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The division of the apical meristem into two independently functioning axes is defined as
dichotomous branching. This type of branching typically occurs in non-vascular and non-
seed vascular plants, whereas in seed plants it presents a primary growth form only in
several taxa. Dichotomy is a complex process, which requires a re-organization of the
meristem structure and causes changes in the apex geometry and activity. However,
the mechanisms governing the repetitive apex divisions are hardly known. Here, an
overview of dichotomous branching is presented, occurring in structurally different apices
of phylogenetically distant plants, and in various organs (e.g., shoots, roots, rhizophores).
Additionally, morphogenetic effects of dichotomy are reviewed, including its impact on
organogenesis and mechanical constraints. At the end, the hormonal and genetic regulation
of the dichotomous branching is discussed.
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INTRODUCTION
Regular branching allows plants to expand and adapt to the
environment. There are two major types of shoot branching:
lateral (axillary), which involves the formation of a primor-
dial bud in the organogenic zone of the apex, and terminal
(dichotomous), which is an outcome of the meristem bifur-
cation. Root branching is mostly related to the initiation of
lateral roots in the pericycle or endodermis and only in some
plant groups it is a result of a dichotomous division (Evert,
2006). The most common and also the best-studied are axil-
lary shoot branching and lateral root formation, and not much
attention is paid to dichotomy, which requires the drastic reor-
ganization of the entire meristem, while not disrupting its
integrity upon the division, and as such it has to be tightly con-
trolled. Thus, revealing the mechanisms employed to protect
the meristem integrity and function, especially in the actively
dividing apices, is extremely interesting. So far the research was
mostly focused on the anatomy of dichotomizing apices but
the regulation of this underestimated phenomenon requires the
elucidation.

DEFINITION OF DICHOTOMY
Dichotomy means division into two parts and mostly refers to
the bifurcation of thalli and axial organs (shoots, roots), giv-
ing rise to two morphologically similar yet autonomous parts.
Although dichotomy seems to be intuitively easy to define in
terms of external morphology, its development and the proper
classification are not always clear. In addition, it is present
in various plant groups, which differ in the internal organi-
zation of growing points (meristems), where the branching is
initiated. Accordingly, the definitions of dichotomy and mech-
anisms involved in the meristem division reflect these structural
varieties.

Generally, the apical meristem can consist of one morpho-
logically distinct apical cell (AC), localized at the summit of the
meristem, which divisional activity produces all cells and tissues
(Evert, 2006). The dichotomy here is defined in a narrow sense as
an equal longitudinal division of this single AC, where both deriva-
tive cells become the initials for twin apices (Goebel, 1928; Troll,
1937; Schoute, 1938; Bierhorst, 1977). Alternatively, the meristem
comprises of one or more groups of morphologically similar initial
cells and their youngest derivatives (Evert, 2006). The dichotomy
is understood here in a broad sense, as an equal division of the ini-
tial zone of such meristems, including initial cells and organizing
center (Steeves and Sussex, 1989). This definition of dichotomy
is however, often applied also to the meristems with a single AC
(Hagemann and Schulz, 1978; Hagemann, 1980).

MECHANISM OF DICHOTOMOUS BRANCHING
Structural analyses of dichotomizing apices showed that
dichotomy can proceed according to different developmental pat-
terns. In the meristems with a single AC it can be a: (1) direct
division of the AC, (2) formation of a new branch near the original
AC, which remains active in the second branch, and (3) inactiva-
tion of the original AC with the simultaneous initiation of the new
branch initials. In plants with two ACs, dichotomy is related to
repeated divisions of initials (4). In meristems containing one or
more groups of initial cells, the entire meristem divides to form
dichotomous apices (5).

