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The analyses of genome sequences have led to the proposal that lateral gene transfers
(LGTs) among prokaryotes are so widespread that they disguise the interrelationships
among these organisms. This has led to questioning of whether the Darwinian model
of evolution is applicable to prokaryotic organisms. In this review, we discuss the
usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs)
and conserved signature proteins (CSPs) for understanding the evolutionary relationships
among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The
analyses of genomic sequences have identified large numbers of CSIs and CSPs that are
unique properties of different groups of prokaryotes ranging from phylum to genus levels.
The species distribution patterns of these molecular signatures strongly support a tree-like
vertical inheritance of the genes containing these molecular signatures that is consistent
with phylogenetic trees. Recent detailed studies in this regard on the Thermotogae and
Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that
are specific for the species from these two taxa and a number of their major clades.
The genetic changes responsible for these CSIs (and CSPs) initially likely occurred in the
common ancestors of these taxa and then vertically transferred to various descendants.
Although some CSIs and CSPs in unrelated groups of prokaryotes were identified, their
small numbers and random occurrence has no apparent influence on the consistent
tree-like branching pattern emerging from other markers. These results provide evidence
that although LGT is an important evolutionary force, it does not mask the tree-like
branching pattern of prokaryotes or understanding of their evolutionary relationships. The
identified CSIs and CSPs also provide novel and highly specific means for identification of
different groups of microbes and for taxonomical and biochemical studies.
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INTRODUCTION
The understanding of prokaryotic relationships is one of the
most important goals of evolutionary sciences. These relation-
ships have been difficult to understand due to the simplicity and
antiquity of prokaryotic organisms and disagreements in view-
points among evolutionary biologists regarding the importance
of different factors when grouping prokaryotes. Although earlier
studies in this regard were based on morphology or physiol-
ogy (Cowan, 1965; Buchanan and Gibbons, 1974; Stanier et al.,
1976), the field itself has evolved to account for new informa-
tion brought about by technological or informational break-
throughs, viz. molecular data, DNA hybridization and 16S rRNA
(Zuckerkandl and Pauling, 1965; Woese and Fox, 1977; Woese,
1987). The most recent breakthrough involves rapid and easily
available sequencing of entire genomic sequences (Fleischmann
et al., 1995; Iguchi et al., 2009; NCBI genomic database, 2012).
This has allowed determination of evolutionary relationships
among different organisms based upon large numbers of different

gene/protein sequences using a variety of approaches (Gupta,
1998; Haggerty et al., 2009; Puigbo et al., 2009; Blair and Murphy,
2011).

The comparative genomic analyses have revealed that phylo-
genetic relationships deducted based upon different genes and
protein sequences are not congruent and lateral gene trans-
fer (LGT) among different taxa is indicated as the main factor
responsible for this lack of concordance (Gogarten et al., 2002;
Bapteste and Boucher, 2008; Dagan et al., 2008; Puigbo et al.,
2009; Swithers et al., 2009; Andam and Gogarten, 2011). This has
led to questioning of whether the Darwinian model of evolution
involving vertical inheritance of genes from parents to progenies
(Darwin, 1859) is applicable to the prokaryotes (Doolittle, 1999;
Pennisi, 1999; Gogarten et al., 2002; Dagan and Martin, 2006;
Doolittle and Bapteste, 2007; Dagan et al., 2008; Bapteste et al.,
2009; Williams et al., 2011). Multiple mechanisms are known to
contribute to the evolution of an organism’s genomes includ-
ing genes that are acquired vertically from the parent organism,
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evolution of new genes by gene duplication and divergence, gain
of new genes by means of LGTs, as well as gene losses in various
lineages (Bapteste et al., 2009; Ragan and Beiko, 2009; Treangen
and Rocha, 2011; Williams et al., 2011). LGT, in particular, is
being increasingly thought to have an overbearing influence on
prokaryotic genome composition. Although rRNAs, ribosomal
proteins and other genes involved in the information transfer
processes are considered less prone to LGTs due to their involve-
ment in complex gene networks (Jain et al., 1999; Sorek et al.,
2007), recent studies indicate that no single gene/protein is com-
pletely immune to this process (Yap et al., 1999; Doolittle and
Bapteste, 2007; Dagan et al., 2008). Some recent studies have esti-
mated that over time most genes (81 ± 15%) have undergone at
least one LGT event (Doolittle, 1999; Dagan and Martin, 2007;
Doolittle and Bapteste, 2007; Dagan et al., 2008). These studies
in large part form the basis of the hypothesis that LGTs have
led to abolishment of all signals that can be used for determi-
nation of prokaryotic evolutionary relationships and a call for
uprooting the tree of life (Martin, 1999; Pennisi, 1999; Doolittle,
2000; Gogarten et al., 2002; Delsuc et al., 2005; Bapteste et al.,
2009).

Although the importance of LGTs in genome evolution is
widely accepted, there is considerable disagreement concerning
the prevalence of LGTs and their impact on prokaryotic evolu-
tionary relationships. While some authors have indicated that
LGT is so profuse that its influence disguises the Darwinian mode
of evolution involving vertical inheritance of genes (Gogarten
et al., 2002; Bapteste et al., 2005b, 2009; Doolittle and Bapteste,
2007; Koonin, 2007), others have inferred that the incidences of
LGTs are either very minimal or limited and those genes that
are laterally transferred have little impact on prokaryotic phy-
logeny (Wolf et al., 2002; Kurland et al., 2003; Dutilh et al., 2004;
Beiko et al., 2005; Kunin et al., 2005; Kurland, 2005; Galtier,
2007; Puigbo et al., 2009; Gao and Gupta, 2012a). However, there
are no standardized methods to assess LGTs and the methods
used to infer LGTs are varied and based upon large numbers of
often poorly supported assumptions (Koski and Golding, 2001;
Koski et al., 2001; Ragan, 2001; Beiko et al., 2005; Boto, 2010).
Thus, the prevalence of LGTs differ greatly among different stud-
ies and often similar datasets have led to dissimilar conclusions
(Koski et al., 2001; Ragan, 2001; Wang, 2001; Lerat et al., 2003;
Susko et al., 2006; Zhaxybayeva et al., 2007; Marri and Golding,
2008; Roettger et al., 2009). Therefore, prior to concluding that in
view of LGTs the Darwinian mode of evolution is not a suitable
model for prokaryotes, reliability of the incidences of LGTs and
their overall impact on the evolutionary relationships should be
critically examined.

