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Adipose tissue, defined as white adipose tissue (WAT) and brown adipose tissue (BAT),

is a biological caloric reservoir; in response to over-nutrition it expands and, in response

to energy deficit, it releases lipids. The WAT primarily stores energy as triglycerides,

whereas BAT dissipates chemical energy as heat. In mammals, the BAT is a key site

for heat production and an attractive target to promote weight loss. The autonomic

nervous system (ANS) exerts a direct control at the cellular and molecular levels in

adiposity. The sympathetic nervous system (SNS) provides a complex homeostatic

control to specifically coordinate function and crosstalk of both fat pads, as indicated

by the increase of the sympathetic outflow to BAT, in response to cold and high-fat

diet, but also by the increase or decrease of the sympathetic outflow to selected WAT

depots, in response to different lipolytic requirements of these two conditions. More

recently, a role has been attributed to the parasympathetic nervous system (PNS) in

modulating both adipose tissue insulin-mediated glucose uptake and fatty free acid (FFA)

metabolism in an anabolic way and its endocrine function. The regulation of adipose

tissue is unlikely to be limited to the autonomic control, since a number of signaling

cytokines and neuropeptides play an important role, as well. In this review, we report

some experimental evidences about the role played by both the ANS and orexins into

different fat pads, related to food intake and energy expenditure, with a special emphasis

on body weight status and fat mass (FM) content.

Keywords: adipose tissue, autonomic nervous system, orexin, body composition, thermogenesis

INTRODUCTION

Adipose tissue, once seen as a mere passive reservoir for energy storage, today is considered
a highly active endocrine and metabolic structure that react to over-nutrition with expansion
and to energy deficit releasing lipids (Rutkowski et al., 2015). The primary cell type of adipose
tissue are the adipocytes, which contains lipid droplets storing the excess calories, as triglycerides,
without experience a lipotoxicity (Konige et al., 2014; Straub andWolfrum, 2015). This unparalleled
capacity to store and release lipids upon systemic metabolic demand links the cell biology of
adipocytes and adipose tissue physiology to the whole-body metabolism. The adipose tissue can
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be divided into two subtypes, identified as white cells and brown
cells. White adipose tissue (WAT) constitutes the typical fat cells:
they are the majority of cells in both subcutaneous and visceral
adipose depots. Brown adipocytes encompass smaller brown fat
depots that play a role in thermogenesis in most mammalian
species (Lapa et al., 2015; Rutkowski et al., 2015). The regulation
of adipose tissue metabolism in vivo involves different central
effector pathways, strongly influencing both energy intake and
energy expenditure, and whose activity is regulated by adiposity-
related signals.

Based on our experiences of studying human adipose tissue
regulation in vivo, this review summarizes the complexity of said
tissue function, with an emphasis on some peculiar aspects of
the regulation of adiposity to disclose the integrative nature of
adipose tissue function.

ADIPOSE TISSUE FUNCTION AND
REGULATION

The different morpho-functional characterization of the
adipocytes allows distinguishing adipose tissue as WAT and
BAT. White adipose tissue has an evolutionary role permitting
animals to survive for long periods without meals, thanks to
their properties of energy storing, mainly as triglycerides, and of
releasing fatty acids along fasting periods (Monda et al., 2008a;
Messina et al., 2016a). Conversely, brown adipose tissue (BAT)
is the most important organ for non-shivering thermogenesis
(NST). The primary function of BAT is related to heat
production in response to a decrease in core body temperature,
due to environmental cold exposure. For this reason, brown
adipocytes are characterized by an abundance of mitochondria,
in contrast to white adipose cells. The thermogenic effect of
BAT is strictly related to the presence of uncoupling protein
1 (UCP1), a transmembrane protein acting as mitochondrial
metabolite transporter activated in the brown fat cell by fatty
acids (Zingaretti et al., 2009; Yang and Ruan, 2015). Clusters
of UCP1-expressing adipocytes with thermogenic capacity
also develop in WAT in response to various stimuli (Vitali
et al., 2012; Esposito et al., 2016). These adipocytes have been
named “induced BAT.” The activities of brown and inducible
“brown-like” adipocytes reduce metabolic disease, including
obesity, in mice and correlate with leanness in humans.