DIRECT DIVISION OF AN AC (FIGURE 1A, TABLE 1)
The classical example of dichotomy in a narrow sense, caused by
an even longitudinal division of the AC, is a thallus bifurcation
in an alga Dictyota dichotoma (Oltmanns, 1889; Goebel, 1928; van
den Hoek et al., 1995). However, in most plant species with a single
AC, this tetrahedral, lens- or wedge-shaped AC rarely undergoes

www.frontiersin.org June 2014 | Volume 5 | Article 263 | 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Frontiers - Publisher Connector

https://core.ac.uk/display/82870954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/Journal/10.3389/fpls.2014.00263/abstract
http://community.frontiersin.org/people/u/115063
mailto:edyta.gola@uni.wroc.pl
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Biophysics_and_Modeling/archive


Gola Dichotomous branching – an overview

FIGURE 1 | Mechanisms of dichotomous branching. (A) Dictyota
dichotoma type: an equal longitudinal division (marked with a dashed line)
of the single apical cell. (B) Inactivation of the original apical cell (crossed
triangle) followed by the simultaneous initiation of the branch initials (two
triangles next to the original apical cell). (C–E) Dichotomy in the meristems
with one (C) or more (D,E) groups of initial cells. The meristem zonation is
maintained during dichotomy, but the number of cells increases due to
intensive cell proliferation. Centrally located cells of the original meristem
start to differentiate (crossed groups of cells), separating the dichotomous
apices at the flanks of the original meristem. C,D – shoot apices, E – roots.

a perfect longitudinal division, probably due to the reduction
of the energy costs related to the new cell wall insertion during
cell division (Schüepp, 1966; Cooke and Paolillo, 1980; Barlow,
1992). As a consequence, direct division of the AC is uncommon.
It was reported to occur only in some ferns (Bierhorst, 1977).
But even this interpretation was later criticized, mostly because
the ACs for the new branches originated by formative divisions
and not by a direct dissection of the AC (see Lyndon, 1998 for
discussion).

ORIGINAL AC BECOMES AN INITIAL FOR A BRANCH (TABLE 1)
In this pattern, the initial for a new branch originates not by
the split of the original AC, but due to formative division in the
adjacent segment. At the same time, the original AC maintains
the growth of the main axis. Thus, it should be considered the
pseudodichotomy (Schuster, 1984a), meaning that even if it looks
like dichotomy, it is not formed by the meristem division. Such
a branch development was described in detail in thalloid liver-
worts (Schuster, 1984a); in Psilotum nudum it was interpreted as
dichotomy (Roth, 1963).

INACTIVATION OF THE ORIGINAL AC FOLLOWED BY THE INITIATION OF
BRANCH INITIALS (FIGURE 1B, TABLE 1)
Dichotomy in a broad sense is applied here, understood as the
division of the whole initial zone. The AC, which is usually dis-
tinct in non-dividing shoots, ceases its divisional activity prior
to dichotomy and becomes indistinguishable at the apex. Then,
two new initials are simultaneously initiated next to the inac-
tivated original AC (Hagemann and Schulz, 1978; Hagemann,
1980; Mueller, 1982; Steeves and Sussex, 1989; Imaichi and
Kato, 1991; Jernstedt et al., 1994; White and Turner, 1995; Lu
and Jernstedt, 1996; Kato and Imaichi, 1997; Imaichi, 2008).
This type of dichotomy occurs in shoots, rhizomes and roots,
in some ferns and lycophytes (Table 1). In details, the changes
of the meristem structure were analyzed in the rhizophores -
the unique axial organs of Selaginella, bearing the root primor-
dia at the tip (Imaichi and Kato, 1989, 1991; Jernstedt et al.,
1994; Lu and Jernstedt, 1996; Kato and Imaichi, 1997). Such a
dichotomy occurs also in the aerial shoots of Psilotum nudum,
whereas in irregularly branched subterranean rhizomes, numer-
ous ACs present at the apex can at random be selected for new
branches or be inactivated. The mechanism differentiating the
fate of ACs in the shoot and rhizome is not known (Takiguchi
et al., 1997).

INTENSIVE DIVISIONS OF TWO ACS FOLLOWED BY THE SELECTION OF
BRANCH INITIALS (TABLE 1).
In shoots of Selaginella kraussiana two transient ACs are responsi-
ble for the apex growth. Here, before dichotomous branching the
initial cells divide several times, producing a group of meristem-
atic cells. Then, new ACs are selected for the two resulting axes
(Harrison et al., 2007). Possibly, a similar branching pattern is
also present in the notch meristems of Anthoceros, where intensive
divisions of prismatic initial(s) result in a group of meristem-
atic cells, which next split to form the furcated lobes (Schuster,
1984b).

