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Pancreatic cancer (PC) is one of the most challenging tumor entities worldwide, charac-
terized as a highly aggressive disease with dismal overall prognosis and an incidence rate
equalling mortality rate. Over the last decade, substantial progress has been made to define
the morphological changes and key genetic events in pancreatic carcinogenesis. And yet,
it is still unclear what factors trigger PC. Some risk factors appear to be associated with
sex, age, race/ethnicity, or other rare genetic conditions. Additionally, modifying factors
such as smoking, obesity, diabetes, occupational risk factors, etc., increase the potential
for acquiring genetic mutations that may result in PC. Another hallmark of PC is its poor
response to radio- and chemo-therapy. Current chemotherapeutic regimens could not pro-
vide substantial survival benefit with a clear increase in overall survival. Recently, several
new approaches to significantly improve the clinical outcome of PC have been described
involving downstream signaling cascades desmoplasia and stromal response as well as
tumor microenvironment, immune response, vasculature, and angiogenesis. This review
summarizes major risk factors for PC and tries to illuminate relevant targets considerable
for new therapeutic approaches.

Keywords: pancreatic ductal adenocarcinoma, risk factors, hereditary cancer syndromes, therapeutic targets,
signal-transduction pathways, immune response, stroma reaction, epigenetic changes

INTRODUCTION AND FACTS
Pancreatic cancer (PC) is one of the most challenging tumor enti-
ties worldwide, characterized as a highly aggressive disease with
dismal overall prognosis and an incidence rate (IR) equaling mor-
tality rate (MR). Although over the past decade a downward trend
in rates for most other major cancer sites could be observed, PC
shows raising incidence and unfavorable MRs among men and
women overall (1, 2). PC represents the eight leading cause of
cancer-related death worldwide accounting for 4% of all cancers
with approximately 266,669 deaths, out of 278,684 new cases in
2008 for both sexes (3–6), and displays the fourth-leading cause
of cancer-related death in the U.S. (7), and the E.U. (1) among
both men and women. Importantly, MRs are highest in more

Abbreviations: Akt, protein kinase B; CTLA4, cytotoxic T-lymphocyte-associated
antigen 4; COX-2, cyclooxygenase-2; EGFR, epidermal growth factor receptor;
ERK, extracellular signal-regulated kinase; FAMMM, familial-atypical multiple
mole melanoma; FAP, familial adenomatous polyposis; FDR, first-degree rela-
tives; FPC, familial pancreatic cancer; HDAC, histone deacetylases; HMGA1, high
mobility group A1; HNPCC, hereditary non-polyposis colorectal cancer; IGFR-1,
insulin-like growth factor receptor-1; IL-2, interleukin-2; JAK, Janus kinase; MAPK,
mitogen-activated protein kinases; MEK, mitogen-activated protein/extracellular
signal-regulated kinase kinase; mTOR, mammalian target of rapamycin; PanIN,
pancreatic intraepithelial neoplasia; PARP, poly (ADP-ribose) polymerase; PC, pan-
creatic cancer; PCMS, pancreatic-melanoma cancer syndrome; PDAC, pancreatic
ductal adenocarcinoma; PDK1, 3-phosphoinositide-dependent protein kinase 1;
PI3K, phosphatidylinositol 3-kinase; PJS, Peutz–Jeghers syndrome; PTEN, phos-
phatase and tensin homolog; Raf, rapidly accelerated fibrosarcoma; RET proto-
oncogene, rearranged during transfection; RR, relative risk; Shh, sonic hedge-
hog; STAT3, signal transducer and activator of transcription 3 gene; TGFβ,
transforming growth factor β; TGFBR, transforming growth factor β receptor;
VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth
factor receptor.

high-income areas of the world, intermediate in South and Cen-
tral America and eastern Asia, and lowest in low-income areas
(6, 8). Despite advances in surgery, chemotherapy, and radia-
tion therapy, the prognosis of PC remains extremely poor with
a 1- to 5-year overall survival rate about 25–6%, which is the
lowest 5-year overall survival rate of any cancer in the U.S.
(9), and a 5-year survival rate <10% in the E.U. (8). Progno-
sis of PC is largely determined by the stage (TNM classification)
of disease at diagnosis. Between 2002 and 2008, around 8–9%
of all U.S. PC patients were diagnosed with local disease, 25–
27% with regional disease, and 52–56% with distant disease (10,
11). The median survival ranges from 4.5 months for the most
advanced stage to 24.1 months for the earliest stage (9, 12). Due
to the fact, that PC has a poor response to radio- and chemo-
therapy (13), surgery provides at present the only potentially
curative treatment prolonging survival. However, <15% (14) of
all PC patients are candidates for surgical resection after which
5-year survival rarely exceeds 20–25% (15). The 5-year survival
time for local disease is 24.1%, 9% for regional, 2% for dis-
tant disease, and the overall survival for the average patient
reaches only 6% (10). The exact causes of PC are not known
but some factors such as sex, age, race/ethnicity appear to be
associated with PC. Additionally, modifying factors such as smok-
ing, obesity, diabetes, occupational risk factors, etc., increase the
potential for acquiring genetic mutations that may result in PC
(Table 1).

ESTABLISHED RISKS
Sexes
Pancreatic cancer is about 30% more common in men than in
women. Data from U.S. (9, 10), E.U., and worldwide (4, 101)
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Table 1 | Risk factors for PC.

Risk types Factor dependent risk levels for PC Reference

ESTABILSHED/FIXED RISK

Sexes PC is about 30% more common in men than in women American Cancer Society (ACS) (9),

Howlader et al. (10)

Socioeconomic status Low-income correlates with 80% increased PC risk in white man and 170%

in African American men

Silverman et al. (16)

Age Advanced age is an important risk factors for increasing PC incidence and

mortality rates

World Health Organization (2), Ferlay et al.

(5), American Cancer Society (ACS) (9)

Race/ethnicity Incidence and mortality rates of PC were found highest in African

Americans, intermediate in white Americans and lowest rates in Asian

Americans/Pacific Islanders

American Cancer Society (ACS) (9),

Silverman et al. (16)

MODIFIABLE RISK

Smoking Smoking is responsible for 20–30% of PC. PC risk increases at 74% Parkin (17), Iodice et al. (18), Parkin et al. (19)

Obesity and physical

activity

Risk is 20% higher for obese individuals; high waist-to-hip ratio increases

risk independently of general obesity

Berrington de Gonzalez et al. (20), Arslan et

al. (21), Aune et al. (22), Luo et al. (23)

Alcohol use Studies are inconsistent: first three or more drinks of alcohol per day

increased risk at 20–30%; in contrast: second no increased risk for

consumption of 60 g/day or more of liquor and no association with beer or

wine

Tramacere et al. (24), Michaud et al. (25)

Dietary factors Red and processed meat slightly increases risk; conflicting studies about

meat containing high mutagen levels and PC risk; arguable protective effect

for folate intake; most likely reduced risk due to fruits and vegetables

consumption; no risk correlation for intake of coffee or tea and PC;

increased PC risk for sugar-sweetened carbonated soft drink intake

Larsson and Wolk (26), Anderson et al. (27),

Jansen et al. (28, 29, 30), Larsson et al. (31),

Bao et al. (32), Vrieling et al. (33), Koushik et

al. (34), Turati et al. (35), Genkinger et al. (36)

Vitamin D Inconsistent studies: vitamin D is likely to be protective. No correlation of

low levels of vitamin D and PC, but twofold increased risk for high vitamin

D levels were found recently

Grant (37), Boscoe and Schymura (38), Mohr

et al. (39), Bao et al. (40), Giovannucci (41),

Stolzenberg-Solomon et al. (42, 43)

Diabetes Long-term diabetes type II increases PC risk at 50%. PC risk is increased

for diabetes independent on duration, for hyperglycemia, abnormal glucose

metabolism, insulin resistance, and for type I diabetes

Huxley et al. (44), Henry et al. (45), Jee et al.

