepts is required; implying that several features
could be involved and their combination would result in
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an improved biological centrality. More detailed analyses and
discussions among researchers are needed to decide upon
the parameters to be combined with different centrality
measures for the prediction of essential genes in context
specific biological networks. There is no particular reason
to expect an exact match between network topology and
biological functions. As such these tools provide the basis for
“intelligent guessing.” In view of the complexity of biological

networks and the difficulties to generate experimental data
for other analyses, providing hints can prove already very
useful.
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