Despite the prevalence of LGTs, phylogenetic trees based upon
16S rRNA as well as numerous single genes as well multi-gene
analyses strongly support the existence of large numbers of dis-
tinct phyla of bacteria (Ludwig and Klenk, 2005). Additionally,
these trees also clearly delineate many discrete taxonomic clades
within these phyla (Woese, 1987; Ludwig and Klenk, 2005;
Ciccarelli et al., 2006; Wu et al., 2009; Gao and Gupta, 2012a).
In a recent detailed study Puigbo et al. (2009) reported construc-
tion of phylogenetic trees for 6901 prokaryotic genes. Although
there were significant topological differences among these trees,

a consistent phylogenetic signal was observed in most of these
trees, indicating that the LGT events, which were of random
nature, did not obscure the central trend resulting from the ver-
tical transfer of genes. The fact that similar prokaryotic clades
at different taxonomic levels (ranging from phyla to genera) are
consistently identified in phylogenetic trees based upon differ-
ent gene/protein sequences strongly indicates that the distinctness
of the prokaryotic taxa and their evolutionary relationships are
in large part discernible and they have not been obliterated by
LGTs (Woese, 1987; Daubin et al., 2002; Kurland et al., 2003;
Lerat et al., 2003; Beiko et al., 2005; Kurland, 2005; Ludwig and
Klenk, 2005; Ciccarelli et al., 2006; Ragan and Beiko, 2009; Wu
et al., 2009; Boto, 2010; Yarza et al., 2010; Gupta, 2010b; Gao and
Gupta, 2012a). To account for the above observations and the
occurrences of LGTs, it has been suggested that the prokaryotic
evolution has both tree-like (at intermediate phylogenetic depths)
and non-tree (or net-like) (at the base and tips) characteristics
(Dagan et al., 2008; Puigbo et al., 2009, 2010; Swithers et al., 2009;
Boto, 2010; Beiko, 2011; Dagan, 2011; Kloesges et al., 2011; Popa
et al., 2011).

The availability of genome sequences is also enabling devel-
opment of novel and independent sequence based approaches
for determining the evolutionary relationships among organisms
and to assess the impact of LGTs on these relationships. In this
review, we provide a summary of our recent work in this area
based upon two different types of molecular markers that we
have used successfully for understanding the evolutionary rela-
tionships among prokaryotes. Based upon these markers it is now
possible to identify different prokaryotic taxa ranging from phyla
to genera in clear molecular terms and the evolutionary rela-
tionships among them can also be reliably deducted (Gupta and
Griffiths, 2002; Gupta, 2009, 2010a; Gao and Gupta, 2012b). The
relationships revealed by these new approaches strongly support a
tree-like branching pattern among prokaryotes and the observed
incidences of LGTs, which exhibit no specific pattern or statistical
significance, apparently have no major impact on the derived rela-
tionships. It is contended that these molecular markers provide
valuable means for developing a reliable phylogeny and taxonomy
of the prokaryotic organisms.

USEFULNESS OF CONSERVED SIGNATURE INDELS (CSIs)
AND CONSERVED SIGNATURE PROTEINS (CSPs) FOR
UNDERSTANDING EVOLUTIONARY RELATIONSHIPS
AMONG PROKARYOTES
Of the two kinds of molecular markers that we are using for
studying prokaryotic evolution, the conserved signature indels
(inserts or deletions), or CSIs, in protein sequences comprises
an important category (Gupta, 1998, 2010a; Griffiths and Gupta,
2001). The CSIs that provide useful molecular markers for evo-
lutionary studies are generally of the same lengths and they are
flanked on both sides by conserved regions to ensure that the
observed changes are not caused by alignment artifacts (Gupta,
1998; Gupta and Griffiths, 2002; Jordan and Goldman, 2012).
When such CSIs are present in the same position in a given
protein in a group of related species, their presence is most par-
simoniously explained by postulating that the genetic change
leading to the CSI occurred in a common ancestor of this group
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and then this gene with the indel was vertically transmitted
to its progeny (Rivera and Lake, 1992; Baldauf and Palmer,
1993; Gupta, 1998, 2000b; Rokas and Holland, 2000; Cutino-
Jimenez et al., 2010). The CSIs that are uniquely shared by
organisms of one taxa provide molecular tools for identifying
the species from this taxa and consolidating the relationships
among bacteria of that taxa by delimiting it in molecular terms
(Gupta, 2004). Additionally, depending upon the presence or
absence of a given CSI in the outgroup species, it can be deter-
mined whether the indel represents an insert or a deletion and
based upon this a rooted relationship among the species of
interest can be derived. Our earlier work in this regard has
led to identification of large numbers of CSIs that are spe-
cific for different groups of microbes at various phylogenetic
levels (Table 1; Gupta and Griffiths, 2006; Gupta, 2009; Gupta
and Bhandari, 2011; Gupta and Shami, 2011; Gao and Gupta,
2012b).

