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Stroke represents one of the major causes of death and disability worldwide, for

which no effective treatments are available. The thrombolytic drug alteplase (tissue

plasminogen activator or tPA) is the only treatment for acute ischemic stroke but its use

is limited by several factors including short therapeutic window, selective efficacy, and

subsequent haemorrhagic complications. Numerous preclinical studies have reported

very promising results using neuroprotective agents but they have failed at clinical trials

because of either safety issues or lack of efficacy. The delivery of many potentially

therapeutic neuroprotectants and diagnostic compounds to the brain is restricted by the

blood-brain barrier (BBB). Nanoparticles (NPs), which can readily cross the BBB without

compromising its integrity, have immense applications in the treatment of ischemic

stroke. In this review, potential uses of NPs will be summarized for the treatment of

ischemic stroke. Additionally, an overview of targeted NPs will be provided, which could

be used in the diagnosis of stroke. Finally, the potential limitations of using NPs in medical

applications will be mentioned. Since the use of NPs in stroke therapy is now emerging

and is still in development, this review is far from comprehensive or conclusive. Instead,

examples of NPs and their current use will be provided, as well as the potentials of NPs

in an effort to meet the high demand of new therapies in stroke.

Keywords: blood-brain barrier, ischemic stroke, nanoparticles, drug delivery, diagnostic tool

Introduction

Stroke is a disease, which occurs unexpectedly and has a disastrous outcome. Approximately 15
million people will experience a stroke episode every year worldwide of which 33% is left with
a permanent disability whereas ∼40% of the cases will result in death (Go et al., 2014). Due
to the high impact of the disease around the world, stroke is ranked as the second deadliest
disease for individuals surpassing 60 years of age, and fifth among individuals of ages 15–59
(The European Stroke Initiave Executive Committee and the Eusi Writing Committee, 2003).
The major issue concerning stroke is the lack of effectiveness of the current diagnostic tools. The
coexisting etiological factors make it more difficult to determine the direct cause of the disease,
and although the routine hematological and biochemical tests regarding stroke patients are carried
out, hematological disorders cannot be accurately assessed. According to recent meetings of the
American Heart Association, about 87% of strokes, appear to be cases of ischemic stroke (Go et al.,
2014).

Abbreviations: BBB, Blood-brain barrier; NPs, Nanoparticles; CNS, central nervous system; GLUT1, glucose transporter 1;

TEER, Trans-endothelial electrical resistance; PEG, polyethylene glycol; ROS, reactive oxygen species.
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At the event of an ischemic stroke, the affected locus shows
apoptosis of the cells. Despite the complexity of the events which
occur during a stroke, the surrounding area (penumbra) can be
rescued, as long as the appropriate drugs are administered in
an early time frame (Zhang et al., 2015). In the molecular level,
the oxidative stress caused by an ischemic event significantly
affects the BBB. When the barrier’s integrity is compromised the
junctional complex formed by the endothelial cells allows for
vascular fluid components (white cells, prostaglandins, amino
acids etc.), to cross to the abluminal side of the brain. As these
cells were never meant to exist within the central nervous system
(CNS), it is believed that they contribute toward the progression
of a vasogenic edema (Pillai et al., 2009).

The damage from an ischemic stroke does not apply only
to the barrier’s junctional complex, but also to the cells which
form and support the blood-brain barrier itself. Lack of oxygen
around the area of the endothelial cells (cell hypoxia) revealed
up-regulation of the glucose transporter 1 (GLUT1) (Yeh
et al., 2008). The endothelial cells are fortified by the presence
of pericytes, which are important for the formation of new
microvasculature, both during embryogenesis as well as in adult
life (Bergers and Song, 2005). Additional support to the BBB
comes from the astrocytes found in the brain. The astrocytic
end-feet from these cells showed important Trans-Endothelial
Electrical Resistance (TEER) increase when co-cultured with
endothelial cells (Abbott et al., 2006). Chemical compromise
of the astrocytes leads to a chain reaction where pericytes are
immediately affected, occludin is reduced within the junctional
complex, and the BBB is presented with increased permeability
(Willis et al., 2004; Bonkowski et al., 2011).

Treatments of Today

The most important parameter during the event of a stroke is
time. The activation of cells, which respond to brain injury or
even cell death signaling, occurs in a matter of minutes. As
previously mentioned the surrounding area which was affected
by stroke can be salvaged and that is due to the indirect effect
that the disease has on neighboring cells (Arai et al., 2011).