DICHOTOMY IN MERISTEMS WITH MULTIPLE INITIAL CELLS – SPLIT OF
THE ENTIRE MERISTEM (FIGURES 1C–E, TABLE 1)
This mechanism is typical of Lycopodiaceae s.l., where the
entire meristem can divide into two even (isotomy) or uneven
(anisotomy) parts (Figure 1C; Troll, 1937, 1948; Schoute,
1938; Øllgaard, 1979, 1990). In seed plants, dichotomy rarely
occurs in gymnosperm shoots (Riding, 1976; Zagórska-Marek,
1985). However, the potential to branch dichotomously is pre-
served in conifers, as after colonization by mycorrhizal fungi,
the lateral roots start to bifurcate (Figure 1E; Robertson,
1954; Wilcox, 1968; Faye et al., 1981; Piche et al., 1982). In
angiosperms, shoot dichotomy is reported as a typical branch-
ing pattern only in several species, mostly in monocotyledons
(Figure 1D).

Regardless of the structural differences related to the type of
organ and organization of its meristem, the morphogenetic pro-
cesses that accompany the branching are similar in all these plant
groups. Dichotomy affects the apex geometry, forces the reorga-
nization of the meristem structure, changes its divisional activity
and cell differentiation, and has an impact on organogenesis (e.g.,
leaf initiation). Its first symptom is broadening of the apex in
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Table 1 | A list of plant species characterized by dichotomous branching.

Plants Reference and comments

1. Direct division of an apical cell

Dictyota dichotoma (Phaeophyta)

Dennstaedtia and Microlepia (ferns)

Oltmanns (1889, 1904), Goebel (1928), van den Hoek et al. (1995)

White and Turner (1995)

2. Original AC maintained, becomes an initial for a branch – pseudodichotomous branching

Psilotum nudum

Metzgeriales, Jungermanniales

(liverworts)

Roth (1963): aerial stems; interpreted as dichotomy

Schuster (1984a): pseudodichotomy

3. Inactivation of the original AC followed by the initiation of ACs for dichotomized apices

Gleicheniaceae

Leptosporangiate ferns

Pteridium aquilinum

Lygodium

Osmunda

Psilotum nudum

Selaginella kraussiana, S. wallacei,

S. martensii

S. wildenovii

S. martensii

S. uncinata, S. delicata, S. caudata,

S. plana

S. kraussiana

Isoëtes

Hagemann and Schulz (1978)

Hébant-Mauri (1993)

Dasanayake (1960), Gottlieb and Steeves (1961)

Mueller (1982)

Steeves and Sussex (1989)

Takiguchi et al. (1997): aerial shoots

Webster and Steeves (1964, 1967): rhizophores

interpreted as roots

Cusick (1953)

Jernstedt et al. (1994), Lu and Jernstedt (1996)

Imaichi and Kato (1989, 1991), Kato and Imaichi (1997), Imaichi (2008): shoots and rhizophores

Otrȩba and Gola (2011)

Yi and Kato (2001): roots

4. Intensive divisions of one or two ACs

Selaginella kraussiana

Anthoceros

Fucus (Phaeophyta)

Harrison et al. (2007)

Schuster (1984b): formation of the dichotomously lobed thalli due to divisions of one or more prismatic initials in

the notch meristem

Moss (1967): AC in the notch produces few derivatives, which form the forkation; interpreted as

pseudodichotomy; van den Hoek et al. (1995): pseudodichotomy

5. Dichotomy in meristems with multiple initial cells

Lycopodiaceae s.l., Lycopodium,

Huperzia lucidula

Pinus radiata

Abies balsamea

Cycadaceae, Macrozamia

Pinaceae, Pinus sylvestris,

P. resinosa, P. strobus,

P. pineaster, P. radiata

Hyphaene

Nypa fruticans

Chamaedorea cataractarum

Eugeissona

Flagellaria indica

Strelitzia reginae

Asclepias syriaca

Mammillaria

Echinocereus reichenbachii

Edgeworthia chrysantha

Troll (1937, 1948), Härtel (1937), Schoute (1938), Imaichi (2008), von Guttenberg (1966), Øllgaard (1979, 1990),