(46), Stolzenberg-Solomon et al. (47), Stattin

et al. (48), Stocks et al. (49), Stevens et al.

(50)

OTHER RISK FACTORS

Infection and other

medical conditions

Chronic infections with hepatitis B virus, hepatitis C virus, Helicobacter

pylori, history of cholecystectomy or partial gastrectomy, cystic fibrosis,

periodontal disease, and blood groups A, AB, and B increase risk for PC

Hassan et al. (51), El-Serag et al. (52), Risch

et al. (53), Lin et al. (54), Gong et al. (55),

Maisonneuve et al. (56), Fitzpatrick and Katz

(57), Wolpin et al. (58), Pelzer et al. (59)

Chronic pancreatitis Six-fold increased risk due to chronic pancreatitis; risk correlates with

duration of recurrent pancreatitis and chronic inflammation. Life-time risk of

PC in hereditary pancreatitis is 40%; only 4% of chronic pancreatitis patient

develop PC within 20 years

Raimondi et al. (60), Whitcomb (61),

Lowenfels et al. (62, 63)

GENETIC RISK

Family history Around 10% of PC are referable to inherited genetic factors Petersen et al. (64), Shi et al. (65)

Life-time risk for PC is 1.3–1.5% in general population; for individuals with a

family history of PC increased risk of to two- to threefold; risk is around

6.4-fold greater in individuals with two FDRs and 32-fold greater in

individuals with three or more FDRs

American Cancer Society (ACS) (9), Brune et

al. (66), Lynch et al. (67), Silverman et al.

(68), Tersmette et al. (69), Klein et al. (70),

Canto et al. (71), Wang et al. (72), Grover

and Syngal (73)

(Continued)
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Table 1 | Continued

Risk types Factor dependent risk levels for PC Reference

Hereditary cancer

syndromes

Hereditary breast and ovarian cancer (BRCA1/BRCA2): RR: 3.5 (BRCA2);

RR 2.3 (BRCA1)

Couch et al. (74), Hahn et al. (75), Murphy

(76)

The Peutz–Jeghers syndrome (STK11/LKB1): PC life-time-risk: 11–36% van Lier et al. (77), Giardiello et al. (78),

Korsse et al. (79)

Familial-atypical multiple mole melanoma syndrome (CDKN2A): cumulative

PC risk 17%

Lynch et al. (80), de Snoo et al. (81), Vasen

et al. (82)

Li–Fraumeni (TP53): PC RR: 7.3 Birch et al. (83), Kleihues et al. (84), Ruijs et

al. (85)

Hereditary non-polyposis colorectal cancer (MLH1, MSH2, MSH6, PMS2):

PC life-time-risk: 3.7%

Shi et al. (65), Win et al. (86), Kastrinos et al.

(87)

Familial adenomtosis polyposis (APC ): PC RR 4.46 Giardiello et al. (88)

Ataxia teleangiectasia (ATM ): PC RR 2.41 Roberts et al. (89), Bakker and de Winter (90)

Hereditary syndromes

with chronic inflam-

mation/dysfunction of

gland

Hereditary pancreatitis (PRSS1, SPINK1, PRSS2, CTRC ): PC cumulative

risk: 40–55%

Cystic fibrosis (CFTR): PC RR: 5.3

Raimondi et al. (60), Rebours et al. (91),

Martin and Ulrich (92), Lowenfels et al. (93)

Maisonneuve et al. (56), McWilliams et al.

(94)

Other causative

germ-line mutation for

FPC

PALB2 in 4.9% of FPC Schneider et al. (95), Slater et al. (96),

Harinck et al. (97)
BCRA2 in 3–17% of FPC Schneider et al. (95), Hahn et al. (75),

Murphy et al. (76), Slater et al. (98)

PALLD seldom in FPC Pogue-Geile et al. (99), Slater et al. (100)

demonstrate higher incidence and MRs (ASR per 100,000 persons
of 13.6/12.5) for men compared to women (ASR per 100,000 per-
sons of 10.5/9.5). The observed gender specific disparity might
be attributed to differential lifestyle habits such as use of tobacco,
alcohol, etc., hormone dependence has not been confirmed so
far (102).

Socioeconomic status
Interestingly, socioeconomic status measured as years of educa-
tion negatively correlates with PC mortality (103). In addition,
low income was associated with an 80% increased PC risk in white
man along with an even higher increased risk of 170% in African
American men after accounting for differences in heavy alcohol
drinking, smoking, and dietary factors (16).

Age
Advanced age is one of the most important risk factors for increas-
ing PC incidence and MRs. Notably, the risk is low until the age of
50, but steeply increases after that. Retrospectively, PC IRs in 35-
to 39-year-old men increased from 1.2 up to 100.5 among subjects
reaching 85 years and more. Similar findings could be observed in
women, with increasing IRs from 1.0 (35–39 years of age) to 87.7
(over 85 years of age) (2, 5, 9). The median age of PC is diagnosed
at 71 years (9) in the U.S. and 72 years in the U.K. (17), meaning
that about half of all patients develop the disease at an age higher
than 71/72 years. An even greater risk was found in patients with
familial PC as the average age at diagnosis in these individuals is
around 68 (66).

Race/ethnicity
The IRs and MRs of PC vary across different ethnic groups.
In the U.S. the highest rates were found in African Americans
(IR:15.3/MR: 13.8), followed by intermediate rates in white
Americans (IR:11.6/MR:10.7), and lowest rates in Asian Ameri-
cans/Pacific Islanders (IR: 8.8/MR: 7.5; data respectively for 2005–
2009) (9). Commonly, IRs are higher in African Americans than in
white Americans at every age. The racial disparity might be almost
entirely explained by factors such as cigarette smoking and long-
term diabetes mellitus for men and by moderate/heavy alcohol
consumption and elevated body mass index for woman (16).