Drug administration to the area is desirable but less blood
covering the area would also translate to less quantities of drug
being delivered to the cells. Moreover, the BBB breakdown
during a stroke is not an irreversible event. Mechanisms of cell
repair are activated in order to restore the barrier’s function
(Liu et al., 2010) thus the direct administration of drugs in the
brain is not ideal. At the moment there are developments in
research in order to tackle the issue of drug delivery during stroke
events, but the only commercially-available pharmaceutical agent
is recombinant tissue plasminogen activator (rt-PA) (Jahan
and Vinuela, 2009). The plasminogen activator allows the
oxygenation of the damaged locus as well as partial restoration
of the blood flow. This therapy is again highly depended on time
in order to be effective (not as beneficial if it exceeds a 3–4 h
window) but also increases the risk of bleeding if the damage
is excessive (Messe et al., 2012). Provision of anticoagulants to
the patients is the only other commercially available option but
again anticoagulants are entirely used as precaution to future or

suspected episodes, and in no circumstances can repair or shield
the affected area from further damage (Chen et al., 2000).

BBB Breakdown after Stroke and
Secondary Neuronal Damage

It has been previously shown that in an event of stroke, the
BBB is severely compromised and incapable of re-establishing
regular function for as long as 7 days post-trauma (Lakhan
et al., 2013). The extended period of this breakdown could
lead to further neuronal damage both from host as well
as foreign components. During stroke a complex cascade of
events is present (i.e., disruption of ion channels, excitotoxicity,
inflammation, activation of apoptotic pathways). The occurrence
of these events could lead to further neuronal damage (secondary
neuronal damage) (Chen, 2012). The majority of this damage
will not be detected in the early stages of a stroke; neuronal
injury/cell death can progressively continue even months after
the initial event (Dihne et al., 2002; Baron et al., 2014). Bacterial
infection, head injury, stroke, or even autoimmune diseases can
be involved in this secondary damage and lead to severe disorders
such as motor impairments and neuropsychiatric illness (Chen
et al., 2014). It has been previously demonstrated that the BBB
may not be the only accessible barrier for effective brain injury
treatment. According to Chen Y., monoisonitrosoacetone (which
can cross the BBB with ease) does not reinstate the normal
levels of aceltylcholinesterase (AChE) in the cholinergic nervous
system. During an organophosphate (OP)-induced damage
event, administration of therapeutic substances which are BBB-
specific could lead to progression of a secondary neuronal
damage and irreversible neurological deficits (Chen, 2012).

Crossing the BBB during Stroke

Due to the type of the disease, treatment needs to be
target-specific where the administrated drugs will be able to
preserve their molecular structure thus therapeutic abilities
(bioavailability). The BBB has always been a constant boulder
against efficient drug delivery. Usually “BBB-proof” drugs are
characterized by increased lipophilicity and a small molecular
structure/weight; regardless of the increased probability to
successfully pass the BBB, studies have shown that drug delivery
across the BBB has a crossing success rate of 4–7% (Sierra
et al., 2011). In parallel with the issue of poor drug delivery,
additional problems rise such as lack of systematic drug
dosage, decomposition or even chemical absorption by the host’s
metabolic system (Ghosh et al., 2010). Increased rates of drug
delivery can be achieved with vasodilation drugs. Stretching of
the BBB junctional complex occurs which allows to molecules
of higher molecular weight or different surface charge to cross
to the abluminal side of the brain with minimal restrictions.
Complete dissociation of the junctional complex also allows other
molecules to penetrate the brain locus which are considered toxic
to the brain and may cause more damage rather than protect
during a cerebral edema (Sasaki et al., 1986; Beletsi et al., 1999).
So according to the issues raised above, developing a drug for
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stroke disease must have high sustainability rates in order to go
against the host’s metabolism and natural defenses. Like in daily
life, the transportation of goods by appropriately conditioned
means, allows the product to stay in its initial form as well as in its
optimum condition for a longer period of time. A similar delivery
of goods into the brain can be achieved by the use of NPs.

Drug Delivery and NPs

A NP which is designed for drug delivery purposes can
derive from materials with artificial characteristics or materials
with an organic background. Micelles, inelastic spherical shells,
nanotubular particles, liposomes, golden NPs, and polymers
fall in the category of NPs (Mc Carthy et al., 2014). The use
of the NP as an agent carrier can be achieved in various
ways (encapsulation or conjugation with some of the host’s
components). Enhancement of the NP as a drug delivery element
is accomplished by the determination of the NP’s polarity, the
introduction of a surface receptor recognized by endothelial
cells/immunity cells (phagocytes), or the prolongation of their
lipoid acid chain in an effort to increase lipophilicity (Mc Carthy
et al., 2014). The thickness of the NP’s capsule and the capsule’s
size are significant factors for increased therapeutic abilities. The
sizes of NPs can range between 1 and 300 nm regardless of the
type that is used. With variation in sizes the core to surface
ratio changes. For example, smaller NPs have a smaller core to
surface ratio, which allows a drug to be immediately released once
the NP’s membrane is breached. Larger NPs are not preferred
due to the uneven drug release that may occur; inefficient drug
delivery would take place if the NP is preventing its complete
release due to either slow NP decomposition or entrapment of
the drug within the particle’s compartment (Singh and Lillard,
2009). The time of release for a drug is important, since an early
release into the blood-stream results in decomposition by the
host’s metabolism and clearance from the host’s system (Desai
et al., 1997). Increased specificity regarding the destination of a
drug can be achieved through the natural process of transcytosis.
The versatility to adapt with other cellular components or be
fused with them (i.e., antibodies, peptides) puts the NPs in a
favorable position regarding their use as drug carriers.