Morphological differences between BAT and WAT are
easily observable. In fact, BAT adipocytes have a polygonal
shape, multilocular lipid droplets and a great number of large
mitochondria. Moreover, they are innervated by numerous
sympathetic nerve fibers (Zingaretti et al., 2009; Whittle et al.,
2011; Villarroya and Vidal-Puig, 2013), confirming the central
control of thermogenesis. Furthermore, to allow a high heat
dissipation, BAT is also highly vascularized (Wu et al., 2013).

The modulation of both sympathetic and parasympathetic
outflow provides a complex homeostatic mechanism enabling
to specifically regulate the functional crosstalk of organs
involved in the balance between caloric intake and energy
expenditure (Villarroya and Vidal-Puig, 2013). Whereas the
adaptive thermogenic response to cold and high-fat diet increases

the SNS outflow to BAT, the different lipolytic requirements of
these two conditions are appropriately met by the increase or
decrease of the sympathetic outflow to selected WAT depots
(Brito et al., 2008). A strict involvement of the SNS is also
observed during caloric restriction, which is characterized by
a decrease in the sympathetic outflow to BAT, resulting in a
reduced energy expenditure and a simultaneous increase in SNS
outflow to specific WAT depots facilitating lipid mobilization.

Signals related to food intake from various origins (e.g.,
gut, hepatic-portal area, baroreceptors) are integrated in the
brain and result in increased peripheral sympathetic outflow.
It is noteworthy to emphasize the role of diet composition
in sympathetic responsiveness during the day, in view of
the potential role of adrenergic per-responsiveness in the
pathogenesis of obesity and metabolic syndrome (van Baak,
2008). It is well-known that chronic sympathetic hyper-
responsiveness is present in central obesity; recent studies also
demonstrate the consequence of a high sympathetic outflow
to kidneys, heart, and blood vessels. Increased sympathetic
reactivity can also be involved in the decline of insulin sensitivity,
determining a vicious cycle responsible for hypertension, and
the development of metabolic syndrome. Albeit the reason of
this hyper-responsiveness is not yet clear, it may be driven
by particular adipokines (Smith and Minson, 2012). While it
has been clearly established that WAT receives sympathetic
innervation, whether it receives parasympathetic innervation still
appears to be controversial (Kreier et al., 2002). Neuroanatomical
studies have demonstrated parasympathetic innervation of WAT
in rats (Bartness, 2002). In addition, parasympathetic input
affects hormone synthesis in WAT as evident from the effects of
selective vagotomy on mRNA expression of resistin and leptin
(Kreier et al., 2002; Di Bernardo et al., 2014).

Energy homeostasis is regulated by a complex network of
neuroendocrine and autonomic pathways (Messina et al., 2014a),
in which hypothalamus plays a key role monitoring signals
that reflect energy status, thus initiating appropriate metabolic
responses and behavioral (Suzuki et al., 2012; Esposito et al.,
2014). The orexins (OX-A and OX-B), also named hypocretins
(Eriksson et al., 2001; Messina et al., 2014b), are neuropeptides
with critical functions in energy balance and obesity, and
therefore in the accumulation of adipose tissue (Tsuda et al.,
2002; Monda et al., 2008a). The neurons that produce those
neuropeptides are in the lateral hypothalamic area (LHA), the
dorsomedial nucleus of the hypothalamus (DMH), and the
perifornical hypothalamus (Sakurai et al., 1998; López et al.,
2010; Messina et al., 2016b). In this line, orexins play a crucial
role in energy balance and feeding (Sakurai et al., 1998; López
et al., 2010), and compelling evidence derived from genetic
murine models suggest a role for orexins in promoting energy
expenditure through modulation of locomotor activity and BAT
thermogenesis (López et al., 2010; Sakurai et al., 1998). In fact,
orexins are required for BAT development, differentiation, and
function (Sellayah et al., 2011;Monda et al., 2014).Moreover, lack
of orexins’ action compromises energy balance, as demonstrated
in orexin knockout mice, which are prone to diet-induced
obesity, when compared with wild type mice (Shen et al., 2008;
Sellayah et al., 2011). Figure 1 shows a proposed model for
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FIGURE 1 | A proposed model for action of central orexin on adipose