The second kind of molecular markers that we have usefully
employed in our systematic and evolutionary studies are whole
proteins that are uniquely found in particular groups or sub-
groups of bacteria (Gupta, 2006; Gupta and Griffiths, 2006; Gupta
and Mok, 2007; Gao and Gupta, 2012b). Comparative analyses
of genomic sequences have indicated that many conserved pro-
teins are uniquely present in all species from particular groups,
at different phylogenetic depths (Daubin and Ochman, 2004;
Lerat et al., 2005; Gupta, 2006; Gupta and Griffiths, 2006; Gupta
and Mok, 2007; Dutilh et al., 2008; Gao and Gupta, 2012b).
Because of their unique presence in species from particular phy-
logenetic clades of species, it is likely that the genes for these
CSPs originated once in a common ancestor of these groups
and then vertically acquired by all its descendants. Because of
their taxa specificity these CSPs again provide valuable molecular
markers for identifying different groups of species in molecu-
lar terms and for evolutionary studies (Gao and Gupta, 2007;
Gupta and Mathews, 2010; Gupta, 2010b). However, when a
CSP (or CSI) is confined to certain species/strains, then based
upon this information alone, it is often difficult to determine
whether these species form a clade in the phylogenetic sense
or not. Hence, to understand the evolutionary significance of
these signatures, such studies are generally performed in con-
junction with phylogenetic analysis, which provides a refer-
ence point for evaluating the significance of various CSIs and
CSPs (Gao and Gupta, 2007; Gupta and Mathews, 2010; Gupta,
2010b).

Molecular markers in the form of CSIs and CSPs have proven
useful for examining or consolidating prokaryotic relationships
at domain, phylum as well as intra-phylum levels. Table 1 pro-
vides a summary of some bacterial and archaeal taxa for which
CSIs and CSPs have been identified (Gupta, 2010a). Two recent
detailed studies based upon CSIs and CSPs have focused upon
understanding evolutionary relationships within the phylum
Thermotogae and the domain Archaea (Gao and Gupta, 2007;
Gupta and Bhandari, 2011; Gupta and Shami, 2011). To illus-
trate the usefulness of these molecular markers for elucidation of
prokaryotic evolutionary relationships, and to assess the influence
of LGTs on the derived inferences, results for these two taxonomic
groups are reviewed here.

MOLECULAR MARKERS FOR THE THERMOTOGAE
The species of the phylum Thermotogae are a group of hyperther-
mophilic, anaerobic, gram-negative bacteria recognized by a dis-
tinctive toga-like sheath structure and their ability to grow at high
temperatures (Huber et al., 1986). The approximately 90 species
of this phylum are currently divided into nine Genera within a
single family termed the Thermotogaceae (Euzeby, 2011; NCBI
Taxonomy, 2012). The Thermotogae species, prospectively, are
important tools for industrial and biotechnological applications
due to the ecological niche they inhabit and the thermo-stable
proteins that they harbor (Conners et al., 2006). With the publi-
cation of the genome for T. maritima, the first species from this
phylum (Nelson et al., 1999), the Thermotogae were brought to
the forefront of LGT debate. This was due to the fact that based
upon Blast searches it was determined that for about 25% of the
genes from T. maritima genome, the closest blast hits were from
archaeal species rather than any bacteria, leading to the infer-
ence that Thermotogae species have incurred high degree of LGTs
with the archaeal organisms (Nelson et al., 1999). Upon revisit-
ing this issue, Zhaxybayeva et al. (2009) found that for only about
11% of the Thermotogae proteins Archaea were the closest hits,
but that the Thermotogae proteins exhibited maximal similarity
(42–48% of genes) to the Firmicutes. Based upon these obser-
vations, the Thermotogae species genomes were proposed to be
a chimera composed of different bacterial and archaeal sources
(Zhaxybayeva et al., 2009). However, these estimates for LGTs
have been questioned in other studies which indicate that much
less (6–7%) of the Thermotogae genome has been laterally trans-
ferred (Garcia-Vallve et al., 2000; Ochman et al., 2000). Further,
in view of the fact that Thermotogae species branch in proxim-
ity of the Firmicutes phylum (Gupta, 2001; Griffiths and Gupta,
2004b), the observation that a preponderance of the top hits
for the Thermotogae species are from Firmicutes is an expected
results, and it does not indicate that these genes have been later-
ally transferred (Zhaxybayeva et al., 2009; Andam and Gogarten,
2011).

Apart from their unique protein toga, the species of the phy-
lum Thermotogae are assigned to this group and divided into
its different genera primarily on the basis of their branching in
the 16S rRNA trees (Reysenbach, 2001; Huber and Hannig, 2006;
Zhaxybayeva et al., 2009; Yarza et al., 2010). Until recently, no
unique molecular or biochemical characteristics were known that
could distinguish the species of this phylum from other bacte-
ria. For identification of molecular markers that could possibly
define this phylum and its sub-taxa, a genome wide analysis
was performed on protein sequences from 12 Thermotogae spp.
whose genomes were available (Gupta and Bhandari, 2011). The
protein sequences from these 12 species as well as species rep-
resenting other bacteria phyla were aligned and examined for
the presence of CSIs that were uniquely present in Thermotogae
species or those that were commonly shared with some other
bacteria. The analysis identified numerous CSIs specific for all
Thermotogae. An example of a CSI consisting of a 3 aa long
insert in the ribosomal protein L7 that is exclusively present
in all sequenced Thermotogae species, including two recently
sequenced species, is shown in Figure 1A. The unique pres-
ence of this CSI of the same length, at the same position in
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Table 1 | Overview of the CSIs and CSPs that have been identified for some major prokaryotic taxa.

Taxonomic group Number of CSPs/CSIs References

Archaea Archaeal Kingdom specific: 16 CSPs
Subgroups: Thaumarchaeota—6 CSIs/201 CSPs, Euryarchaeota—6 CSPs,
Thermoacidophiles—77 CSPs, Halophiles—127 CSPs, Methanogens—31
CSPs, Thermococcus-Pyrococcus clade—141 CSPs

Gao and Gupta, 2007; Gupta
and Shami, 2011

Crenarchaeota Phylum specific: 6 CSIs, 13 CSPs Gupta and Shami, 2011

Subgroups: Sulfolobales—3 CSIs/151 CSPs, Thermoproteales—5 CSIs/25
CSPs, Desulfurococcales—4CSPs, Sulfolobales-Desulfurococcales clade—2
CSIs/18 CSPs

Thaumarchaeota >200 CSPs Gupta and Shami, 2011

Thermotogae Phylum specific: 18 CSIs Gupta and Bhandari, 2011

Subgroups: Thermotoga genus—13 CSIs, Thermosipho genus—7 CSIs,
Thermosipho-Fervidobacterium clade—13 CSIs,
Thermotoga-Thermosipho-Fervidobacterium clade—5 CSIs,
Petrotoga-Kosmotoga clade—4 CSIs

