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Adipokines represent likely candidates to mediate the increased breast cancer risk and
the enhanced progression associated with obesity. Other contributors to obesity-related
cancer progression are insulin/IGF-1 pathways and hormones. Among these, the adipokine
leptin is the most intensively studied in both metabolism in general and in cancer due to
the fact that leptin levels increase in proportion of fat mass. Leptin is primarily synthe-
sized from adipocytes but it is also produced by other cells including fibroblasts. In this
latter case, it has been well demonstrated how cancer-associated fibroblasts express lep-
tin receptor and secrete leptin, which sustains a short autocrine loop and is able to target
tumor epithelial cells enhancing breast cancer cell motility and invasiveness. In addition, it
has been reported that leptin may induce breast cancer to undergo a transition from epithe-
lial to spindle-like mesenchymal morphology, activating the signaling pathways devoted to
the EMT. Thus, it emerges how leptin may play a crucial role in mediating malignant cell
and tumor microenvironment interactions. Here, we present an overview of the role of
leptin in breast cancer, covering the following topics: (1) leptin as an amplifier of estro-
gen signaling in tumor epithelial cells contributing to the promotion of carcinogenesis; (2)
leptin as a crucial player in mediating tumor-stroma interaction and influencing EMT-linked
mechanisms, that may sustain breast cancer growth and progression; (3) leptin and leptin
receptor targeting as novel therapeutic strategies for breast cancer treatment.

Keywords: breast cancer, leptin-signaling pathway, estrogen receptor, tumor microenvironment, EMT, stem cells

INTRODUCTION
Breast cancer, a complex and heterogeneous disease, is one of the
most common human malignancies in women worldwide. Breast
cancer development and progression depend on both the accu-
mulation of various genetic alterations in the epithelial cells of the
mammary gland, and the reciprocal interaction between tumor
cell itself and its surrounding microenvironment (stroma). The
stroma of the breast is composed of the extracellular matrix com-
ponents (ECM) as well as several cellular types such as endothelial
cells, pericytes, immune and inflammatory cells, adipocytes, and
fibroblasts [termed cancer-associated fibroblasts (CAFs)] (1). In
breast tumors, 80% of CAFs are in active form (2), and secrete high
levels of various growth factors, cytokines, chemokines, and ECM
degrading proteases (3) that by different mechanisms promote
breast tumor onset and progression. In this regard, we recently
identified leptin as a main regulator in the crosstalk between breast
cancer cells and CAFs, adding, for the first time, leptin to the list
of growth factors able to mediate tumor–stromal interaction (4).

Leptin, whose synthesis and plasma levels increase proportion-
ally to total adipose-tissue mass (5, 6), is a pleiotropic molecule
that regulates food intake, inflammation, immunity, cell differenti-
ation, and proliferation of different cell types including cells of the
breast (7). The activities of leptin are mediated through the trans-
membrane leptin receptor (ObR) encoded by db gene, a member

of the class I cytokine receptor family that includes six isoforms
different in the length of their intracellular tails (8). Leptin bind-
ing to ObR induces activation of multiple intracellular signaling
such as Janus kinase 2-signal transducer and activator of transcrip-
tion 3 (JAK2-STAT3), mitogen-activated protein kinase (MAPK),
and phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT)
pathways (9, 10) involved in different cellular activities. In the last
decades, a plethora of data, strongly support the idea that lep-
tin activity is correlated with breast cancer occurrence. Indeed,
both leptin and its receptor are overexpressed in breast cancer,
especially in higher grade tumors and are associated with distant
metastasis (11, 12). Particularly, it has been extensively demon-
strated using both in vitro and in vivo experimental models, that
this adipokine modulates many aspects of breast cancer biology:
e.g., increases cell proliferation and transformation, induces the
expression of several cell cycle modulators, exerts anti-apoptotic
effects, reduces efficacy of breast cancer treatment, influences can-
cer initiation processes (Table 1). Moreover, we and other authors
have demonstrated that leptin can exert its activity also interacting
with different signaling molecules.