tissue. LHA, lateral hypothalamic area; DMH, dorsomedial nucleus of the

hypothalamus; PVN, paraventricular nucleus of the hypothalamus; LH, lateral

hypothalamus; BAT, brown adipose tissue; WAT, white adipose tissue; SNS,

sympathetic nervous system; UCP, uncoupling protein; EE, energy

expenditure; FM, fat mass.

action of central orexin on adipose tissue (Monda et al., 2007).
A protective role in aging-decreased thermogenic capacity was
also recently suggested for orexins (Sellayah and Sikder, 2014).
The aging process causes an increase in body fat percent, but
the mechanism remains unclear. Aging is related to defective
differentiation of BAT, alongside morphologic abnormalities and
thermogenic dysfunction in humans and in rodents (Monda
et al., 2006b; Sellayah and Sikder, 2014). In aged mice,
indeed, interscapular BAT (IBAT) is progressively populated by
adipocytes, bearing white morphologic characteristics (Monda
et al., 2008b).

The orexin neurons have a wide projection pattern within
the central nervous system, which includes several brain nuclei
identified by WAT retrograde tracing studies (e.g., the arcuate
nucleus of the hypothalamus, the locus coeruleus, the nucleus
of the solitary tract and the suprachiasmatic nucleus (Peyron
et al., 1998; Adler et al., 2012). Therefore, it is conceivable
that orexin neurons may influence WAT metabolism, not only
through their projections to the paraventricular nucleus of the
hypothalamus (PVN), but also through modulation of other
brain regions, suggesting that effects of orexins on WAT do
not follow an exclusive pathway, but are distributed over
multiple brain regions. Finally, as the orexin neurons appear to
integratemultiple sources ofmetabolic and neuronal information
(Kampe et al., 2009), it is possible that another role of these
neurons is to coordinate the response from WAT based on the
brain’s perception of the metabolic status (Viggiano et al., 2016;
Moscatelli et al., 2016a,b,c).

BROWN ADIPOSE TISSUE-MEDIATED
THERMOGENESIS

The IBAT is responsible for 35–65% of the total metabolic heat
increase, unrelated to shivering in rodents (Rinaldi et al., 2015).
In vivo, prostaglandin E1(PGE1) reduces heat loss and increases
heat production in order to raise body temperature to a new
set point. The simultaneous measurements of and food intake
and sympathetic firing rate may represent the most relevant
demonstration of the feed-back between body temperature and
food intake, since the increase in body temperature due to

PGE1 can be recognized as a signal of satiety, which reduces
food intake (Mantzoros et al., 1996). Alterations of food intake
and IBAT activity in response to hyperthermia induced by
PGE1 injection in rat cerebral ventricle are reported (Monda
et al., 1999). The firing rate of the sympathetic nerves to IBAT,
along with IBAT and colonic temperatures were monitored in
male Sprague-Dawley rats before and after food presentation.
Saline or PGE1 were injected intraventricularly immediately
before food presentation. The amount of food ingested was
also measured. Prostaglandin E1 injection induced elevation of
body temperature and reduction of food intake. Furthermore,
IBAT temperature increase was inversely proportional to food
intake. Figure 2 illustrates the cumulative effects of PGE1-
induced hyperthermia. Overall, these findings provide direct
evidence of sympathetic discharge of nerves to IBAT after PGE1
injection, supporting the hypothesis of a functional involvement
of the ventromedial hypothalamus (VMH), a key structure in
the control of sympathetic activity and food intake (Thornhill
and Halvorson, 1994), as a consequence of the stimulatory effect
of PGE1 upon the preoptic-anterior hypothalamus (PO/AH)
(Thornhill and Halvorson, 1994).