Cyanobacteria Phylum specific: 39 CSPs/10 CSIs
Subgroups: Cyanobacterial Clade A—14 CSPs/1 CSI, Other
Cyanobacteria (outside clade A)—5 CSPs/4 CSIs, Cyanobacterial Clade
C—60 CSPs, Nostocales—65 CSPs, Chroococcales—8 CSPs,
Synechococcus—14 CSPs, Prochlorococcus—19 CSPs, Low B/A type
Prochlorococcus—67 CSPs

Gupta, 2009; Gupta and
Mathews, 2010

Chlamydiae Phylum specific: 59 CSPs/8 CSIs Gupta and Griffiths, 2006

Subgroups: Chlamydiaceae—79 CSPs, Chlamydophila—20 CSPs,
Chlamydia—20 CSPs

Bacteroidetes, chlorobi
and fibrobacteres

Phylum specific: 1 CSP/2 CSIs
Subgroup specific: Bacteroidetes—27 CSPs/2 CSIs, Chlorobi—51 CSPs/2 CSIs,
Bacteroidetes and Chlorobi clade—5 CSPs/3CSIs

Gupta, 2004

Actinobacteria Phylum specific: 24 CSPs/4 CSIs
Subgroup specific: CMN group—13 CSPs, Mycobacterium and Nocardia—14
CSIs, Mycobacterium—24 CSPs, Micrococcineae—24 CSPs,
Corynebacteriales—4 CSPs/2 CSIs, Bifidobacteriales—14 CSPs/1 CSI

Gao and Gupta, 2005,
2012b; Gao et al., 2006

Deinococcus-thermus Phylum specific: 65 CSPs/8 CSIs
Subgroup specific: Deinococci—206 SPs

Griffiths and Gupta, 2004a,
2007a

Aquificae Phylum specific: 10 CSPs/5 CSIs Griffiths and Gupta, 2006b,
2004b

α-proteobacteria Class specific: 6 CSPs/13 CSIs Gupta and Mok, 2007

Subgroups: Rickettsiales—3 CSPs/2 CSIs, Rickettsiaceae—4 CSPs/5 CSIs,
Anaplasmataceae—5 CSPs/2 CSIs, Rhodobacterales-Caulobacter-Rhizobiales
clade—2 CSIs, Rhodobacterales-Caulobacter clade—1 CSI, Rhizobiales—6
CSPs/1CSI, Bradyrhizobiaceae—62 CSPs/2CSIs

γ-proteobacteria Class specific: 4 CSPs/1 CSI Gao et al., 2009

Subgroups: 20 CSPs, 2 CSIs for various subgroup combinations of
subgroups

ε-proteobacteria Class specific: 49 CSPs/4 CSIs Gupta, 2006

Subgroups: Wolinella-Helicobacter clade—11 CSPs/2 CSIs, Campylobacter
genus—18 CSPs/1 CSI

Pasteurellales Order specific: 44 CSIs Naushad and Gupta, 2012

Subgroups: Pasteurellales Clade I—13 CSIs, Pasteurellales Clade II—9 CSIs

Clostridia sensu stricto Genus specific: 10 CSPs/3 CSIs Gupta and Gao, 2009

The table provides general information regarding the number of CSIs and CSPs identified for many taxonomic groups on which genomic studies have been

conducted. Further details can be obtained from the corresponding studies.
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FIGURE 1 | Evolutionary relationships among Thermotogae

species based upon CSIs and a Phylogenetic Tree. (A) Partial sequence
alignment for the ribosomal protein L7 showing a 3 aa CSI (boxed) that is
specific for all detected species of the Thermotogae phylum. The dashes in
the alignment (−) indicate amino acid identity with the corresponding
residue in the top line; (B) A maximum likelihood tree for the
12 sequenced Thermotogae species based upon concatenated

sequences for 12 conserved proteins. (C) A summary diagram
showing the species specificities of different CSIs identified for the
Thermotogae group of species. The left panel highlights the CSIs that are
specific for the entire Thermotogae phylum or its sub-groups, whereas the
right panel indicates the CSIs that were also present in some
non-Thermotogae organisms. Figures 1A,B modified from Gupta and
Bhandari (2011).

this universally distributed protein, in different species from the
phylum Thermotogae indicates that the genetic change lead-
ing to this CSI occurred once in the common ancestor of
the Thermotogae species. In addition to this CSI, this study
also identified 17 other CSIs in other important proteins such
as DNA recombination protein RecA, DNA polymerase I and
tryptophanyl-tRNA synthetase that are also specific for the
species from the phylum Thermotogae (Gupta and Bhandari,
2011).

In addition to the large numbers of CSIs that were uniquely
present in all Thermotogae species, this study also identified
many CSIs that were specific for different sub-groups within
the phylum Thermotogae (Gupta and Bhandari, 2011). These
included 13 CSIs that were specific for the species of the genus

Thermotoga and seven others that distinguished species of the
genus Thermosipho from all others. However, it was observed that
the species Thermotoga lettingae shared only 1 of 13 CSIs that
were otherwise commonly present in other species of this genus.
This suggests that T. lettingae, which is distantly related to all
other Thermotoga species, should be assigned to a separate genus.
Besides these CSIs that were specific for the species of these two
genera, 13 CSIs supported a specific relationships among species
of the Fervidobacterium and Thermosipho genera; 5 CSIs were
shared by species from the genus Thermotoga and those from
the Fervidobacterium-Thermosipho clade; and 4 CSIs supported
a grouping of the Petrotoga and Kosmotoga genera along with
the species Thermotogales bacterium MesG1.Ag.4.2 (Figure 1C,
left panel; Gupta and Bhandari, 2011). Importantly, all of the
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relationships indicated by various CSIs were also independently
observed in a phylogenetic tree for the Thermotogae species
based upon concatenated sequences for 12 conserved proteins
(Figure 1B).