MODIFIABLE RISKS
Smoking
Smoking is the most important risk factor for PC and estimated
to be responsible for approximately 20–30% of PC (17–19). A
dose- and duration-related risk increase contributing to an earlier
age of PC onset was found in several studies (104–106). Smokers
face a 74% higher risk for PC compared to non-smokers (107).
A European-wide study in 2012 provided evidence for a 27% risk
increase for every five cigarettes smoked per day (108). Interest-
ingly, several studies showed evidence that the deleterious effects
of alcohol and tobacco in PC occurrence and mortality appear to
resolve after 10 years of abstinence (18, 106, 109). For smokers,
the risk can even be reduced to levels of non-smokers after 5 years
of cessation as assessed by a European-wide prospective study in
2009 (109). Smokers with a family history of PC have an even
greater risk of developing PC than non-smokers (66). For second-
hand smoke exposure and PC the European (EPIC) study showed
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that passive smoking can increase the risk of PC by 50% (109) and
children who are exposed daily to tobacco smoke have double the
risk of developing PC later in life (110). In addition, cigar and pipe
smoking (18, 111) as well as the use of smokeless tobacco (112)
and moist snuff (113) have also been associated with increased PC
risk (114).

Obesity and physical activity
Several studies have linked obesity and overweight to increased
PC risk. The risk for developing PC was found to be around 20%
higher for obese compared to normal weight individuals (20, 21).
An estimated 12% of all PC cases in the UK are attributed to
overweight and obesity (17, 19). In both men and women a BMI
of 25 was associated with an increased risk for PC, but that risk
was more pronounced in humans with a BMI of 35 or greater
with an overall increase by 10% per five-point increase in BMI
(22). Interestingly, having a high waist-to-hip ratio increases PC
risk independently of general obesity (21, 22). Specifically, a 70%
increase in PC risk for women having a high waist-to-hip ratio
was assessed (23). Moreover, overweight and obesity during early
adulthood where not only associated with a greater risk but also
earlier disease onset of PC. Thereby, obesity at an older age was
correlated to a lower overall survival in patients with PC (115). The
mechanisms behind these observations are not well understood,
however chronic inflammation, mediated by molecules such as
TNFα and IL-6, feedback loops associated with the obese state,
and disruptions in autophagy promoting ER stress and mitochon-
drial dysfunction are likely to be involved (116). Supporting this
hypothesis, a study suggested that dietary and other lifestyle factors
influencing insulin resistance are associated with PC risk (117).
At present, there is no well-defined evidence correlating physical
activity and PC risk (118, 119). More recently, recreational phys-
ical activity was proposed to exert a protective effect on PC risk
(120), however this was not confirmed by a previous study (121).

Alcohol use
There is no clear evidence whether alcohol use causes PC or not.
In several but not all previously performed studies alcohol use was
correlated to increased risk for developing PC. A modest increase
in PC risk was observed with consumption of 30 or more grams
of alcohol per day (122). A meta-analysis found that consumption
of three or more drinks of alcohol per day was associated with a
20–30% increased risk of PC (24). However, a recent large nested
case-control study in 2010 showed no increased risk, even at con-
sumption of 60 g/day or more of liquor, and found no association
with beer or wine (25).

Dietary factors
A number of dietary factors have been assessed regarding their
association with PC risk. There is some evidence that consumption
of red and processed meat may slightly increase PC risk (26). How-
ever, studies are conflicting about meat containing high mutagen
levels and increased risk of PC (27, 28). A protective effect has been
reported previously for folate intake (29), although it could not be
confirmed in a recent large analysis (30). At present, opposing
evidence exists regarding the effect of fruit and vegetable con-
sumption on PC risk (31–33). A recent study suggests, that most

nutrients obtained through consumption of fruits and vegetables
may reduce the risk of developing PC (34). Overall, no association
was observed for intake of coffee or tea and PC (35, 36). Interest-
ingly, a positive association for risk of PC was found in the case
of sugar-sweetened carbonated soft drink intake raising insulin
and glucose levels, and thus promoting obesity and diabetes (36,
123–125).

Sunlight and vitamin D
Results correlating vitamin D from sun exposure and PC are incon-
sistent. Some studies associated sun exposure with reduced PC
death rates, suggesting that vitamin D might protect against PC
(37–39). Other studies also assumed that dietary vitamin D and
vitamin D derived from both diet and sunlight exposure might
be protective (40, 41). In an additional study, no positive associa-
tion between 25(OH)D and PC was found, although the previous
finding correlating increased PC risk with low residential UVB
exposure could be confirmed (42). However, more recently, no
correlation of low levels of vitamin D and PC was found and it
was even suggested that high vitamin D levels are associated with
twofold increased risk of PC risk (43).

Diabetes
Diabetes mellitus is both risk factor for PC and as new onset
diabetes a potential early disease sign (126). At diagnosis about
25% of PC patient suffer from diabetes mellitus another 40% are
pre-diabetic (126, 127). Patients with long-term (≥5 years) dia-
betes type II have a 50% increased risk of PC compared with
non-diabetic individuals (44). Recently performed studies pro-
vide evidence for elevated PC risk with diabetes independent
on duration (45) and suggest that hyperglycemia, abnormal glu-
cose metabolism, and insulin resistance correlate with increased
risk of PC (46–49). Increased PC risk has also been reported
among individuals with type I diabetes (50). Moreover, T3cDM
referred to as secondary diabetes was evidenced as major subset
of diabetes potentially accounting for the highest risk of PC in
particular in patients with chronic pancreatitis. Further, T3cDM
was pronounced as consequence of PC in at least 30% of patients
(128). Additional preliminary data suggest, that GCKR rs780094, a
single-nucleotide polymorphism related to diabetes, is associated
with PC risk (129).

OTHER RISK FACTORS
Infections and other medical conditions
Several studies demonstrated increased PC risk among people
with chronic hepatitis B (51), hepatitis C (52), and Helicobacter
pylori (53) infections. In addition, a history of cholecystectomy
(54) or partial gastrectomy (55) as well as other medical condi-
tions including cystic fibrosis (56) and periodontal disease (57)
were associated with increased PC risk. Recent studies suggested a
slightly increased risk of PC for people with non-O blood groups
(i.e., blood groups A, AB, and B) whereas blood group O was less
frequent in patients with PC. However, the mechanisms behind
this carcinogenesis association are still unclear (58, 59).

Pancreatitis
Several studies provide evidence for a strong association
between long-standing chronic pancreatitis and PC. Importantly,
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pancreatitis is also considered an early indicator of PC (60, 130).
An even sixfold increased risk of PC among patients with chronic
pancreatitis after excluding PC was reported in a review study
(60). The risk correlates with the duration of recurrent pancreati-
tis and chronic inflammation (61). An even higher risk was found
in patients with rare types of pancreatitis, such as hereditary pan-
creatitis and tropical pancreatitis. The assessed life-time risk of
PC in individuals with hereditary pancreatitis is with about 40%
high, reaching approximately 75% in paternal inheritance pattern
(62). The lag of time between pancreatitis diagnosis and PC onset
is usually about 10–20 years. Despite these positive correlations
chronic pancreatitis as risk for PC is still uncommon as only about
4% of chronic pancreatitis patient will develop PC within 20 years
of diagnosis (63).