In this review, we will focus on the role of leptin in breast
cancer highlighting the following topics: (1) leptin as an ampli-
fier of estrogen signaling in tumor epithelial cells contributing to
the promotion of carcinogenesis; (2) leptin as a crucial player in
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Table 1 | Role of leptin in breast cancer growth and progression:

in vitro and in vivo studies.

Experimental

models

Findings References

IN VITRO

MCF-7 Increased cell proliferation (4, 13–24)

T47D

ZR75-1

MDA-B-361

SKBR3

MDA-MB-231

MCF-7 Increased cell transformation

(anchorage-independent growth)

(4, 17, 25)

T47D

SKBR3

MCF-7 Up-regulation of cdk2, cyclin D1,

E-cadherin, hyperphosphorylation

of pRb, activation of estrogen

receptor, induced expression of

c-myc

(16, 17, 19, 21,

24, 26–28)T47D

ZR75-1

MCF-7 Anti-apoptotic effect (27, 29, 30)

ZR75-1

MCF-7 Reduced efficacy of breast cancer

treatment

(16, 25)

IN VIVO

Obese Zucker rats Small percentage of carcinoma

developed in obese compared

with lean rats

(31)

MMTV/TGF-α

Lepob/ob

No transgene-induced mammary

tumors development

(32)

MMTV/TGF-α

Lepdb/db

No transgene-induced mammary

tumors development

(33)

MMTV/PyMT-α

db/dbNSE/NSE

Reduced mammary tumor growth

and progression

(34)

Enhanced mitochondrial

β-oxidation

MMTV/Wnt1 tumors

transplanted in

Lepob/ob

Suppressed mammary tumor

growth and tumor-initiating cell

survival

(35)

mediating tumor-stroma interaction and influencing EMT-linked
mechanisms, that may sustain breast cancer growth and progres-
sion; (3) leptin and leptin receptor targeting as novel therapeutic
strategies for breast cancer treatment.

FUNCTIONAL CROSS-TALK BETWEEN LEPTIN AND
ESTROGENS
In addition to leptin, adipose tissue is a source of estrogens
produced from androstenedione via aromatase conversion in
postmenopausal women. Interestingly, several investigators have
reported evidences that a functional cross-talk occurs between lep-
tin and estrogen signaling network further contributes to breast

carcinogenesis. Indeed, estrogen receptor (ER) α and ObRs are
coexpressed in malignant mammary tissue and breast cancer cell
lines (15, 17, 18) and it has been shown a positive association
between serum leptin levels and elevated values of estrogen and
progesterone receptor in patients with breast cancer (36, 37).
Similarly, in human primary breast cancers, leptin receptor expres-
sion is positively correlated with tumor size and ER expression
(38). Moreover, it has been reported that estradiol administra-
tion increases leptin mRNA expression in adipose tissue (39) and
induces an enhanced leptin and ObR expression in MCF-7 breast
cancer cells (40).

On the other hand, leptin is a potent modulator of the estro-
gen signaling pathway. Specifically, we reported that leptin is
able to activate ERα transcriptionally through MAPK pathway in
breast cancer cells in the absence of its natural ligand, reproduc-
ing the classic features of ERα transactivation, such as nuclear
localization, down-regulation of its mRNA and protein levels, and
up-regulation of classic estrogen-dependent genes (26). Recently,
we have also demonstrated that a lysine to arginine mutation
at residue 303 (K303R) within the hinge domain of ER may
potentiate ERα’s role as an effector of leptin intracellular sig-
nal transduction, which may enhance cell proliferation, migration
and invasiveness, contributing to the more aggressive phenotype
of K303R-associated breast cancers (4). Moreover, leptin-induced
activation of ERK and STAT3 has been correlated with an increased
expression of ERα in breast cancer cells (41) and in breast tumors
of nude-mouse xenograft model (42). This evidence is also con-
firmed by analysis of 33 patients with breast cancer at different
stages of disease, demonstrating a significant association between
the expression of leptin receptor and ERα (41).