INTERSCAPULAR BROWN ADIPOSE
TISSUE ACTIVITY AND EATING BEHAVIOR

The PO/AH is considered the most important area deputed to
control body temperature. The orexin A affects the temperature
of IBAT, the most relevant effector of NST in rodents (Cannon
et al., 1998), indicating that the rise in heat production is
also due to a thermogenic mechanism independent of muscle
contraction. Pyrogens, like PGE, influence PO/HA function
inducing hyperthermia, whereas inhibitors of prostaglandins
synthesis inhibit this response (Cannon et al., 1998).

The effect of the thermogenic-induced orexin A activation
upon eating behavior was investigated (Monda et al., 2013).
Food intake, IBAT (TIBAT) and abdominal temperature (Tab)
were monitored in 24-h fasting male Sprague-Dawley rats along
12 h after food presentation. Test animals received orexin
A, through injection into the lateral cerebral ventricle, 6 h
before food presentation. Control animals received orexin A
contemporaneously to food presentation. As shown in Figure 3,
a significant reduction of food intake, TIBAT and Tab was found
in rats receiving orexin A prior to food presentation. These
results clearly indicate that the reduction of food intake was a
function of orexin A dependent temperature rise at the time
of food presentation, outlining the prevailing role of orexin
A in the control of body temperature, which in turn affects
hypophagic behavior. According to these findings, the prevalent
role so far displayed by the orexins in controlling eating behavior
requires a substantial revision, since orexin A can induce
simultaneously increase of sympathetic discharge, hyperthermia
and hypophagia, thus contradicting the prevalent meaning of
orexin as a primary hyperphagic substance. Conversely, other
hyperphagic peptides, namely neuropeptide Y or galanin, induce
a reduction of the sympathetic discharge and a decrease in body
temperature (Bouali et al., 1995); while primary hypophagic
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FIGURE 2 | Cumulative changes in food intake, firing rate of nerves to

interscapular brown adipose tissue (IBAT), IBAT and colonic

temperatures. Food presentation at time 0. Intracerebroventricular injection

of prostaglandin E-1 (PGE1) or saline was made at time 0. Values are

expressed as mean ± standard error.

substances, as leptin, cause an increase in the sympathetic activity
and an increase in food intake (Haque et al., 1999).

THE RELATIONSHIP BETWEEN HEART
RATE VARIABILITY AND ADIPOSITY

Heart rate variability (HRV) power spectral analysis is widely
considered a standard noninvasive method for assessing
AutonomicNervous System (ANS) function, due to its regulation

FIGURE 3 | Cumulative changes in food intake, temperature of

interscapular brown adipose tissue (IBAT) and in core temperature.

Food presentation at time 0. Intracerebroventricular injection of orexin or saline

was made at time -6 h or time 0. Values are expressed as mean ± standard

error.

of heart rate in a continuous, beat-to-beat manner (NASPE, 1996;
Messina et al., 2012). Sympathetic activity is associated with the
low frequency range (LF, 0.04–0.15Hz) while parasympathetic
activity is associated with the higher frequency range (HF,
0.15–0.4Hz) of modulation frequencies of the heart rate
(Messina et al., 2013). This difference in frequency ranges allows
HRV analysis to separate sympathetic and parasympathetic
contributions evident. Lower HRV is generally considered an
indicator of poorer autonomic function (Viggiano et al., 2010;
Messina et al., 2016c).