Gola and Jernstedt (2011)

Riding (1976): shoots, ca. 1% of seedlings

Zagórska-Marek (1985): seedlings

Ahern and Staff (1994): ectomycorrhizal roots

Ectomycorrhizal roots: Robertson (1954), Wilcox (1968), Faye et al. (1981), Wilson and Field (1984), Piche et al.

(1982), Kaska et al. (1999)

Hallé et al. (1978), Tomlinson (1979)

Tomlinson (1971)

Fisher (1974)

Fisher et al. (1989): supposedly dichotomy

Tomlinson (1970), Tomlinson and Posluszny (1977)

Fisher (1976)

Nolan (1969)

Craig (1945), Boke (1976)

Boke and Ross (1978)

Iwamoto et al. (2005): trichotomy
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the plane perpendicular to the future division. In this early stage,
the meristem zonation pattern is not disrupted, but the number
of cells and volumes of particular meristematic zones increase by
intensive cell proliferation. The distinctiveness of superficial lay-
ers is maintained during dichotomy progression, as well as the
continuity of procambium and vascular tissues in the parental
and dichotomous axes. Differentiation of the meristematic cells
located between dichotomizing apices ceases the growth of the
central part of the original meristem starting the separation of
both branches (Härtel, 1937; Nolan, 1969; Tomlinson, 1970, 1971;
Boke, 1976; Tomlinson and Posluszny, 1977; Faye et al., 1981; Piche
et al., 1982; Laajanen et al., 2007; Raudaskoski and Salo, 2008; Gola
and Jernstedt, 2011).

Broadening of the shoot apex can affect the organogenesis due
to increasing size of the region of organ initiation. If the leaf initia-
tion precedes the apex dichotomy, the leaf can encircle the enlarged
stem (as in Flagellaria and Strelitzia; Tomlinson, 1970; Fisher,
1976) or be inserted in the increased meristem circumference.
In the latter case, the pattern of leaf arrangement (phyllotaxis)
can change (Schoute, 1938; Zagórska-Marek, 1985; Gola, 1996).
With dichotomy progression, the initiation of new organs is usu-
ally maintained at the shoot circumference, but at the inner surface
of furcation, organogenesis is repressed until the division is com-
pleted. It can be presumed, based on the analogy to the concave
apices (Lintilhac, 2014), that this inner surface remains under the
tension, which prevents the bulging of primordia. The restoration
of organ initiation becomes possible after changes of the physical
constraints and the local surface relaxation, similarly to the pro-
posed buckling mechanism of leaf primordia formation (Green,
1996).

REGULATORY MECHANISMS FOR DICHOTOMOUS
BRANCHING
Dichotomous branching is a complex process which requires a
precise control of morphogenetic events to maintain the meris-
tem integrity during division. The lack of such a control can
lead to unbalanced cell proliferation and, e.g., result in fasci-
ation, to which dichotomy was sometimes compared (Schoute,
1936; Gorter, 1965). Fasciation is usually characterized by flat-
tened stems with multiplied lateral organs; the stems can split to
numerous normal or malformed shoots. It is an unpredictable
process, caused by various agents (e.g., mutations, chemicals,
pathogens including Rhodococcus fascians), which is related to the
impairment of the hormonal balance and cell proliferation at the
meristem (e.g., Gorter, 1965; Leyser and Furner, 1992; Fambrini
et al., 2006; Stes et al., 2013). Conversely, dichotomy is a repeti-
tive process of strictly controlled divisions of the entire meristem.
Not much is however, known about the regulatory mechanisms
at the hormonal and genetic levels, mostly because dichotomy
occurs in plants which are not model organisms. Relatively more
information is available on the hormonal regulation of the root
dichotomy in gymnosperms, due to the intensive research on
mycorrhiza.

