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INTRODUCTION

Blood-brain barrier (BBB) is a monolayer of endothelial cells that line brain capillaries. The
BBB protects brain by blocking the entry of harmful substances from blood and shielding the
brain from peripheral fluctuations in hormones, fatty acids, and electrolytes. In addition, the BBB
effectively clears brainmetabolites and serves as a major conduit for the delivery of crucial nutrients
and growth factors needed for proper brain function. Owing to these critical responsibilities,
any functional and structural impairment of the BBB may result in severe pathophysiological
consequences in the brain. BBB dysfunction is implicated in several neurodegenerative disorders
including Alzheimer’s disease (Carmeliet and De Strooper, 2012), Parkinson’s disease (Kortekaas
et al., 2005), and cerebrovascular diseases (Yang and Rosenberg, 2011) such as cerebral amyloid
angiopathy, stroke, and vascular dementia. Hence, the research community has been actively
investigating the cerebrovascular contributions to neurological diseases with major emphasis on
the BBB. The success of these efforts is heavily dependent upon the availability of reliable in vitro as
well as in vivo BBB models.

Polarized monolayers of human cerebrovascular endothelial cells (hCMEC/D3) described in
the current work serves as one such in vitro model that can be easily cultured and manipulated
in the lab (Poller et al., 2008; Vu et al., 2009; Weksler et al., 2013). The barrier properties and the
expression of several classes of receptors, transporters, and enzymes in hCMEC/D3 cells have been
previously investigated (Urich et al., 2012; Lopez-Ramirez et al., 2013, 2014; Bamji-Mirza et al.,
2014; Ilina et al., 2015; Naik et al., 2015; Sajja and Cucullo, 2015). Thus, far, the genomic data for
hCMEC/D3 cell lines have been generated using array-based approaches (Lopez-Ramirez et al.,
2013). However, a comprehensive transcriptomic landscape of hCMEC/D3 cells, which is required
for investigating molecular mechanisms using sophisticated computational biology approaches, is
not currently available.

Next-generation sequencing technology unveils the full potential of systems biology approaches
to resolve cellular and molecular interaction networks that regulate the functional integrity of the
BBB. Such a panoramic view of the interaction networks could enable us to isolate key players
regulating a physiological process and investigate how they are affected in various diseases. To our
knowledge, we are the first group to generate deep RNA sequencing and microRNA sequencing
of a human BBB cell line. This data report describes BBBomics hub as a comprehensive portal for
BBB transcriptomics data, obtained by sequencing mRNA (mRNA-seq) and microRNA (miRNA-
seq) of polarized hCMEC/D3 cell monolayers. This data encompasses coding (gene expression,
alternate splice forms, expressed single nucleotide variants -eSNVs) and non-coding (microRNA,
LincRNA, circular RNA) counts that are easily accessible through BBBomics hub database. We
also superimposed the RNA-seq coding data on 285 Kyoto Encyclopedia of Genes and Genomes
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(KEGG) pathways, which include canonical, non-canonical,
and/or atypical pathways retrievable using BBBomics hub.
The data is easily accessible and freely available at http://
bioinformaticstools.mayo.edu/bbbomics/.

METHODS

Cell Culture
The immortalized human cerebral microvascular endothelial
cell line (hCMEC/D3) was kindly provided by P-O Couraud,
Institut Cochin, France. The polarized endothelial monolayers
were generated like described previously (Agyare et al., 2013) and
the detailedmethods are provided in the SupplementaryMethods
section.

Illumina TruSeq v2 mRNA and microRNA
Protocol
RNA libraries for eight replicates of polarized hCMEC/D3
cell monolayers were prepared according to the manufacturer’s
instructions using TruSeq RNA Sample Prep Kit v2 (Illumina,
San Diego, CA). A detailed protocol has been included in the
Supplementary Methods.

RNA-Seq Data Analysis
Paired-end RNA-sequencing data alignment and processing
was performed using the MAP-RSeq—a comprehensive
computational workflow developed at the Mayo Clinic to obtain
a variety of genomic features from RNA-seq experiment (Kalari
et al., 2014). The main goal of the MAP-RSeq pipeline is to
obtain multiple genomic features, such as gene expression, exon
counts, fusion transcripts from RNA-seq data. On an average,
114 million paired-end reads (51 bp) per sample were processed
through MAP-RSeq workflow. MAP-RSeq provides quality
control reports and summary statistics of sample reads. Total
number of reads, mapped reads, number of reads mapped to the
genome, and the numbers of reads mapped to junctions were
also obtained for each sample. The RNA-seq mapping statistics
for all eight BBB replicates are provided in Supplementary
Table 1.