HRV was investigated in lean and obese women at
premenopausal and postmenopausal age. As main findings,
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power spectral analysis of HRV showed a significant reduction
in LF and HF components in obese than in lean subjects,
both in premenopausal and postmenopausal age. These findings
indicate a reduction of both the sympathetic and parasympathetic
activity. The reduction of the sympathetic activity may play a
key role in the weight maintenance in obese premenopausal
women. Conversely, a reduction of the activity of sympathetic
branch, could be linked to low energy expenditure, explaining
the adipose tissue accumulation and the high body weight in
premenopausal women. This is in line with the so-called “Mona
Lisa Hypothesis,” acronym for “most obesities known are low
in sympathetic activity” (Messina et al., 2013). Furthermore, the
autonomic activity in postmenopausal women was lower than in
premenopausal women, indicating that autonomic modulation
changes in post menopause cannot be related to obesity. Several
studies highlighted the relationship between an increase in
sympathetic and thermogenic activity, and the reduction of food
intake. So, it can be hypothesized that obesity can be related to
the increase in food intake associated with a reduction of the
sympathetic activity. On the other hand, some study pointed
to a lower respiratory sinus arrhythmia, computed through the
HRV power spectral analysis together with deep breathing tests,
which indicated a cardiac vagal dysfunction in obese adolescents
(Messina et al., 2012). Finally, a decreased parasympathetic
activity may represent a final common pathway in different
conditions related to higher rate of morbidity and mortality
(Messina et al., 2012).

Physical training may induce several adaptive modifications,
including changes in either ANS activity (Triggiani et al.,
2015; Valenzano et al., 2016), or in resting energy expenditure
(REE) (Kalsbeek et al., 2007). Heart rate variability power
spectral analysis is an additional tool used to evaluate the
autonomic hear rate control during exercise (Arai et al.,
1989). The parasympathetic tone is enhanced by exercise
training, so that a reduction in the heart rate, induced by
vagal influence, is considered an index of training status in
athletes (Kalsbeek et al., 2007). Moreover, body composition
can be considered as a determinant for energy expenditure.
The appraisal of the relationship among REE, tissue mass and
HRV measures was carried out in adults female basketball
players (Chieffi et al., 2004, 2012, 2014; Viggiano et al., 2014).
Body composition, REE and HRV were measured before and
after a period of 6 months in ten athletes and ten non-
athletes. In athletes, physical activity induced an increase in
REE and a decrease in FM, without any noticeable change
in body weight. Athletes showed a significant increase in the
parasympathetic activity, as revealed by the HF component
of HRV. These findings showed a higher REE in athletes,
than in non-athletes, despite the increased parasympathetic
activity, typically related to lower energy expenditure (Viggiano
et al., 2014). This is the first study examining the effects
of long-term training on HRV, body composition, and REE.
The relationship between physical activity, resting energy
expenditure, parasympathetic nervous system (PNS) and fatmass
is depicted in Figure 4. Furthermore, it is particularly relevant
that exercise induced an increase of parasympathetic activity
at rest, but the LF component of HRV did not show any

FIGURE 4 | A proposed model for the relationship between physical

activity, resting energy expenditure, parasympathetic nervous system,

and fat mass. REE, resting energy expenditure; PNS, parasympathetic

nervous system; FM, fat mass.

change. Overall, the parallel increase in both parasympathetic
activity and REE, found in long-term trained female athletes,
can be considered an aspect of particular importance supporting
the adaptive capacities of the athlete as compared to non-
athlete. In fact, parasympathetic activity shows an inverse
correlation with REE (Oldfield et al., 2007; Morrison et al.,
2014).

Different patterns of adiposity are related to the occurrence
of autonomic impairment and may be correlated with the
observation of a higher risk for cardiovascular disease. The
relationship between HRV and body mass index (BMI) has been
repeatedly investigated in obese subjects with conflicting results
(Zahorska-Markiewicz et al., 1993; Karason et al., 1999; Skrapari
et al., 2007). The role of adiposity, measured as FM extent, on
cardiac autonomic function was recently investigated in healthy
adult women, by monitoring their short-term HRV response
at rest (Triggiani et al., 2015). As a major finding, a reduction
in both LF and HF bands, was found in overweight/obese,
while in underweight subjects there was a reduction in the
sole LF band. The simultaneous reduction of either HF, or
LF components of HRV in overweight/obese women was
related to a possible impairment in the baroceptive reflex
sensibility. Conversely, in underweight women the reduction of
the sole LF indicated that the baroceptive response was normal.
More interestingly, the associations between body FM extent
and HRV response was demonstrated adopting a curvilinear
model, which indicated that a second order regression was
considerably more successful to represent HRV changes, with
respect to subjects’ adiposity. The inverted U-shaped association
(quadratic regression) between HRV and percent fat mass
is shown in Figure 5. Overall, these data indicate that the
adaptive flexibility of the autonomic cardiac activity found
in both underweight and overweight/obese subjects, although
differently reduced, turns out to be poorer, than in normal
weight subjects. The question whether such a curvilinear model
may reflect also differences in visceral fat distribution, is still
opened.
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FIGURE 5 | Second order polynomial regression showing an inverted