HORMONAL CONTROL OF DICHOTOMOUS BRANCHING
The ability to form dichotomous roots seems to be an inher-
ent feature in Pinaceae (Robertson, 1954; Wilson and Field,

1984; Kaska et al., 1999). The intensification of the process,
with repeated dichotomies resulting in so-called coralloid struc-
tures, is related to the colonization of roots by ectomycorrhizal
fungi (Peterson and Bonfante, 1994). The fungal symbionts are
probably the source of plant growth regulators, which stimulate
morphogenetic changes, including root swelling and dichoto-
mous branching (Barker and Tagu, 2000; Brundrett, 2002).
Similar changes in the root architecture can be induced in the
absence of fungi by exogenously supplied phytohormones or their
inhibitors (Wilson and Field, 1984; Rupp et al., 1989; Kaska et al.,
1999; Laajanen et al., 2007; Raudaskoski and Salo, 2008). Appli-
cation of auxin transport inhibitors [N-(1-naphtyl)phthalamic
acid (NPA); 2,3,5-triiodobenzoic acid (TIBA)], ethylene precur-
sor [(1-aminocyclopropane-1-carboxylic acid (ACC)], or ethylene
releasing compounds [2-chloroethylphosphonic acid (CEPA)]
stimulates extensive dichotomous branching of Pinus roots,
increasing the percentage of coralloid structures up to 25–30%
(Kaska et al., 1999). It is suggested that the balance between
auxin [indole-3-acetic acid (IAA)] and cytokinin, possibly medi-
ated by the ethylene level, has a regulatory role in this process
(Rupp et al., 1989; Kaska et al., 1999; Barker and Tagu, 2000;
Laajanen et al., 2007; Raudaskoski and Salo, 2008). Possibly, the
NPA-treatment increases the auxin concentration at the root tip,
whereas the moderate level of the hormone at the meristem
flanks induces dichotomous root formation. At the same time,
high IAA concentration at the root tip stimulates the biosyn-
thesis of ethylene, leading to cell differentiation in the central
part of the original meristem and consequently, separation of
dichotomous roots (Laajanen et al., 2007; Raudaskoski and Salo,
2008).

This mechanism of hormonal regulation corresponds well with
the morphogenetic changes in dichotomizing roots of Pinus, but
because it was proposed based on the auxin distribution in a model
plant Arabidopsis, it should be validated. Nevertheless, it seems
likely that specific hormone distribution and/or concentration
can be a universal aspect of dichotomy regulation, as e.g., auxin
shapes different developmental processes in all vascular plants
and bryophytes (Cooke et al., 2002). In addition, it has recently
been shown that the ratio between IAA and cytokinin regulates
the dichotomous root branching in S. kraussiana, although the
shoot dichotomy regulation by auxin is questionable in this species
(Sanders and Langdale, 2013).

REGULATION OF THE APEX INTEGRITY DURING DICHOTOMY
The knowledge concerning genetic background for dichotomy
regulation and molecular signaling during this process is lack-
ing. It can only be speculated that the regulation is based on
genes involved in the cell division and differentiation homeosta-
sis, affecting the size of the apex and the identity of meristematic
cells.

The genetic machinery for the self-maintenance of the api-
cal meristems is mostly deciphered in a model plant Arabidopsis.
Here, based on the mutant phenotypes, it is possible to infer
which genes could play a role in dichotomous branching. One
of such Arabidopsis mutants is tonsoku (tsk), with a forked root
reminiscing of dichotomy, and fasciated stems. The suggested
role of tsk is to maintain the ordered structure of the meristem
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through the regulation of the cell cycle (Suzuki et al., 2004, 2005).
However, the disorganization in tsk root meristems affects the
expression of the other regulatory genes, e.g., SCARECROW (SCR;
Suzuki et al., 2004). Contradictory, it was shown that the tissue-
specific expression pattern of the SCR homolog is preserved in
dichotomizing roots of Pinus. During dichotomy progression, the
specificity of endodermis and root radial patterning are main-
tained, manifested by localization of this gene (Laajanen et al.,
2007; Raudaskoski and Salo, 2008). These results are also in
agreement with the cytohistological observation of dichotomizing
apices.