The CSIs identified in the above study independently and
strongly supported different nodes observed in the phylogenetic
tree for Thermotogae species all the way from phylum to genus
level. If the hypothesis that LGT events have abolished the ability
to discern prokaryotic relationships was correct, then it should
have been difficult to identify discrete molecular markers sup-
porting distant relationships among these species. At the very
least, the Thermotogae species would have shown relationships
with species of other prokaryotic groups such as Firmicutes or
Archaea as frequently as they did with one another. In this study,
in addition to the CSIs that were specific for the Thermotogae
species (Figure 1C, left panel), several CSIs were also identified
that the Thermotogae shared with species from other prokary-
otic or eukaryotic organisms (Figure 1C, right panel). However,
such CSIs, suggesting possible LGT between Thermotogae and
other taxa, were far outweighed by CSIs supporting the mono-
phyletic, tree-like relationships among the species of the phylum
(left panel) (Gupta and Bhandari, 2011). Assuming that all the
CSIs that the Thermotogae shared with other groups are due to
LGT, less than 20% (16 of 85) of all Thermotogae genes con-
taining these CSIs have incurred LGTs (Gupta and Bhandari,
2011). Moreover, these presumed LGT events are of random
nature and in no case do the Thermotogae species share more
than a total of 3 CSIs with any particular phyla of species.
Additionally, in most of these cases only a few species from these
other taxa contained the indels that were present in most or all
Thermotogae species (Gupta and Bhandari, 2011). Thus, these
other CSIs, although they are present in a few isolated species
from other taxa, are also largely specific for the Thermotogae
species and they do not affect the ability of other CSIs to clearly
discriminate Thermotogae species from all other bacteria or to
deduce the evolutionary relationships amongst species from this
phylum.

The shared presence of similar CSI in unrelated taxa can result
from two different possibilities, either the gene with the CSI was
laterally transferred among the two groups or that independent
CSIs owing to two separate genetic events are responsible for these
CSIs. After identification of such CSIs, tree-making approaches
can be used to test if the presence of the indel in the two groups
is due to LGT. Previously, in our work, a number of CSIs in
the GlyA and MurA proteins that were commonly shared by the
Chlamydiae and a subgroup of Actinobacteria were shown to be
due to lateral transfer of genes from Actinobacteria to a com-
mon ancestor of the Chlamydiae (Griffiths and Gupta, 2006a).
Recently, the shared presence of several CSIs in the bacterio-
chlorophyll biosynthesis proteins by unrelated phyla of photo-
synthetic prokaryotes has also been shown to be due to LGTs
(Raymond et al., 2002; Gupta, 2012). However, in many other
instances phylogenetic analyses have not supported LGT as the
possible reason for the presence of a related CSI in unrelated
taxa. In these cases, similar CSIs have originated independently
in these lineages due to their presumed similar functions in these
particular taxa.

MOLECULAR MARKERS FOR THE ARCHAEA AND ITS
SUB-GROUPS
Archaea are widely recognized as the third domain of life.
They generally inhabit extreme environments such as those of
extreme temperature, pH or salinity, where little to no other
life exists (Woese et al., 1990). However, recent studies indicate
that archaeal species are widespread in the environment and they
play a major role in the carbon and nitrogen cycles (Pace, 1997;
Herndl et al., 2005; Leininger et al., 2006). Some archaeal species
have been found to be commensal organisms residing in human
colons (Oxley et al., 2010). The Archaea are generally divided into
two main phyla, the Crenarchaeota and Euryarchaeota, based on
16S rRNA data and other phylogenetic data (Woese et al., 1990;
Gribaldo and Brochier-Armanet, 2006). The Crenarchaeotes
are described as thermophiles with sulfur-reducing capabilities
while the Euryarchaeotes are metabolically and morphologi-
cally quite diverse (Gribaldo and Brochier-Armanet, 2006; Gupta
and Shami, 2011). The mesophilic Crenarchaeota have been
recently placed into a separate phylum called the Thaumarchaeota
(Brochier-Armanet et al., 2008; Gupta and Shami, 2011).

Despite the importance of Archaea in different environments
and in understanding of the evolutionary history of life on earth
(Woese et al., 1990; Gupta, 2000a), until recently, very few molec-
ular characteristics were known that are uniquely shared by all
Archaea. Additionally, as the higher taxonomic groups within
Archaea are described primarily based upon 16S rRNA trees, the
characteristics that are unique to different phyla, classes, orders
and families of the Archaea have scarcely been elucidated (Boone
et al., 2001). The utilization of archaeal genomes for discovery of
CSPs as well as CSIs has provided significant information in the
form of molecular markers that are distinctive characteristics of
Archaea and its taxonomic sub-groups. In 2007, a comprehensive
analysis was performed on available archaeal genomes to search
for CSPs that were unique to either all Archaea or many of its
sub-groups (Gao and Gupta, 2007). Over 1400 such proteins dis-
tinctive of Archaea or its main taxa were discovered (Figure 2).
In the analysis, sixteen proteins specific to all or most Archaea
were identified that were not present in any bacterial or eukary-
otic organism. Numerous proteins whose homologs were limited
to the Crenarchaeota, Euryarchaeota and other sub-groups such
as the Thermococci, Thermoplasmata, and Halobacteriales were
also detected (Figure 2). Significantly, this study also identified
31 proteins that were commonly shared by all methanogenic
bacteria (Gao and Gupta, 2007). In the 16S rRNA and other
phylogenetic trees, the methanogenic Archaea do not form a
monophyletic lineage, but instead are split into a number of dis-
tinct clusters separated by non-methanogenic Archaea (Burggraf
et al., 1991; Brochier et al., 2004; Bapteste et al., 2005a; Gao
and Gupta, 2007). Because most of the proteins that are com-
monly shared by various methanogens are generally involved in
functions related to methanogenesis and their genes are clus-
tered into a few large operons in genomes (Harms et al., 1995;
Tersteegen and Hedderich, 1999; Grabarse et al., 2001; Gao and
Gupta, 2007), it is likely that the genes for these proteins have
been laterally acquired by different Archaea. This could pro-
vide a plausible explanation for the observed discrepancy in the
branching of methanogenic Archaea in phylogenetic trees and
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FIGURE 2 | A summary diagram showing the various molecular

markers that have been identified for the Archaeal kingdom

and its subgroups. The arrows indicate the suggested evolutionary
stages where the proteins unique for a particular taxa are proposed
to have been introduced. The numbers beside the arrows indicate the

number of CSIs and CSPs specific for the various taxa (these
numbers indicate CSPs unless otherwise noted). The branching
pattern shown is based solely upon the distribution patterns of
CSPs and CSIs. Modified from Gao and Gupta (2007) and
Gupta and Shami (2011).

their unique sharing of genes for these proteins (Gao and Gupta,
2007).