U-shaped relationship between percentage of body fat mass (FM) and

low frequency power (LF) and high frequency power (HF).

DISCUSSION

The biological mechanisms underlying the precise regulation
of eating behavior, energy expenditure, and energy storage in
adipose tissue can be explained assuming that signals generated
in proportion to body adiposity may influence the brain to
modulate food intake and/or energy expenditure. Insulin has
been the first signal molecule recognized to act in the brain to
reduce food intake (Woods et al., 1979). Afterward, leptin was
proposed as the principal responsible in this regulation process
(Campfield et al., 1996). Although these two hormones probably
play the major role in this regulation, an increasing number of
endogenous signalingmolecules, associated with neuroendocrine
and autonomic control systems, are implicated as adiposity-
related signals. The overall pattern of the central network
innervating adipose tissue indicates sympathetic regulation of
this tissue, in which orexins plays an important role. As reported
in this review, the orexins are part of this network and can
affect energy balance throughmodulation of either energy intake,
or expenditure (Monda et al., 2008a). Fasting state is highly
conditioning orexin receptors gene expression (Lu et al., 2000), a
finding which has been confirmed by the functional interaction
between orexin neurons and glucose-sensitive neurons in the
hypothalamus (Shiraishi et al., 2000; Liu et al., 2001). More
recently, Venner and coll. (Venner et al., 2011) proposed a
role for orexin neurons as glucose sensors, since their electrical
activity is dependent on intracellular energy levels changes in
response to glucose concentration.

Sympathetic activation increases lipolysis and β-oxidation of
fatty acids in BAT, allowing heat production, by drawing on lipids
stores (Cannon and Nedergaard, 2004). Reduced thermogenesis,
and thus lipid consumption, in BAT may contribute to the
etiology of some forms of obesity. In fact, humans with low
body temperature, maybe due to a low thermogenesis, are more
inclined to obesity (van Marken Lichtenbelt and Daanen, 2003).
In humans, obesity is associated with decreased BAT activity (van
Marken Lichtenbelt et al., 2009).

An intra ventricular administration of orexin A induced
an increase in firing rate of the sympathetic nerves to BAT,
accompanied with a rise in BAT and colonic temperatures.
The simultaneous increase in heart rate and body temperature
after intra ventricular injection of orexin A shows a generalized
activation of the SNS. Overall, the functional organization and
neurochemical influences within the central nervous system
networks govern the level of BAT sympathetic nerve activity
to produce the thermoregulatory and metabolically driven
alterations in BAT thermogenesis and energy expenditure, thus
contributing to energy homeostasis (Morrison et al., 2014;
Messina et al., 2015a).

Orexin A was shown able to influence both the thermogenesis
and hyperphagia, so, the possibility that a previously activating
thermogenic response orexin A might modify eating behavior
was tested The result showed that the effects on orexin-induced
food intake, depend on the time of food presentation. Such
a result led us to review the functional meaning of orexin
in food intake mechanism, highlighting the role of orexin A
in the control of SNS activity and body temperature, which,
sequentially, affects food intake (Monda et al., 2008b).