GENETIC RISK
Although the majority of PC appears to be sporadic, around 10%
of PC cases are attributable to inherited genetic factors (64, 65).
Inherited predisposition to PC is currently classified in three dis-
tinct clinical settings: first, tumor predisposition syndromes such
as hereditary breast and ovarian cancer, Peutz–Jeghers Syndrome
(PJS), familial-atypical multiple mole melanoma (FAMMM),
pancreatic-melanoma cancer syndrome (PCMS), or Li–Fraumeni-
syndrome, etc., which are characterized by a clinical phenotype
other than PC, but known to correlate with an increased risk of
PC; second, hereditary pancreatitis and cystic fibrosis, in which
genetically determined early changes of the pancreas might pre-
dispose to the development of PC; third, familial pancreatic cancer
(FPC) which refers to families with two or more first-degree rel-
atives (FDRs) with PC that do not fulfill the criteria for another
inherited predisposition syndrome (95, 131, 132). The term FPC
is used in the case of three or more relatives of any degree (133).

Family history
Accumulating evidence links family history with PC (67–70).
Based on strict inclusion criteria a familial aggregation of PC was
reported to be only 2.7 and 1.9% in two prospective studies from
Sweden and Germany, respectively (134, 135). The life-time PC
risk of 1.3–1.5% in the general population is low (9, 71), but for
individuals with a family history of PC the risk can increase dra-
matically two- to threefold (71). Thereby, the risk stratification
depends on the number of affected family members and the rela-
tionships between at risk individuals (70, 72). The risk has been
estimated to be 6.4-fold greater in individuals with two FDRs with
PC (life-time risk 8–12%) (73) and 32-fold greater in individuals
with three or more FDRs with PC (life-time risk 40%) (66, 70,
73). Moreover, the risk is increased if a FDR is diagnosed with PC
before age 50 (66).

Hereditary cancer syndromes, genetically determined early
changes of the pancreas and FPC
Interestingly, PC occurs frequently in excess of expectance in
several hereditary cancer syndromes, which are associated with
specific germ-line gene mutations. These syndromes show an
increased risk for PC varying from 5 up to 40% (136). Clini-
cally defined familial cancer syndromes are extremely rare in the
general population accounting only for a small number of FPC

(112, 137). For example: familial breast cancer mutations in the
BRCA2 gene, associated with a 3- to 10-fold increased risk of PC,
account for increasing frequency and the highest proportion (5–
17%) of known causes of inherited PC (74–76). A relative risk
(RR) of 3.5 (95% CI 1.87–6.58) for PC in BCRA2 gene mutation
carriers was observed (138, 139), whereas for BRCA1 gene muta-
tion only a modestly increased RR of 2.3 for PC was demonstrated
by a cohort study (140). More recently, an approximately doubled
risk for PC was found in female BRCA carriers with a standard-
ized IR for BRCA1 of 2.55 and for BRCA2 of 2.13 (141). The
PJS, usually caused by germ-line mutations in the STK11/LKB1
gene, has a 132-fold increased risk for developing PC and shows
a cumulative life-time-risk of 11–36% up to age 65–70 among
affected individuals (71, 77, 78). A recent study proposed a cumu-
lative risk for PC in individuals with PJS of 26% at age 70 years
and a RR of 76 (95% CI 36–160) (79). Hereditary non-polyposis
colorectal cancer (HNPCC or Lynch syndrome), associated with
mismatch repair genes (MLH1, MSH2, MSH6, PMS2) mutations
(132) has an estimated life-time risk of 3.7% for developing PC
(8.6-fold higher risk) (65, 86, 142). FAMMM-PC syndrome, an
autosomal dominant disease with variable penetrance and linked
to mutations in the CDKN2A tumor-suppressor gene (143, 144),
is associated with an approximately 13- to 22-fold increased risk
of PC (80, 81). The estimated cumulative risk of developing PC in
putative mutation carriers by age 75 years was 17% (82). Despite
extensive study, germ-line p16 mutations in PC have not been
found in the absence of any manifestation of familial-atypical
multiple molmelanoma. More recently, Roberts et al. showed in a
cohort of 166 familial PC probands that at least 2.4% (4/166) of
familial pancreatic cases could be explained by deleterious ataxia-
telangiectasia (ATM ) mutations (89). Thus, the risk for PC was
found to be increased with a RR of 2.41 (95% CI 0.34–17.1)
(90). Familial adenomatous polyposis (FAP) linked to mutations
in the APC tumor suppressor gene has also been associated with
an increased risk for PC. A RR of 4.46 (95% CL 1.2–11.4) in
polyposis patients and at risk relatives could be observed (88).
Further, the Li–Fraumeni syndrome, a cancer predisposition syn-
drome featuring germ-line mutation of the p53 tumor suppressor
gene, is characterized by a high incidence of a variety of cancers
diagnosed at young ages. PC seems to be moderately associated
with Li–Fraumeni (83) as only 1.3% of all cancers in Li–Fraumeni
patients are PC (84). The expected risk of developing PC for p53
mutation carriers compared to the general population is increased
with a RR of 7.3 (85). Another inherited genetic risk correlates
with cystic fibrosis, characterized by mutations in the cystic fibro-
sis transmembrane conductance regulator (CFTR) gene which is
associated with chronic idiopathic pancreatitis (145). A twofold
increased risk for PC before the age of 60 years (94) and a RR of
5.3 (95% CI 2.4–10.1) for patients with CFTR carrier status was
proposed (56). Hereditary pancreatitis associated with mutations
in the cationic trypsinogen gene, PRSS1 (143), SPINK1, PRSS2,
and CTRC, also lead to an increased risk ranging between 26- and
70-fold compared to the general population, with a cumulative
risk of 40–55% by age 70 for developing PC (60, 91–93). Aside
from the previously discussed hereditary cancer syndromes and
genetically determined early changes of the pancreas, which are
not accounting for many cases of FPC, only few other causative
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germ-line mutation have yet been reported in FPC: BRCA2 muta-
tions were found to be causative for 15% of FPC in the EUROPAC
study, even in the absence of breast cancer (75), for 17% of FPC
as reported by the Hopkins group (76) and for 3% of FPC as
proposed by the FaPaCa study (95). Interestingly, unclassified vari-
ants of BRCA2 mutations of unknown clinical importance were
detected in 8.6% of cases in the FaPaCa study (98). In addition,
the BRCA2-interacting protein PALB2 was identified as a PC sus-
ceptibility gene (146) with germ-line mutations found in up to 5%
of patients with FPC (95–97). Further, oncogenic mutation P239S
in the Palladin (PALLD) gene, found in a linkage analysis of one
large FPC family, has been proposed to be an additional major PC
susceptibility gene (99). However, in the analysis from EUROPAC
and FaPaCa families neither linkage nor any PALLD mutation was
found (100). For other tumor suppressor genes such as MAP2K4,
MADH4 (SMAD4/DAC4), ACVR1B (ALK4, activin receptor type
1B) known to undergo germ-line or somatic genetic inactivation
in clinically sporadic PC, no germ-line mutations could be iden-
tified in any of the FPC kindreds tested (76). Despite, previous
linkage to PC none or non-deleterious germ-line mutations in
RNASEL (147), STK11 (148), CHEK2 (149), and NOD2 (150)
genes could be found in the FaPaCa collection study (147–150).
Additionally, CDKN2a mutations could only be detected in PCMS
or FAMMM-PC families (151), as none of the CDKN2a mutations
were identified in FPC families without melanoma (98, 152). In
summary, only BRCA2, PALB2, and PALLD germ-line mutations
could be observed in FPC families, potentially predisposing to PC.
Importantly, the major gene (s) responsible for the inheritance
patterns of PC remain to be identified.