A recent analysis has further added to the catalogue of molec-
ular signatures for the archaeal organisms (Gupta and Shami,
2011). The focus of this study was on identifying CSIs and CSPs
that were specific for the Crenarchaeota and Thaumarchaeota
phyla (Gupta and Shami, 2011). Six CSIs and 13 CSPs specific
for all species of the phylum Crenarchaeota were identified along
with numerous markers for its different orders: the Sulfolobales
(151 CSPs, 3 CSIs), Thermoproteales (25 CSPs, 5 CSIs) and the
Desulfurococcales (4 CSPs). The study also described the mark-
ers (18 CSPs and 2 CSIs) indicative of a close relationship among
the Sulfolobales and the Desulfurococcales. The discriminative
ability of CSPs is highlighted by the results of blast searches on
some CSPs that are specific for the Crenarchaeota or its main
groups (Sulfolobales, Thermoproteales, Desulfurococcales and
Acidilobales) that are shown in Table 2. In these cases, BLASTP
searches were carried out on these proteins and the results for
all species for whom the observed E-values were significant are
shown. From the results presented in Table 2, it is evident that the
first 2 CSPs are specific for the Crenarchaeota phylum, the next
two are uniquely found in various species belonging to the orders
Desulfurococcales, Acidilobales and Sulfolobales, whereas the last
5 CSPs are distinctive characteristics of species belonging to either

the Desulfurococcales (and Acidilobales), the Sulfolobales, or the
Thermoproteales orders.

In this study, more than 200 CSPs for various members of
the newly defined Thaumarchaeota phylum were also identified
(Gupta and Shami, 2011). The Thaumarchaeota are composed
of several organisms previously included in the Crenarchaeota
(Brochier-Armanet et al., 2008). The two phyla appear as sister
groups in phylogenetic analysis and they also share 3 CSIs and 10
CSPs with each other (Gupta and Shami, 2011). Nevertheless, the
two groups can be phylogenetically differentiated and numerous
markers have been identified for each group that helps to define
them molecularly as individual taxa (Gupta and Shami, 2011). A
summary diagram depicting the various molecular markers spe-
cific for the archaeal species is shown in Figure 2. It should be
noted that CSIs were only identified for the Thaumarchaeota and
the Crenarchaeota and no detailed analysis to identify CSIs has
thus far been carried out on the Euryarchaeota.

The two studies noted above have identified numerous CSIs
and CSPs for the Archaea, its main phyla (Euryarchaeota,
Crenarchaeota, Thaumarchaeota) and a number of its sub-
phylum level taxa (Sulfolobales, Thermococcales, Halobacteriales,
etc.; Gao and Gupta, 2007; Gupta and Shami, 2011). Except
for the methanogens, the distribution patterns of the identified
CSIs and CSPs are also strongly supported by the phylogenetic
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branching pattern of the archaeal organisms (Gribaldo and
Brochier-Armanet, 2006; Gao and Gupta, 2007; Brochier-
Armanet et al., 2008; Gupta and Shami, 2011). Considering the
specificities of these molecular markers for either all Archaea or
different clades of Archaea, these results strongly indicate that
LGTs have not obliterated the phylogenetic signal necessary to
delineate the evolutionary relationships among this domain of
prokaryotes. The discovered CSIs and CSPs also provide novel
tools for the identification of different groups of Archaea in
various environments.

THE USEFULNESS OF THE CSIs FOR UNDERSTANDING
BACTERIAL PHYLOGENY AND TAXONOMY
In addition to the CSIs that are specific for particular prokary-
otic taxa, several of the identified CSIs have also proven use-
ful in clarifying the branching order and interrelationships
amongst different bacterial phyla (Gupta, 2001, 2011; Gupta and
Griffiths, 2002). One example of these kinds of CSIs, which
are referred to as the main-line signatures in our work, is
shown in Figure 3A. In this case, a large ∼100 aa insert in
the β subunit of RNA polymerase protein (RpoB) is commonly

FIGURE 3 | Evolutionary significance of various identified CSIs

in the RNA polymerase β subunit. (A) A portion of the RpoB
sequence alignment showing a large insert (boxed) that is distinctive
characteristic of all Proteobacteria and some Gram-negative phyla
(Chlamydiae-Verrucomicrobiae, Aquificales, Planctomycetes, and
Bacteroidetes-Chlorobi), but not found in other phyla of bacteria. Due to the
large size of the insert, its entire sequence is not shown. Dashes (–) indicate
identity with the amino acid on the top line. On the right is a linear
representation of prokaryotic relationships based on the presence and
absence of this CSI. The numbers in the brackets indicate the species of each
phylum, which have been identified to contain the CSI. (B) A schematic

representation of the sequence for E. coli RNA polymerase β subunit (RpoB)
showing some functionally important regions and the positions of different
lineage-specific inserts that have been identified within this protein. The large
insert depicted in (A) (≈ 100 aa in E. coli) is shown in solid black. The
positions of CSIs for different groups are roughly indicated using arrows. The
values in the brackets identify the number of organisms in each respective
group and the number of these species to harbour the indicated CSI. In all
cases no organism outside of the indicated group was identified to contain
the indel. The indicated CSIs have been described in earlier work (Griffiths
and Gupta, 2004b, 2007b; Gupta and Mok, 2007; Gao et al., 2009; Gupta and
Bhandari, 2011; Naushad and Gupta, 2012).