Food ingestion rise the body temperature caused by
postprandial thermogenesis (Monda et al., 2008a; Messina
et al., 2012). A reduced response of SNS might bring to
an altered postprandial thermogenesis, becoming a crucial
factor for obesity. Low postprandial sympathetic activation led
subjects to a higher food intake to reach a prefixed level of
body temperature. Conversely, overweight status increases the
sympathetic discharge, and may contribute to induce diseases
related to abnormal body weight (Lambert et al., 2010). Chronic
sympathetic overactivity is well-known to play a role in central
obesity, and many evidences demonstrate the consequence of a
high sympathetic outflow to heart, kidneys, and blood vessels
(Valenzano et al., 2016).

It has been generally assumed that obesity is characterized
by the reduction of HRV reactivity, though these results are
not even convergent. In previous studies, Monda et al. (2006a),
demonstrated that the power spectral analysis of LF and HF
components of HRV significantly changed in lean and obese
women, due to the pre-/post-menopausal age. In obese pre-
menopausal women, a lower sympathetic tone was found than
in lean ones; while a parallel decrease in both LF and HF
components appeared evident either in obese or in lean women
after menopause. This unparallel effect of body fat content upon
HRV variables in pre-/post-menopausal women indicates that
the autonomic imbalance might rather be attributed to the
age factor and the mutated sex hormonal balance, following
the menopause onset. Indeed, suppression of sex hormones
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to postmenopausal levels reduces resting energy expenditure
in young healthy women, through a reduction of autonomic
nervous activity (Day et al., 2005; Messina et al., 2015b).

Heart rate variability is altered in obese subjects, but whether
this is true also in underweight subjects is still under debate. In
a recent study, we investigated the HRV profile in a sample of
healthy adult women and its association with adiposity (Triggiani
et al., 2015). The data reported in this study reflected the trend in
HRV association with FM, among healthy adult women. In fact, a
reduction in time and frequency domain measures was observed
in overweight/obese women, when compared to normal weight
subjects, which reflects sympathetic modulation of heart rate,
in agreement with previously published studies. A similar HRV
profile was found in underweight women, but the impairment of
parasymphatetic activity was not proven. Our findings confirm
that the adaptive flexibility of the autonomic cardiac activity
found in both underweight and overweight/obese subjects, even
though differently reduced, turned out to be poorer than in
normal weight subjects. To look for associations between body
FM extent and HRV indices we found that this relationship
follows a parabolic trend, with lower HRV measures for either
lower and higher FM values, leading to the question of whether
this process might involve opposing or synergic processes that
could be mediated by the two branches of the ANS. The different
ways characterizing the power oscillatory RR signal reduction
in underweight and overweight/obese subjects would suggest
that a relationship between the autonomic bottom tone and
the power of oscillatory RR signal, defined as full scale effect,
may exists. Therefore, the underweight and overweight/obese
status correspond to two distinct levels of tonic sympathetic
activity, respectively, higher and lower than the level of tonic
activity of normal weight subjects. In both cases, the expected
response would be a reduced modulation of the sympathetic
components in the LF band. Overall, these findings are consistent

with previous studies demonstrating that the reduction of HRV
in both underweight and overweight subjects may represent a
risk factor for cardiovascular diseasemortality (Nolan et al., 1998;
Dudina et al., 2011).

CONCLUSION

In this review, we have briefly focused on the relationship
between ANS and orexins in the control of body weight,
according to the theory of the “thermoregulatory hypothesis”
of food intake. In summary, BAT is the strategic organ in
the control of body temperature, through heat dissipation;
while, WAT primarily stores energy as triglycerides and releases
fatty acid during starvation. Although the central control of
adipose tissue function was mainly based on the modulation of
sympathetic outflow, recent developments have demonstrated
that the orexins’ system is a key factor in modulating adipose
tissue functions by acting on several hypothalamic nuclei.
Therefore, we hope that this review stimulates the reader’s
thinking to extend beyond the traditionally accepted roles of
neural and hormonal factors in the control of body fat levels.
To include the neural circuitry involved in orexin control of
adipose tissue will help to provide therapeutic targets for obesity
intervention.
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