Gene Expression Analysis
Gene expression counts were obtained using HT-Seq module
http://www-huber.embl.de/users/anders/HTSeq/doc/count.
html from MAP-RSeq (Kalari et al., 2014) pipeline for eight
hCMEC/D3 replicates. Conditional quantile normalization
(CQN) (Hansen et al., 2012) was applied for gene expression
counts; normalized data is also available at BBBomics hub.

Identification of Expressed Nucleotide
Variants
Expressed single nucleotide variants (eSNVs) from RNA-seq
were called using the eSNV-Detect—a computational method
developed by our group (Tang et al., 2014). The eSNVs observed
in the eight replicates were summarized and presented with
annotations.

Alternate Splicing Analysis
The Miso software was used to evaluate alternative splicing
among replicates (Katz et al., 2010). Insertion length distributions
were pre-calculated from the MAPRSeqV1 pipeline. Ensembl
indexes were constructed from the provided Ensembl hg19, build
37 file. Results were compiled using in-house python scripts. Each
table also contains the ENSEMBL gene identifiers, the HUGO
gene identifier, start and stop positions, and exonmodel retention
(with the ENSEMBL identifiers).

Circular RNA (CircRNAs) Analysis
The circular RNA workflow, Circ-Seq version 1.0, was used
to process eight hCMEC/D3 replicates. The unmapped reads
obtained from the MAP-RSeq (Kalari et al., 2014) workflow were
used as input. Bowtie version 2.1.0 (Langmead and Salzberg,
2012) was used to align reads to the reference genome. Custom
python and bash scripts were used to identify and quantitate
reads that supported back-splicing events, i.e., RNA transcripts
formed from the splicing of 3′ tail to 5′ head. The BLAT
software (Kent, 2002) was used to eliminate false candidates
that mapped to multiple locations in the genome. The raw
read counts were reported per sample. In order to obtain the
RefSeq genes that either overlap or neighbor the circular RNA
candidates, intersectBed, and closestBed functions were used
from the BedTools suite (Quinlan and Hall, 2010).

Long Intergenic Non-Coding RNA Analysis
To identify long intergenic non-coding RNAs (lincRNAs) present
in the control samples, the ICQ-lincRNA version 2.0 (lincRNA
workflow), was used. The workflow employs the de novo
transcriptome assembler StringTie (Pertea et al., 2015) version
1.0.3 to assemble and report all transcripts expressed in the
samples. After removal of all known RNA transcripts in Gencode
(version 19), novel RNA candidates are identified through a set
of filters for size selection, expression, repeat masker, and non-
protein coding potential prediction using CPAT (Pertea et al.,
2015) and iSeeRNA (Sun et al., 2013) to arrive at the final
list of potential lincRNA candidates. The raw and normalized
read counts were reported per sample. The raw values for each
lincRNA were normalized to a million and corrected for the
lincRNA length to obtain the normalized reads. The closestBed
function from BedTools suite (Quinlan and Hall, 2010) was
used to identify both the neighboring RefSeq genes and their
distance to the lincRNA. If the lincRNA was found upstream
of the gene, the distance was reported with a negative sign.
Alternatively, a positive distance was reported if the lincRNA was
found downstream of the RefSeq gene. A distance of zero implies
overlapped lincRNA, which shares exons with the RefSeq gene.

MicroRNA Analysis
Two replicates of hCMEC/D3 cell monolayers were processed
through the microRNA workflow CAP-miRSeq (Sun et al.,
2014), version 1.0. The known microRNAs were called using
the miRDeep software (An et al., 2013) (version 2.0.0.5), and
were annotated using miRBase (version 19) database (Kozomara
and Griffiths-Jones, 2011). The raw and normalized read counts
were reported per sample. Raw reads were normalized to a
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million and further computed by dividing each microRNA raw
read count by the total number of microRNA reads to arrive
at the normalized reads for each sample. TargetScan (Friedman
et al., 2009) was used to obtain the computationally predicted
gene targets for all microRNAs reported by the CAP-miRSeq
workflow.

Data Processing
FASTQ files from RNA and microRNA sequencing were aligned
to the human genome build NCBI 37.1 (GRCh37), which
corresponds to human genome assembly hg19 in UCSC database
(Karolchik et al., 2014).