Frontiers in Cellular and Infection Microbiology www.frontiersin.org July 2012 | Volume 2 | Article 98 | 9

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Bhandari et al. Evolutionary relationships among prokaryotes

shared by all of the sequenced species belonging to the phyla
Proteobacteria (different subclasses), Aquificae, Chlamydiae,
Verrucomicrobiae, Bacteroidetes-Chlorobi, and Planctomycetes
(Griffiths and Gupta, 2007b). This insert is present in all of
the >1500 sequences that are available from species from these
phyla. On the other hand, this CSI is not found in any of the
>1500 sequences available from various species belonging to
the phyla Firmicutes, Actinobacteria, Chloroflexi, Cyanobacteria,
Deinococcus-Thermus, Synergistetes, Spirochaetes, etc. This
insert is also not found in the archaeal RpoB homologs, thus pro-
viding evidence that this indel is an insert in the groups of species
where it is found (Griffiths and Gupta, 2004b). Based upon its
highly specific species distribution pattern, which argues strongly
against the lateral transfer of this gene amongst various phyla, the
genetic change responsible for this CSI most likely occurred in a
common ancestor of the group of species that contain this CSI,
after the divergence of other bacterial phyla that lack this indel as
indicated in Figure 3A (right panel). A number of other main-
line CSIs, which based upon their species distribution patterns
have occurred at other important branch points in prokaryotic
evolution, have been described in our earlier works (Griffiths and
Gupta, 2001, 2004b; Gupta and Griffiths, 2002). Based upon these
CSIs, it is possible to determine the branching order of most of
the bacterial phyla (Gupta, 1998, 2001, 2003; Griffiths and Gupta,
2004b; see also www.bacterialphylogeny.info).

Within the highly conserved RpoB protein, in addition to the
large CSI that is commonly shared by a number of bacterial phyla,
several other CSIs have been identified that are specific for differ-
ent groups/phyla of bacteria. The taxon specificities of these CSIs
and their positions within in the RpoB polypeptide are shown
in Figure 3B. These CSIs include a 4 aa deletion that is com-
monly and uniquely shared by a number of different orders of
the γ-proteobacteria (399/399 species), a 3 aa insert that is specif-
ically present in all of the Chlamydiae-Verrucomicrobiae species
(47/47), another 3 aa insert that is a distinctive property of the
Clade C cyanobacteria (50/50; Gupta, 2009), a 25 aa insert in
various species from the order Rhodospirillales (103/103) and a
6 aa insert in all species from the genus Thermotoga except T. let-
tingae (Gupta and Griffiths, 2006; Gupta and Mok, 2007; Griffiths
and Gupta, 2007b; Gao et al., 2009; Gupta and Bhandari, 2011).
It is highly significant that within a single gene/protein multi-
ple highly specific CSIs are present, each of which is specific for
a different group of bacteria and help distinguish these groups
from all other bacteria. These CSIs are not present in any species
outside of the indicated taxa. The presence of these different taxa-
specific characteristics in a single gene/protein strongly indicates
that the genetic changes responsible for these CSIs occurred in
the gene for this key protein at different stages in the evolution of
bacterial domain and that no LGT of the gene for the RpoB pro-
tein has occurred among these taxa. Similar to the RpoB protein,
multiple CSIs that are specific for different groups of prokaryotes
have also been identified in many other important genes/proteins.
These observations indicate that strong and consistent phyloge-
netic signals that are very likely not affected to any significant
extent by the LGTs are still present in many conserved and uni-
versally distributed genes/proteins and these can be used to trace
the evolutionary relationships among prokaryotes.

It is important to point out that virtually all of the higher
taxonomic clades (above the Genus rank) within prokaryotes
are currently identified solely on the basis of their branching
in the 16S rRNA trees. Because the phylogenetic trees are a
continuum, based upon them it has proven difficult to clearly
define or delimit the boundaries of different taxonomic groups.
Additionally, for virtually all of the higher prokaryotic taxa,
no molecular, biochemical or physiological characteristics are
known that are unique to them. Hence, a very important aspect
of microbiology that needs to be understood is that in what
respects do species from different main groups of bacteria differ
from each other and what, if any, unique molecular, biochem-
ical, structural or physiological characteristics are commonly
shared by species from different groups? In this context, the
large numbers of CSIs and CSPs for different taxonomic clades
of bacteria that are being discovered by comparative genomic
analyses provide novel and valuable tools for taxonomic, diag-
nostic, and biochemical studies (Gupta and Bhandari, 2011; Gao
and Gupta, 2012b). In view of the specificities of the discov-
ered CSIs and CSPs for different groups of prokaryotes and
their retention by all species from these groups of prokary-
otes, it is highly likely that these CSIs and CSPs are involved
in functions that are essential for prokaryotes (Galperin and
Koonin, 2004; Fang et al., 2005; Singh and Gupta, 2009; Schoeffler
et al., 2010). Indeed, recent work on several CSIs have shown
that they are essential for the group of organisms where they
are found and the deletion or substantial changes in them led
to failure of cell growth (Singh and Gupta, 2009; Schoeffler
et al., 2010). Hence, further studies on understanding the cel-
lular functions of the different taxa-specific CSIs and CSPs
could lead to identification of novel biochemical and other
functional characteristics that are specific for these groups of
organisms.

It should also be noted that the identified CSIs and CSPs gen-
erally constitute robust molecular characteristics that exhibit high
degree of predictive ability. Many of these CSIs and CSPs were
discovered when the sequence information was available for very
few prokaryotic species. However, despite the large increase in
the number of sequenced genomes, most of these CSIs and CSPs
are still specific for the originally indicated groups of prokary-
otes (Gupta, 2009, 2011; Gao and Gupta, 2012b). Additionally,
for several Chlamydiae-, Aquificae-, Deinococcus-Thermus- and
Actinobacteria- specific degenerate primers based on conserved
flanking sequences have been designed and they have been used
to amplify the sequence regions predicted to contain the CSIs
from large numbers of organisms for whom no sequences were
available (Griffiths and Gupta, 2004a,b; Gao and Gupta, 2005;
Griffiths et al., 2005). In these studies, in almost all cases the
expected inserts or deletions were found to be present in previ-
ously un-sequenced organisms from the indicated groups, thus
providing evidence that these CSIs and CSPs provide powerful
new tools for identification of both known as well as novel species
from different groups of prokaryotes.