POTENTIAL THERAPEUTIC TARGETS
As current chemotherapeutic regimens could not provide sub-
stantial survival benefit with a clear increase in overall survival,
several new approaches to significantly improve the clinical out-
come of PC are required. Thereby, four main target groups for
novel compounds can be stratified: first, downstream signal-
ing cascades [RAS, IGFR, mitogen-activated protein/extracellular
signal-regulated kinase kinase (MEK), Akt, phosphatidylinosi-
tol 3-kinase (PI3K), mammalian target of rapamycin (mTOR),
Notch, signal transducer and activator of transcription 3 gene
(STAT3)] within the tumors cells; second, desmoplasia and stro-
mal response [sonic hedgehog (Shh), transforming growth factor
β (TGFβ) PEGPH20 hyaluronidase]; third, tumor microenviron-
ment and immune response [CD40L, cytotoxic T-lymphocyte-
associated antigen 4 (CTLA4) antibodies, L10-interleukin-2 (IL-2)
fusion product]; and fourth, vasculature and angiogenesis (153)
(Figure 1).

SIGNAL-TRANSDUCTION PATHWAYS
The Ras, MAP2K, and MEK pathway
Activated K-Ras, mutated mainly at codon 12 but also less frequent
at codons 13 and 61, is found in a high percentage of PC cases (154,
155). Oncogenic K-Ras is known to be involved in the initiation or
early phase of pancreatic tumorigenesis. K-Ras, a member of the
Ras family of genes, encodes membrane-bound GTP-binding pro-
teins and gets activated by signaling partners, such as the epidermal
growth factor receptor (EGFR). Mutation in K-Ras locks Ras pro-
teins in an activated state, resulting in a continuous induction
of downstream signaling cascades, such as the rapidly accelerated

FIGURE 1 | Potential therapeutic targets. During pancreatic cancer
development a variety of signaling pathways participate in multiple stages of
pancreatic tumorigenesis from early precursor lesions, histologically defined
as pancreatic intraepithelial neoplastic lesions (PanINs 1–3 lesions) to
advanced ductal pancreatic cancer. These histopathological changes are
accompanied by infiltrating immune cells and an increasing desmoplastic

stromal response. According to significantly involved signaling pathways
tumor cell survival, angiogenesis, invasion, desmoplasia, and tumor immune
response are affected, respectively. Ensuing alterations together with
epigenetic changes are strongly involved in promoting tumor progression and
chemotherapy resistance, and thus provide potential therapeutic targets in
pancreatic cancer.
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fibrosarcoma (Raf), MAP2K, mitogen-activated protein kinases
(MAPK), and the PI3K–Akt cascades. Consequently, a variety of
cellular processes, including transcription, translation, cell cycle
progression, cell survival, and motility, are triggered. Several treat-
ment approaches (156–158) targeting the Ras pathway seem to be
promising for reaching a favorable outcome. Moreover, new mole-
cules targeting downstream kinases of mutant K-Ras are currently
investigated to overcome K-Ras induced drug resistance: MAP2K,
though its inhibition has been only partly effective in PC therapy
(159, 160) or MEK, known as one of the most significant down-
stream kinase of K-Ras signaling. As MEK mediates K-Ras induced
effects on proliferation and survival, its inhibition might represent
an innovative therapeutic target especially in tumors carrying an
activating K-Ras mutation. A variety of small molecule inhibitors
developed and validated in vitro for their therapeutic efficiency are
under current investigation in clinical trials.

The EGFR, VEGFR, and IGFR-1 pathway
Tyrosine kinase receptors such as EGFR and vascular endothelial
growth factor receptor (VEGFR) stimulated upon binding EGF
and VEGF promote cell proliferation, survival, and angiogene-
sis. Therapeutic approaches inhibiting EGFR and VEGFR with
monoclonal antibodies and small molecule inhibitors have been
evaluated and approved for clinical use in several solid tumors
(161). EGFR, a transmembrane receptor tyrosine kinase of the
ErbB family, homo- or hetero-dimerizes with other ErB family
members upon binding to its ligands. Thereby, a phosphoryla-
tion of tyrosine residues in its intracellular domain occurs, leading
to recruitment of intracellular proteins causing downstream sig-
naling events through Ras/Raf/MEK/MAPK, PI3K–AKT, and the
STAT family of proteins. However, EGFR can be inappropriately
activated due to its overexpression, activating mutations, overex-
pression of receptor ligands, or loss of their negative regulatory
pathways. Importantly, overexpression of EGFR, which occurs in
approximately 90% of PC (162) and its ligands EGF are both fre-
quently observed in PC (163, 164). Inhibition of EGFR with the
small molecule inhibitor erlotinib was in 2005 the first and until
now the only Food and Drug Administration (FDA) approved
targeted therapy for clinical use, providing only small survival ben-
efit (165). The disappointing results are intriguing: EGFR signals
upstream of K-Ras and hence, its inhibition should have almost
no effect on downstream K-Ras driven oncogenic signals. There-
fore, it is speculated, that the frequent activating K-Ras mutation
acting downstream of EGFR accounts for the only minor impact
of this inhibitor in PC. In addition, several therapeutic approaches
for VEGF (166–168) have all pointed out to be ineffective in PC.
These negative results of all antiangiogenetic approaches tested so
far might be due to the largely hypovascular cancer surrounding
stroma. Recent reported data suggest that decreasing the stromal
density by the inhibition of stromal signaling pathways, e.g., Shh,
might lead to enhanced intratumoral perfusion improving drug
delivery and thus the efficacy of chemotherapy (169). Although,
the therapeutic approaches for EGFR and VEGF showed only
marginal effects, several novel targets within the receptor tyro-
sine kinase signaling cascades (e.g., for the IGF1R pathway) are
under current investigation. IGF1R is constitutively overexpressed
in 64% of PC (170). IGFR promotes survival and antiapoptotic

effects in tumor cells through both K-Ras-dependent and inde-
pendent downstream signaling cascades including the PI3K–Akt,
MAPK, and STAT pathways, thus providing a promising new drug
target in K-Ras mutated tumors (171, 172).