Examples of Chemical Agents that
Enhance NP Efficiency

The surfacing of NPs with the polyethylene glycol (PEG) polymer
creates a protective layer, which increases the lifespan of the NP
in the circulatory system, and also enhances the NP’s abilities to
follow a transcytosis route (Xie et al., 2012; Alyautdin et al., 2014).
NPs with a polysorbate coat have shown enhanced abilities to
cross the BBB through endocytotic routes by binding to specific
lipoproteins found on the surface of endothelial cells. The use
of different polymers in combination, showed enhanced control
regarding drug delivery and release. The use of polyethylene
oxide (PEO) with lactic acid-co-glycolic acid (PGLA) showed
that the desired drug can be found within the host’s nervous
system (Singh and Lillard, 2009). Targeting the transporters that

are associated with the BBB is one of the best ways to deliver a
drug in the CNS with high accuracy. For example, conjugation
of liposomes with different molecular weights of PEG leads to
the linkage of glucose with cholesterol; unavoidably the glucose-
part of the fusion molecule is recognized by the brain endothelial
cell transporter GLUT1 which grants access to the liposomes in
a “Trojan horse” manner (Xie et al., 2012). The use of NP’s is
not limited to encapsulation of drugs or conjugation with surface
receptors. Recent studies show that specific NP’s can function as
scavengers of reactive oxygen species (ROS). These free radicals
increase during cerebral ischemia, especially after reperfusion.
For example, platinum nanoparticles (nPts) appear to scavenge
superoxide anions as well as hydrogen peroxide, when tested
in vivo (Takamiya et al., 2012). The same scavenging properties
are presented by ceria NPs; during cerium’s oxidative changes
(reduction—oxidization), oxygen binding occurs in a way that
is similar to the biological antioxidants. These NPs can also be
efficient in ultra-small scales (i.e., 4 nm) making them excellent
candidates for treatments against stroke (Kim et al., 2012).

NPs as a Diagnostic Tool in Stroke

From the research that was recently performed, we can observe
that future perspectives in regards to NPs and stroke therapy
are promising. With the increasing number in types of NPs (Mc
Carthy et al., 2014), parameters such as time of drug release, NP
size, tolerance against degradation by blood components, will
not be an obstacle toward drug delivery in an ischemic brain.
Drugs that showed promising results in vitro such as statins or
candesartan can now be encapsulated in NPs, which can use
endocytotic or transcytotic routs in order to cross the BBB (Sierra
et al., 2011; So et al., 2014). A combination of old and new
ideas can be combined where labeled antibodies of CNS injury
biomarkers such as S100 calcium binding protein B (S100B),
vascular cell adhesion molecule (VCAM), glial fibrillary acidic
protein (GFAP) etc., can be conjugated with NPs in order to
quickly detect them using a computed tomography (CAT) scan
or magnetic resonance imaging (MRI) (Jickling and Sharp, 2011).
The ability of NPs to endure degradation could be used in order
to circulate NPs, conjugated with blood clotting biomarkers in
an effort of early diagnosis or even the disruption of a molecular
cascade that leads to thrombosis (Jickling and Sharp, 2011). Steps
toward the diagnostic use of NP’s have been made by Kevin Y.
Lin and his colleagues who have conjugated thrombin-sensitive
peptide substrates on the surface of the NPs and can detect the
changes of thrombin levels in the circulatory system providing
this way constant monitoring for coagulation (Lin et al., 2013).

Stroke Therapy and NPs

Until very recently the NPs were used for experimental
therapies, preclinical studies as well as early phase clinical
trials (Dobrovolskaia et al., 2008; Jain et al., 2012). Despite
of the current developments in NP research, the use of NPs
in regards to CNS diseases (as well as stroke) is still under
development. Studies show that cytidine 5′ diphosphocholine
has neuroprotective abilities regarding reperfusion and ischemia
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TABLE 1 | Modification of nanoparticles (NPs) to improve specificity against the central Nervous System (CNS).