The maintenance of the shoot apical meristem integrity in
Arabidopsis requires the activity of WUSCHEL (WUS), which is
antagonized by the CLAVATA genes (Laux et al., 1996; Fletcher
et al., 1999; Reddy, 2008). As these genes are involved in the
production and maintenance of initial cells and their muta-
tion can result also in bifurcated stem phenotype (e.g., in
clv3 or WUS overexpression mutants), their plausible role in
dichotomy regulation can be therefore hypothesized. Interest-
ingly, the homologous CLAVATA1-LIKE gene was found to play
a potential role in the initiation of Pinus ectomycorrhizal roots
(Heller et al., 2012). Furthermore, as recent research revealed
the presence of WUS homologs in all plant groups (Lian et al.,
2014) and the CLAVATA3 homolog was earlier described e.g.,
in Selaginella (Floyd and Bowman, 2007), the universality of
the regulatory mechanism in plants can be suggested. How-
ever, it remains unknown, whether these homologous genes
have a similar expression pattern and function in the apical
meristem maintenance and if they are involved in dichotomy
regulation.

Recently, the WUS-CLV3 interactions were simulated in the
reaction–diffusion model to show different patterns of shoot apical
meristem (SAM) development (Fujita et al., 2011). The assump-
tion was that WUS promotes the growth of the apex (activator)
whereas CLV suppresses the process (inhibitor). The pattern of
dichotomous branching was generated in this model, when the
increased level of the activator stimulated the cell proliferation
leading to the meristem bifurcation due to spatial restrictions
(SAM size limitation; Fujita et al., 2011). Thus, it can imply that the
proper balance of these two factors can play a role in the meristem
integration during dichotomy.

Finally, the class I KNOX (KNOTED-like homeobox) genes
are hypothesized to suppress the cell differentiation within the
SAM. They are found in all land plants and, in addition, they
are supposed to be regulated by hormones (Veit, 2009). For
example, a low level of auxin stimulates the class I KNOX
genes and in turn promotes the meristematic activity in the
SAM. Likely, the formation of the new apices at the flanks
of dichotomizing meristem and simultaneously triggered dif-
ferentiation in its center can result from the localized distri-
bution of auxin and related expression of genes. Furthermore,
in Selaginella KNOX/ARP (ASYMMETRIC LEAVES1, ROUGH
SHEATH2, PHANTASTICA) interaction regulates the mainte-
nance of the indeterminate growth of the apex vs. leaf forma-
tion. It was suggested that this expression pattern within the
SAM can be related to the meristem dichotomy (Harrison et al.,
2005).

CONCLUSION
Dichotomy is only marginally studied in plants and only its
anatomical aspects are relatively well described. Nevertheless
even here different definitions used and the lack of molecu-
lar background leads to the misunderstandings and erroneous
interpretations.

Specification of the new ACs/meristematic centers boundaries
seems to be a crucial problem for dichotomy, specifically deci-
phering the nature of the signal(s), the site of its origin and
propagation. Likely, changes in auxin distribution and its polar
transport can orchestrate the boundaries specification. The cellu-
lar and/or molecular pathways of possible auxin signaling during
dichotomy, as well as its interactions with other compounds,
require further research and visualization.

Determination and then separation of the meristematic cen-
ters can be related to the loss of communication between
the adjacent cells of dichotomizing apices. Microsurgical and
ablation experiments showed that a longitudinal split of the
meristem can mimic the dichotomous branching (Snow and
Snow, 1931; Reinhardt et al., 2004). However, the ablation of
the superficial meristem layers did not stimulate the meristem
split (Reinhardt et al., 2003) suggesting the involvement of the
organizing center and the meristem identity genes expressed
there.

Currently, the meristem homeostasis is extensively explored,
acknowledging its vital role in plant development. The improve-
ment of the genetic and molecular techniques, also in new model
organisms, e.g., Selaginella moellendorffii, will enable us to fully
address the problem of the meristem integrity, especially during
the meristem bifurcation.
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