PI3K/Akt signaling pathway
Phosphatidylinositol 3-kinase/Akt signaling pathway, which is
involved in cell proliferation, survival, resistance to apoptosis,
angiogenesis, and invasion, represents another significant ther-
apeutic target in PC (173). Signaling through receptor tyrosine
kinases such as EGFR/IGF1R activate PI3K, which in turn acti-
vates Akt, thereby inducing multiple downstream targets, includ-
ing mTOR and the transcription factor NFκB. Activation of the
PI3K/AKT signaling pathway is found in 59% of PC (174) rep-
resenting an independent negative prognostic factor in PC (175).
Additionally, abnormal expression of the phosphatase and tensin
homolog (PTEN), which normally inactivates PI3K, is frequently
found in PC (176) – just as the overexpression of high mobil-
ity group A1 (HMGA1), an architectural transcription factor
(177). Both alterations activate PI3K–Akt signaling, most likely
responsible for the resistance to gemcitabine (178) and respec-
tive to HMGA1 suggested as promising target for therapeutic
intervention (179, 180). More recently, cell-autonomous PI3K and
3-phosphoinositide-dependent protein kinase 1 (PDK1), but not
Craf, were found to be key effectors of oncogenic K-Ras specifically
in pancreas, suggesting PI3K/PDK1 as a new target for therapeu-
tic approaches (181). Currently, therapeutic interventions target-
ing simultaneous inhibition of MEK/extracellular signal-regulated
kinase (ERK) and PI3K/AKT signaling with the aim to overcome
drug resistance mediated by upstream mutations of Ras and/or
Raf are tested in advanced PC carrying K-Ras, N-Ras, and/or B-Raf
mutations.

mTOR signaling pathway
Mammalian target of rapamycin, a serine/threonine kinase like
Akt,activated by PI3K/Akt signaling and capable of regulating gene
transcription and cell proliferation, represents another potential
promising target. However, using mTOR inhibitors monotherapy
provided only marginal benefit in patients with gemcitabine-
refractory metastatic PC (182). In vitro studies showed evidence,
that prolonged exposure of PC cells to mTOR inhibitors pro-
mote insulin receptor substrate-PI3K interactions, thereby induc-
ing a paradoxically enhanced Akt phosphorylation and cyclin D1
expression (183). Based on these results, trials testing the effect
of mTOR inhibition in combination with EGFR inhibitors were
initiated and are currently ongoing. Intriguingly, the antidia-
betic drug, metformin, is capable to inhibit the mTOR pathway
by activating the AMP-activated protein kinase (AMPK) that
negatively regulates mTOR activity via phosphorylation and sta-
bilization of the tumor suppressor gene TSC2 (184). Recent,
studies, suggest that the use of metformin is associated with
a decreased risk of developing cancers (185, 186). Based on
these findings, tumor cell metabolism as a potential therapeu-
tic approach has gained rising interest. Several preclinical studies
are ongoing to define modalities for earlier detection of PC and
new therapeutic targets (187) via inducing changes in cellular
metabolism.
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STAT3 signaling pathway
STAT signaling pathway plays a role in cell proliferation, sur-
vival, motility, invasion, adhesion, angiogenesis, and inflammation
(188). The classical STAT tyrosine phosphorylation is mediated by
the Janus kinase (JAK) family of tyrosine kinases, which in turn
is activated by cytokine and growth factor receptors (189, 190). In
the pancreas, STAT3 is dispensable for normal development, how-
ever, in the majority of PC a constitutive STAT3 activation due
to phosphorylation of Tyr705 can be found (191–193), suggesting
STAT3 as a potential therapeutic target in PC. STAT3 is required for
the development of the earliest pre-malignant pancreatic lesions,
acinar-to-ductal metaplasia, and pancreatic intraepithelial neopla-
sia (PanIN) (194). More recently, IL-6 transsignaling-dependent
activation of STAT3/Socs3 was found to be required for pro-
moting PanIN progression and pancreatic ductal adenocarcinoma
(PDAC) (195). Importantly, acute inactivation of STAT3 resulted
in inhibition of PC initiation as previously shown in a genetically
engineered mouse model (196). The important role of STAT3 in
driving PDAC progression at multiple stages of pancreatic tumori-
genesis in vivo suggests, that a pharmacological inhibition of the
JAK/Stat pathway might be a promising therapeutic target.

Poly (ADP-ribose) polymerase pathway
Poly (ADP-ribose) polymerase (PARP) includes a family of nuclear
protein enzymes, which are involved in a variety of cellular
processes mainly mediating DNA damage response and apopto-
sis. However, only few PC patients including FPC patients carrying
BRCA mutations or other defects in homologous repair might sig-
nificantly respond to PARP inhibitors in combination with DNA
damaging agents (197). Currently, the PARP inhibitor olaparib in
combination with cisplatin and irinotecan, and also another PARP
inhibitor, veliparib, in combination with different drugs are evalu-
ated in PC (153). A recently performed in vitro study demonstrated
that the PARP-1 inhibitor Rucaparib acts as a chemoradiosensi-
tizer in BRCA2-deficient and -proficient PC cells (198). Moreover,
in vitro using human PC cells and in vivo using a murine model,
a novel function of PARP-1 in regulating the extrinsic apoptosis
machinery, and also an interference combining PARP-1 inhibitors
with death receptor agonists for PC therapy was proposed (199).

RET proto-oncogene (rearranged during transfection) pathway
The proto-oncogene RET, encoding a receptor tyrosine kinase,
together with the glial derived neurotrophic factor (GDNF) were
found strongly expressed in PC (200) and significantly corre-
lated with invasion and survival after surgical resection (201).
GDNF binds to the receptor tyrosine kinase and mediates through
the MAPK pathway proliferation and invasiveness in PC (202,
203). A previous study demonstrated that glucose concentration-
dependent expression of GDNF and RET in human PC cells
correlates with alterations of cell proliferation, suggesting GDNF
and RET as hyperglycemia underlying mechanism inducing PC
progression (204). Further, neuroinvasive pancreatic carcinoma
were found to higher express GDNF receptors RET and GRFα1
compared with normal tissue. Treating mice systemically with
pyrazolopyrimidine-1, a tyrosine kinase inhibitor targeting the
RET pathway, resulted in suppressed nerve invasion toward the
spinal cord and prevented paralysis in mice, suggesting RET

targeted therapy as a potential therapy directed against nerve inva-
sion in PC (205). By applying the anti-RET antibody or RET siRNA
in vitro to human PC cells the effect of GDNF on cell invasion
was abrogated confirming a RET mediated GDNF effect (200).
Further, a G691S RET polymorphism correlating with enhanced
invasiveness was found unregulated in some human PC cells and
in 37% of primary PC, representing a somatic mutation associated
with PC (200). Although substantial clinical studies are missing,
RET might provide a potential target for anti-invasive therapy in
PC (206).