Pathway Analysis
Pathways with at least 5 sequenced genes were rendered using
the R pathview package, version 1.4.2 (Luo and Brouwer, 2013).
Expression gradients for the replicates are depicted with respect
to the 25th and 75th quantiles of the pathway expression
matrix. Pathway gene features were annotated using KEGGREST,
version 1.4.1 (Tenenbaum, 2015) and associated with Hugo gene
symbols obtained from the Homo.sapiens package, version 1.1.2
(Team, 2015). RNA expression profiles were overlaid using the
R package pathview (Luo and Brouwer, 2013) for 285 of the
291 KEGG pathways, where a minimum of 5 annotated RNA
genes were observed. Each gene or node in the pathway diagram
is represented by the 8 bands, representing CQN normalized
values summarized by their expression means (additional details
in Supplementary Methods).

Data or Web Portal Organization and
Access
The “BBBomics” site is implemented as a single page web
service executed via a Linux/Apache HTTPd/Javascript/
JQuery/Boostrap/Perl stack. The query interface allows users
to search with gene and microRNA IDs and provides links to
relevant GeneCards pages and KEGG pathways. This is the first
web portal providing a number of transcriptomic features for any
BBB cell line. Its applications are versatile and will be beneficial
in identifying coding and noncoding transcripts, mutations
(eSNVs), and pathway profiles to perform functional studies.
Supplementary Methods section of the manuscript consists
of instructions of how to query and interpret the data from
BBBomics hub. Data used in this study are deposited in the Gene
Expression Omnibus web site at GSE76531.

RESULTS

Genome wide expression, alternate splice forms, expressed single
nucleotide variants; long non-coding RNAs, circular RNAs, and
pathway regulation data were generated using paired-end RNA-
seq of polarized hCMEC/D3 monolayers. These replicates are
expected to provide a time independent and unbiased view of the
gene expression, along with the expression of single nucleotide
variants, alternate splice forms, long non-coding RNAs, and
circular RNAs. Isolation of RNA and miRNA as well as library
preparations were performed at the Mayo Clinic sequencing core
as indicated in Methods. The processing of RNA-sequencing

data was performed using MAP-RSeq (Kalari et al., 2014) and
miRNA-seq data was performed using CAP-miRSeq (Sun et al.,
2014). All count data obtained for mRNA-seq and miRNA-seq
were normalized and summarized as described in the Methods
Section.

Coding RNAs
Gene Expression
The RNA-seq data with 50 bp paired-end reads consisted of eight
biological replicates with a total of 913,653,962 (approximately
one billion) sequences for one BBB cell line. The statistics of
total sequence reads; mapped reads to genome; mapped reads
to junction; and unmapped reads for the eight replicates are
summarized in Supplementary Table 1. On an average, each
sample has 114 million reads; of which, ∼82% of the reads map
to genome and 14% of the reads map to exon junctions. Due
to the depth of the data generated on this cell line, the RNA
gene expression, splice forms, and mutations were investigated
and identified reliably. After removing the low expressed genes,
there are 13,962 genes that are expressed (median raw gene
expression count >32). Both normalized and raw gene counts
with annotations can be obtained using the BBBomics hub.

Alternate Splice Forms
Splice form results from compare-miso module (Miso software)
were compiled using in-house python scripts. For eight replicate
BBB samples, two result tables were generated [representing
isoforms raw reads and the calculated PSI (“Percentage Spliced
In”)] for each transcript observed in BBBomics hub. For each
gene analyzed, we obtained the top isoform expressed in the
samples, from the PSI value supported by the read counts;
the biological variation across the samples; as well as the
distribution of isoforms. Each gene in BBBomics hub contains the
ENSEMBL gene identifiers, the HUGO gene identifier, start and
stop positions, and exon model retention (with the ENSEMBL
identifiers).

Single Nucleotide Variants
We used eSNV-Detect to identify the expressed SNVs in
hCMEC/D3 cell lines. We found 36,057 eSNVs uniquely
expressed in the coding region and UTR for the eight replicates.
Moreover, the genomic position, confidence level, annotation as
well as frequency for all replicates were reported. Among the
36,057 eSNVs, 12,388 (34.5%) were found in the coding region,
while 23,668 (65.6%) were found in the UTR. In the coding
region eSNVs, 5281 (43.6%) were non-synonymous eSNVs.
There were 24,265 eSNVs present in 4 or more replicate cultures
of hCMEC/D3 cell line. The mutation frequency for eSNVs
is summarized at gene level. Considering the mutation rate is
higher with longer genes, we normalized the gene level mutation
frequency by gene length. Most highly mutated genes included
Humanin Like genes MTRNR2L2 and MTRNR2L8 which are
correlated with Alzheimer’s disease. Other highly mutated genes
are CXCL11, HLA family, CITED4, PPP1R15A, ADRB2, and
LDOC1L as shown in Figure 1.
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FIGURE 1 | Circos plot—View of expressed SNVs identified in hCMEC/D3 cell line by chromosomes. The frequency of the bar indicates the number of times

the eSNVs were observed in a sample. The longer the red bar in the inner circle the more frequent the variant was observed in 8 BBB replicates. There are 30 genes

identified after normalizing by gene length and numbers of mutations, the gene names are shown in the diagram.