CONCLUSIONS
There is considerable debate at present concerning the impact
of LGTs on understanding prokaryotic phylogeny. While there
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is little dispute that LGT plays an important role in micro-
bial evolution, the extreme view taken by some that LGTs are
so rampant within the prokaryotes that it totally masks the
evolutionary signal from vertical transfer of genes (Doolittle,
2000; Gogarten et al., 2002; Doolittle and Bapteste, 2007; Dagan
et al., 2008; Bapteste et al., 2009) is not supported by avail-
able evidence. As reviewed here, in phylogenetic trees based
upon most gene/protein sequences all of the major groups
within prokaryotes (from phylum down to genus level) are
generally clearly identified, thus indicating that a strong phy-
logenetic signal emanating from vertical transfer of genes is
maintained throughout prokaryotic evolution (Gupta, 1998,
2000b; Dutilh et al., 2004; Ludwig and Klenk, 2005; Ciccarelli
et al., 2006; Puigbo et al., 2009). Most of the differences seen
amongst these trees are either at the tips (i.e., species/strains
levels) or at the base, i.e., relationships among the higher tax-
onomic clades such as phyla, class, etc. A recent study indi-
cates that the incidence of LGTs shows linear correlation with
the genome sequence and the GC content similarities of the
donor and recipient organisms (Kloesges et al., 2011). Hence,
while many of the observed inconsistencies between differ-
ent gene trees at the species/strain levels could be due to
LGTs (Puigbo et al., 2009; Kloesges et al., 2011), the differ-
ences in branching pattern at the higher taxonomic levels are
perhaps in large parts due to loss of the phylogenetic signal
and the lack of resolving power of the tree-based phylogenetic
approaches (Gupta, 1998; Ludwig and Klenk, 2005; Puigbo et al.,
2009).

In this review we have discussed the usefulness of CSIs and
CSPs, as novel and important class of molecular markers for
understanding the evolutionary relationships among prokary-
otes. We have presented compelling evidence that based upon the
species distribution patterns of these molecular signatures differ-
ent prokaryotic taxa from phylum down to the genus levels can be
clearly identified. Additionally, based upon these markers it is also
possible to reliably deduct the evolutionary relationships amongst
different prokaryotic taxa, both within a phylum and among dif-
ferent phyla. The evolutionary relationships deduced based upon
these molecular markers generally exhibit high degree of congru-
ency with those indicated by 16S rRNA trees or other gene/protein
sequences. The analyses based upon these markers have also been
able to clarify some relationships that are not resolved in phylo-
genetic trees. The species distribution patterns of these markers
thus provide strong evidence that different clades of bacteria have
evolved in a tree-like manner and that the prokaryotic organ-
isms are not an exception to the Darwinian model of evolution.
The relatively small numbers of these CSIs where the indel is also
present in some unrelated species, which could be due to LGTs,
show no specific pattern or relationship, thus they have minimal
or no impact on the strong and consistent tree-like branching
pattern that is evident from all other identified CSIs. However, it
should be acknowledged that all of the work using CSIs and CSPs
on understanding the evolutionary relationships among prokary-
otes has thus far been carried out at genus level or higher taxa.
Hence, it remains to be seen whether this approach will prove
equally useful in clarifying the evolutionary relationships at the

species or strain levels or not, where the evolutionary flux and the
incidences of LGTs are deemed to be the highest (Daubin et al.,
2003; Lerat et al., 2003; Dagan et al., 2008; Puigbo et al., 2009;
Kloesges et al., 2011).

The molecular markers such as those described here in addi-
tion to their usefulness for understanding prokaryotic phylogeny
also provide valuable means to address/clarify a number of
important aspects of microbiology. (1) Based upon these markers
different prokaryotic taxa can now be identified in clear molec-
ular terms rather than only as phylogenetic entities. (2) Based
upon them the boundaries of different taxonomic clades can also
be more clearly defined. (3) Due to their high degree of speci-
ficity and predictive ability, they provide important diagnostic
tools for identifying both known and unknown species belong-
ing to these groups of bacteria. (4) The shared presence of these
CSIs by unrelated groups of bacteria provides potential means for
identifying novel cases of LGTs. (5) Functional studies on these
molecular markers should help in the discovery of novel biochem-
ical or physiological properties that are distinctive characteristics
of different groups of prokaryotes.

Lastly, it should be acknowledged that the number of genes
which harbor rare genetic changes such as these CSIs is gen-
erally small in comparison to the total number of genes that
are present in any genome. However, the genes containing these
CSIs are involved in different essential functions and they are
often are amongst the most conserved proteins found in vari-
ous organisms. Although, the criticism could be levied that the
inferences based upon small numbers of genes/proteins con-
taining these CSIs are not representative of the entire genomes
(Dagan and Martin, 2006; Bapteste and Boucher, 2008), it should
be emphasized that in a number of studies such as those dis-
cussed here, the reported CSIs or CSPs represent analyses of
the entire genomes. Based upon these CSIs and/or CSPs, no
other significant or consistent relationships or patterns among
these organisms, other than those indicated here, can be derived
from consideration of all of the gene/protein sequences in these
genomes using these approaches. In this context it is also help-
ful to remember that molecular sequences like all other fos-
sils change and disintegrate over long evolutionary periods of
time and they lose their information content at different rates.
Hence, a well-preserved fossil is generally considered to be far
more informative than hundreds or even thousands of disinte-
grated fossils. Following this analogy, it is expected that not all
genes/proteins will prove equally useful for understanding the
evolutionary history of prokaryotes, which spans > 3.5 billion
years. Thus, the best we can hope for is to find significant numbers
of conserved genes/proteins, which contain consistent and reli-
able signals such as those described in the present work, whose
inferences are generally consistent with all/most other available
information.
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