Gastrin
Gastrin, a peptide hormone, secreted by G cells in the gastric
antrum and duodenum, acts as a growth factor for PC (207)
and is expressed together with CCK-BR (the gastrin and chole-
cystokinin B receptor) and its precursors in 23, 95, 55–91% of
PCs, respectively (208). Recent basic research studies demon-
strated that knockdown of gastrin gene expression either by stable
shRNA transfection (209) in human PC cells or by transient
siRNA treatment (210) in gastric cancer cells as well as siRNA
treatment of human BxPC-3 PC xenografts in mice results in
suppressed proliferation and enhanced apoptosis. While for the
orally active inhibitor Z-360 basical research studies were promis-
ing (211) and in combination with gemcitabine well tolerated
by patients with advanced PC (212), substantial clinical data are
missing. Other studies using the selective CCK-BR antagonist
gastrazole demonstrated an improvement in patient overall sur-
vival however with no significant benefit over 5-fluorouracilin
standard therapy in PC (213). Similarly, the use of gastrim-
mune, an immunogen, stimulating the formation of antibodies
against gastrin 17 and its precursors and thus inhibiting the gas-
trin pathway was not effective in a phase III trial in advanced
PC (214, 215).

Cyclooxygenase-2
COX consists of two isoforms converting arachidonic acid
into prostaglandins, which is subsequently metabolized to
prostaglandin E2 (PGE2), PGF2α, PGD2, and other eicosanoids.
While COX-1 is constitutively expressed in many tissues exhibit-
ing a homeostatic role, cyclooxygenase-2 (COX-2) is regulated by
growth factors, cytokines, and tumor promoters. Although COX-2
expression is up regulated in 90% of pancreatic PC its impact in
PC development is complex and rather unclear (216). A variety of
mitogenic signaling pathways and molecules mediating invasive-
ness, angiogenesis, resistance to apoptosis, immunosuppression,
the production of free radicals and peroxidation of procarcino-
gens to carcinogens are involved (217). Studies suppressing COX-2
by using NASIDs demonstrated suppression of proliferation in
PC cells and angiogensis in in vivo and in vitro models (217,
218). A variety of phase II studies using Gemcitabine plus cele-
coxib in advanced PC were inconsistent in findings and provided
only partly survival benefit (219–221). However a phase II study
in advanced PC patients combining celecoxib, gemcitabine, and
irinotecan resulted next to significantly improved median survival
of 13 months and a 1-year survival of 64%, in improved pain
and quality of life (222). More recently, apricoxib, a novel COX-
2 inhibitor in phase II clinical trials, was found to significantly
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enhances the efficacy of gemcitabine/erlotinib in PC and promot-
ing vascular normalization and reversed EMT (223). A further
phase III trial of gemcitabine, celecoxib, and curcumin in patients
with advance inoperable PC is still ongoing.

IMMUNE RESPONSE
Over decades, the majority of research efforts had focused on
molecular pathways crucial for tumor growth and maintenance
thereby largely neglecting local and systemic immune response.
Only recently, accumulating evidence highlighted the importance
of cancer immunity, leading to enhanced tumor resistance and
progression in PC (224). Currently, immunotherapies, which
stimulate host immune response culminating in extensive tumor
destruction (225), are under active preclinical and clinical inves-
tigations. A hallmark of PC is a distinct peritumoral stroma and
an immunosuppressive tumor microenvironment rich in inflam-
matory cells such as T cells, macrophages, myeloid suppressor
cells, etc. These immune cells, inhibit anti-tumor immunity, and
enhance tumor resistance, progression, and tumor chemothera-
peutic resistance, thus providing a promising target for a variety
of immunotherapies (226, 227).

Cytotoxic T-lymphocyte-associated antigen 4
Cytotoxic T-lymphocyte-associated antigen 4 is an inhibitory sig-
nal produced by activated T cells to regulate and limit the immune
response. CTLA4 can be blocked by specific antibodies such as
ipilimumab or tremelimumab resulting in sustained anti-tumor
immuneresponse by activated T cells. CTLA4 antibodies were the
first of this class of immunotherapeutics that achieved U.S. FDA
approval. In contrast, to a previously successful trial for advanced
melanoma, Ipilimumab as a single agent seems to be ineffective
for the treatment of advanced PC (228).

CD40
Another promising target is CD40, a member of the tumor
necrosis factor receptor superfamily. CD40 activation can reverse
immune suppression and drive anti-tumor T cell responses by
mediating the “licensing” of antigen-presenting cells (229). CD40
agonists are suggested to mediate both T cell-dependent and T
cell-independent immune mechanisms of tumor regression in
mice and humans. Thereby, T cell-independent mechanisms seem,
particularly in PC, to be linked to the re-education of tumor-
promoting macrophages and stromal involution (229, 230).

Immune-cytokines
Cytokines, especially IL-2, characterized as one of the most potent
anti-tumor cytokines, are a potential therapeutic approach in PC.
Systemic application of IL-2 due to its toxicity has failed. Local
therapy on the other hand seems promising (231). To guide IL-2
to the tumor site, a tumor-selective human single-chain Fv anti-
body fragment L19 antibody (232) which binds with high affinity
to extradomain B (ED-B) of fibronectin, one of the most tumor-
selective antigens associated with neoangiogenesis and tumor
growth (233, 234), can be used. The resulting L19-IL-2 fusion
product might be an attractive concept to enhance therapeutic
effects of IL-2 by directly conjugating IL-2 to the tumor site (232).

STROMAL REACTION
A hallmark of PC is the extensive peritumoral stroma and desmo-
plasia consisting of a variety of cellular components such as stellate
cells, activated fibroblasts, and inflammatory cells, surrounded
by extracellular matrix (235, 236). The stroma represents up to
90% of the tumor volume. In the past, therapeutic approaches
mainly targeted tumor cells. Only recently, intense stroma has
been recognized as a barrier surrounding tumor cells (236) and
was hypothesized to contribute to inefficient drug delivery and
chemoresistance in PC (169, 236).

Sonic hedgehog pathway
Sonic hedgehog pathway is known to be one of the most domi-
nant signaling cascades contributing to enhanced desmoplasia by
affecting differentiation and motility of human pancreatic stel-
late cells and fibroblasts thereby, influencing tumor growth in
PC (237). Activation of the Shh pathway is managed by two
transmembrane proteins namely tumor-suppressor PTC1 pro-
tein and oncogenic SMO protein. SMO is normally suppressed
by PTC1, however, inactivating mechanisms, such as mutation
of PTC1 or the binding of hedgehog proteins to PTC1, lead to
continuous SMO activation and transcriptional responses. Shh
promotes additional pro-tumorigenic effects by mediating cell
cycle, cell survival, angiogenesis, or interference with activated
K-Ras. Shh is expressed in about 70% of human PC (238). Previ-
ously, the hedgehog inhibitor IPI926, binding SMO, applied in a
genetic mouse model resulted in a significant depletion of tumor-
associated stroma (169). However, a trial investigating hedgehog
inhibitor IPI926 in patients with advanced PC was terminated
due to diminished overall survival in patients on the gemcitabine
plus IPI926 arm. Another therapeutic target of the Shh pathway
includes the transcription factor GLI1, which can be inhibited by
miRNA (239).