Non-Coding RNAs
CircRNAs
We identified 11 circRNAs in the BBB replicates, of which 5
circRNAs were found within the mitochondrial genome. Among
the remaining 6 circRNAs, 5 were located on the chromosome
6, spanning HLA gene family, and another circRNA was on
chromosome 11, overlapping gene IFITM2. Of the 11 circRNAs
identified, two circRNAs were found in five or more samples, and
six had only one sample supporting the evidence of that specific
circRNA.

LincRNAs
We identified 13,218 lincRNAs in the replicates, of which
7256 are known (Gencode version 19) and 5962 are novel
lincRNAs. Of the lincRNAs identified, 1620 known and 5370
novel lincRNAs were detected in all 8 BBB samples. Amongst
the novel lincRNAs, 5865 contained single exons and 97
lincRNAs were multi-exon transcripts with 2 or more exons.
We also observed that 2010 novel lincRNAs overlap protein-
coding genes and the remaining 3952 lincRNAs were found
neighboring one or more protein-coding genes. Information of
distance of a lincRNA to its corresponding protein-coding gene

(upstream indicated by a negative number and downstream
indicated by a positive number) can be found in the BBBomics
hub.

MicroRNAs
The miRNA-seq data was obtained for two replicate BBB
monolayers. Employing our pipeline, we identified 2384
microRNA counts; of those identified only 578 microRNAs were
expressed (with raw median microRNA count >20) in two
replicates of hCMEC/D3 cell line. Both raw and normalized
counts for microRNA along with target genes are listed in the
BBBomics hub. Gene name or the microRNA name can be
easily queried to obtain expression of the microRNA in BBB cell
lines.

Pathways
The gene expression profiles from RNA-sequencing analysis
that displayed a minimum of 5 annotated RNA genes were
overlaid on KEGG pathways using pathview package. To show
pathway data utility, we have queried Alzheimer’s disease
(AD) pathway from BBBomics hub (Figure 2). Each gene or

node in the pathway is represented by eight bands; each
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FIGURE 2 | Example pathway (Alzheimer’s disease) overlaid with gene expression data from BBB cell line. The pathway consists of a snapshot of genes

expression profiles in replicate cultures of hCMEC/D3 cell lines.

band represents the normalized data counts of replicates.
Pathway expression gradients for each replicate were depicted

with respect to the 25th and 75th quantiles of the pathway
expression matrix. It is widely believed that the BBB disruption

is associated with the Alzheimer’s pathology, and is also
implicated in the impaired clearance of amyloid-β proteins. The

hCMEC/D3 cell cultures would thereby represent homeostatic
BBB, prior to the onset of Alzheimer’s disease. In Figure 2

pathway diagram, the 25th quantile is ∼4 CPM (as normalized
be CQN) and the 75th quantiles is 8 CPM. Since the
ranges translate to raw reads of 2048–32,768, and the
CQN is shifted by ∼7 [which is equivalent to 2ˆ(CPM+7)],
we may presume that the pathway is highly expressed in
hCMEC/D3 cells. More details of pathway data interpretation
is provided in Supplementary Methods. The pathway data
are expected to provide insight into the expression levels

of genes of interest and enable decision making on gene
expression manipulations\functional studies of hCMEC/D3 cell
lines.

DISCUSSION

In this work, we present RNA-seq and miRNA-seq data for the
hCMEC/D3 BBB cell line, in an easily accessible database, with
user-friendly interface fortified with effective querying tools. This
web portal provides access to gene expression, alternate splice
profiles, mutations (eSNVs), non-coding RNAs, and pathways
that regulate BBB physiology. We have also made available, five
additional microarray datasets for hCMEC/D3 cell line through
our web portal. In future, we plan to treat hCMEC/D3 cell
lines with a variety of drugs and integrate existing hCMEC/D3
microarray, RNA-Seq, and microRNA data with the perturbed
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omics data. Overall, this comprehensive BBBomics hub is
expected to enable the researchers and computational biologists
to navigate the underexplored frontier of the neurovascular
unit.
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