Modification of NPs Target of modification Use of NPs

Introduction of a surface receptor Adjusted polarity and lipopholicity Drug delivery

Adjustment of size and thickness Core to surface ratio Drug delivery/release

Surfacing with PEG Indurance and transcytotic pathways Drug delivery

Liposome conjugation Regognition by the GLUT1 transporter Drug delivery

Vasolidation drugs (indirect) Increased drug delivery in the CNS Drug delivery

Compromised BBB (indirect) Increased drug delivery in the CNS Drug delivery

Specificity in the type (i.e., nPts) Binding of ROS Therapeutic

Conjugation with labeled antibodies Detection through CAT/MRI Diagnostic

Conjugation with clotting biomarkers Monitoring thrombin levels Diagnostic/Therapeutic

(Hurtado et al., 2011). Encapsulation of this drug in the
appropriate NPs could allow the drug to travel through the
circulatory system into the CNS. Current studies show that
encapsulation of the basic fibroblast growth factor (bFGF) or the
caspase-3 peptide inhibitor (z-DEVD-FMK) into chitosan-NPs,
showed high numbers of NPs crossing through the BBB(Yemisci
et al., 2014). This was achieved by inducing a receptor-mediated
transcytosis of the transferrin receptor-1, which is found on the
endothelial cells forming the BBB. The great numbers of bFGF or
z-DEVD-FMK found within the brain showed reduce blood loss
after a 2-h artery occlusion in the middle cerebral locus. High
success rates of the administration of the drug gave access to a 3-
h therapeutic window (Yemisci et al., 2014). A more recent study
by Alice Gaudin and associates showed that squalenoyl adenosine
(SQAd) which is rapidly metabolized and cleared from the
bloodstream, can preserve 75% of the initial administration intact
in mouse plasma. Adenosine’s hydroxyl groups are protected
by the use of tert-Butyldimethylsilyl chloride (TBDMSCl) in
order for the squalenoyl group to connect with the amino group
of the adenosine. De-protection of the hydroxyl ends leads to
nanoprecipitation and the formation of squalenoyl adenosine
nanoassemblies (SQAd NAs). The ability of SQAd NAs to breach
the CNS showed promising improvements of the neurologic
deficit score in mice, which relates to cerebral ischemia (Gaudin
et al., 2014).

Summary

Although promising, the use of NPs in drug delivery is still
under development and as previously mentioned, stroke initiates
a series of events which can occur simultaneously or even for
prolonged periods of time. While a compromised (open) BBB
is not desirable, the 7 days post-trauma window where the BBB
remains open can be used to cross NPs which could act as
neuroprotective agents or even as diagnostic tools. From the
studies that have been carried out, it was shown that NPs lose
their efficiency as their size increases. Large NPs will either
not be absorbed by the desired tissue, or the polymeric chain
forming the NPs may end up blocking the recognition point of
the NP from the desired surface receptor. Another obstacle is

the undefined amount of drug that can be absorbed by a NP. If
a drug is greatly absorbed, the amount of drug released or even

the time of its release might not be beneficial in regards to drug
delivery. As expected, inability of the NP to absorb the drug will
result in the release of a significant amount which might not be
beneficial if the desired drug is meant to be released as part of a
chronic therapy (Singh and Lillard, 2009; Xie et al., 2012). Various
alterations of the NPs could improve their efficacy in regards to
drug delivery or their potential use in diagnostics/therapeutics
(Table 1).

The latest developments in NP research show more types
of polymers being used as NPs. One of the variables that
can be altered in order to resolve the problem of low drug
amounts crossing the BBB is the increased amount of NPs
carrying the desirable drug. Increase of the dose will eventually
result in increased toxicity toward the cells. M. Kolter et al.,
showed that significant reduction in cell viability won’t occur
unless dosages of 500µg/ml or higher are used. Nevertheless,
TEER is vastly affected with dosages as little as 15µg/ml. By
allowing the dissociation of the BBB we are also allowing
the entrance of foreign (to the CNS) cells (i.e., white cells).
This may lead toward a worsen outcome instead of an
improvement (Kolter et al., 2015). Further adjustments of the
parameters involved in NP research will eventually result in
an optimized model, where NPs will be used as drug delivery
vessels with minimum complications as well as high success
rates.

To conclude, stroke is a time-sensitive disease and early
diagnosis determines the patient’s outcome. Unfortunately,
stroke therapy is bounded bymany limitations and its therapeutic
window is significantly small. An effective compound should
be able to provide neurological protection not just by targeting
the BBB route but also through other CNS barriers in order to
increase the potential of a neuroprotective agent in the brain.
A spherical view of therapeutics should be adopted and take
into account both primary and secondary neuronal damage. The
advancements inNPs research can lead to their use as a diagnostic
tool, a therapeutic tool or even the combination of both in
order to prevent stroke from developing or leaving permanent
neurological deficits.
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