Transforming growth factor β

Another pathway involved in stromal reaction is the TGFβ-
dependent signaling cascade (240). TGFβ, a cytokine secreted
by epithelial, endothelial, hematopoietic and mesenchymal cells,
binds, and forms a heteromeric complex with the type I and II
transforming growth factor β receptor (TGFBR), consequently
triggering the phosphorylation of SMAD2 and 3. Cytoplasmic
SMAD2/3 proteins form a complex with SMAD4, which translo-
cates into the nucleus and activates gene transcription. However,
TGFβ can also involve Ras, PI3K, and MAPK via pathways inde-
pendent of SMAD. Mutations of the TGFBR1, TGFBR2, and
SMAD4 genes are found in about 1, 4, and 50% of patients with
PC, respectively (241). TGFβ is known to promote pro-invasive,
pro-metastatic microenvironment playing a central role in stroma
production, angiogenesis, and tumor-induced immunosuppres-
sion (242, 243). Inactivating mutations in the Smad4 gene and
up regulation of the inhibitory Smad6 and 7 genes have been
found in many PCs (244). Several drugs have been applied as
therapeutic approach. Importantly, the antisense oligodeoxynu-
cleotide trabedersen AP 12009 monotherapy, specifically inhibit-
ing TGFβ2 expression, has shown a markedly enhanced survival
in PC (245).
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Hyaluronan
However, stromal-related signaling pathways such as TGFβ or
Shh are not the only therapeutic possibilities; acellular matrix
components can also be targeted. Hyaluronan, a non-sulfated gly-
cosaminoglycan is highly abundant in the extracellular matrix of
PC tissues (246, 247). To this effect, PEGylated human recom-
binant PH20 hyaluronidase (PEGPH20) leads to re-expansion
of tumor blood vessels and increased concentration of gemc-
itabine within the tumor, resulting in significantly reduced tumor
growth and enhanced survival as previously shown in a murine
study (246).

EMBRYONIC SIGNALING PATHWAYS
Notch, Hedgehog, TGFβ, and Wntβ-catenin
Oncofetal signaling pathways are typically present during fetal
development, but are also frequently reactivated in cancers
enhancing tumor progression and mediating resistance to
chemotherapy (248). Major signaling pathways that are genet-
ically affected in PC (249) are Notch, Hedgehog, TGFβ, and
Wntβ-catenin (249). As mentioned above, TGFβ and Hedgehog
signaling pathway are mainly involved in stromal reactions. On
the other hand, Wnt signaling is involved in normal embryonic
development and homeostatic self-renewal of a number of adult
tissues. In the setting of cancer Wnt is involved in proliferation and
anti-apoptosis. Aberrant activation of this pathway, due to gain-
of-function mutation of activators or loss-of-function mutation of
inhibitors of Wnt signaling could result in carcinogenesis and pro-
gression. Enhanced activation of Wnt signaling is found in 65% of
PC (250). Importantly, Wnt signaling is induced by the hedgehog
and SMAD4 signaling pathway (251, 252), which should be con-
sidered for a combined therapeutic intervention. Wnt/β-catenin
signaling in PC might also be involved in chemoresistance (253)
and metastasis (254), thus representing a promising therapeutic
approach. The main function of the Notch signaling appears to
be maintenance of pancreatic progenitor-like cells in an undiffer-
entiated state by promoting their survival and persistence (255),
similar to its function in embryogenesis (256). The Notch ligand
and its receptor are highly expressed in PC compared with normal
epithelial tissue (257). Activation of Notch, similar to K-Ras has
been implicated in development of PanINs and in the initiation,
progression, and maintenance of invasive PC suggesting inhibi-
tion of Notch signaling as a promising therapeutic strategy in this
malignancy (258–260).

EPIGENETIC CHANGES
DNA methylation and histone acetylation
Epigenetic alterations are heritable with no changes in DNA
sequence, and can be reversed thus representing targets for thera-
peutic interventions. Several epigenetic mechanisms affecting gene
expression at the chromatin level are involved in carcinogenesis
and tumor progression in PC such as DNA methylation associ-
ated with gene silencing and histone acetylation associated with
activation of gene transcription (261). Histone acetylation leads to
a reversal of positive charge on the histones, resulting in euchro-
matin,a loosened chromatin structure,providing transcriptionally
active DNA. Histone deacetylases (HDAC) are capable to reverse
this relaxation thereby reducing transcription of genes, among

them several potential tumor suppressor genes. Several members
of the HDAC family are highly expressed in PC, as HDAC2 and
6, thereby enhancing resistance to apoptosis (262, 263). Aberrant
DNA methylation is an important cancer hallmark and associated
with gene silencing. Generally, in cancer cell DNA is considered
to be hypomethylated, which is associated with genomic insta-
bility and transcription of silenced transposable sequences (264).
However, CpG islands found in the promoter regions of tumor
suppressor genes, commonly undergo DNA hypermethylation,
resulting in gene silencing, thereby promoting tumor development
and progression (264). Thus, DNA hypermethylation of tumor
suppressor genes might be a promising therapeutic target.

Telomerase
Telomeres are located at the end of chromosomes and normally
decrease with each cell division limiting the lifespan of the cells.
However, in a variety of malignant neoplasms including PC telom-
erase is strongly activated, ensuring unlimited proliferation by
adding TTAGGG repeat at the end of the chromosome. Telomerase
activity was found to be present in pancreatic juice of patients with
PC (265) and overexpressed in 95% of PC thus providing a reliable
target in PC therapy (266). Although a phase I/II trial of GV1001,
a telomerase peptide vaccine designed to prime the immune sys-
tem to recognize telomerase has shown promising results (267) an
interim analysis of a recently performed phase III trial in 520 peo-
ple with PC showed no survival benefit. Latterly, as the previous
trial failed, GV1001 is tested in a phase III trial in combination with
gemcitabine and capecitabine in locally advanced and metastatic
PC (268). However the results of theses trial are pending.

CONCLUSION
Although the exact causes driving PC initiation and progression
are still unclear this review aims to summarize most important
established and modifying risk factors underlying PC develop-
ment. It further elucidates signaling pathways already involved in
therapeutic approaches or considerable as new therapeutic targets
treating PC patients. In particular, signaling pathways mediating
desmoplastic stromal response and tumor immunity, largely been
neglected and attracted attention only recently, might provide
promising therapeutic targets for future therapy. As current ther-
apies failed to significantly impair PC progression and improve
cancer patient survival, new therapeutic approaches, and clinical
studies are strongly required.
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