Leptin also interferes with the estrogen antagonists ICI
182,780 and tamoxifen used in the treatment of ERα-positive
tumors (16, 43).

Further evidence for the involvement of leptin in the paracrine
stimulation of estrogen-responsive tissues is provided by its
capacity to induce CYP19A1 synthesis in stromal cells isolated
from the subcutaneous fat and breast adipose tissue of pre-
menopausal women (44). In addition, Brown and colleagues
have demonstrated that leptin stimulates aromatase expression
in human breast adipose stromal cells through the regulation
of LKB1/AMPK (AMP-activated protein kinase) pathway (45).
Notably, they show that leptin downregulates LKB1 expression,
accompanied by a decrease in AMPK phosphorylation, increased
nuclear translocation of CRTC2 (CREB-regulated transcription
coactivator 2), and a resulting increase in aromatase expres-
sion. Moreover, it has been reported that leptin enhances aro-
matase mRNA expression, protein content and its enzymatic activ-
ity in breast cancer cells, thereby promoting estradiol synthesis
(13). This is mediated by AP1 (transcription activator protein
1) in ERK- and STAT3-dependent manner, since the presence
of a MAPK inhibitor, ERK2- or STAT3-dominant negative con-
structs markedly attenuated the stimulatory effects of leptin on
aromatase.

The enhanced local estrogen production induced by leptin
could potentially also shape the breast cancer microenvironment.
For example, local estrogens up-regulate TNF (tumor necrosis
factor) receptor I expression in adipose-tissue fibroblast in an
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autocrine manner. Breast cancer epithelial cells produce large
amounts of TNF, which through binding to TNF receptor I inhibits
the differentiation of fibroblasts and preadipocytes into mature
adipocytes, providing a molecular basis for the desmoplastic
reaction commonly seen in breast cancer (46).

Overall, these studies indicate a biologically relevant coopera-
tion between leptin and estrogen signaling pathways that might
sustain the growth of estrogen-dependent breast cancer cells.

MOLECULAR CONNECTION BETWEEN LEPTIN AND EMT
In patients with breast cancer, metastasis rather than the primary
tumor is the main cause of death. Epithelial-to-mesenchymal tran-
sition (EMT), a normal physiological process for embryonic devel-
opment and wound healing, is thought to be involved in cancer
progression and metastasis. Indeed, EMT represents a critical step
in which a normal polarized epithelial cell undergoes several bio-
chemical changes to acquire a mesenchymal cell phenotype, such
as acquisition of migratory and invasive capabilities and the loss of
cell–cell adhesion and cell polarity, resulting in tumor aggressive-
ness, recurrence, and overall poor prognosis. Recently, it has been
found that CAFs and fibroblasts from breast reduction specimens
are able to induce EMT in breast cancer cell lines (47–49). The role
played by CAFs in the development and progression of breast can-
cer relies on their ability to produce stromal ECM (extracellular
matrix) proteins and secrete many growth factors and hormones,
including insulin like growth factor (IGF)-I, IGF-II, epidermal
growth factor (EGF), transforming growth factor (TGF)-α, TGF-β
(3). For instance, stromal fibroblasts isolated from invasive breast
cancer tissues promote aggressive phenotypes of breast cancer cells
through EMT induced by paracrine TGF-β1 (50). Recently, we
showed for the first time ObR RNA expression and leptin secre-
tion in CAFs,proposing a novel integral role for leptin in mediating
the bidirectional crosstalk between breast cancer cells and CAFs
driving tumor growth and invasion (4). In parallel, it has been
shown that leptin and its receptor initiate EMT via PI3K/Akt
signaling pathway and β-catenin stabilization and nuclear translo-
cation in breast cancer cells (51). The investigators observed in
leptin-treated ERα-positive MCF-7 breast cancer cells as compared
with untreated cells morphological phenotypic changes, including
acquisition of fibroblast-like appearance, increased formation of
pseudopodia from the cell membrane, reorganization of actin, and
formation of stress fibers throughout cytoplasm. Such phenotypic
differences were also reproduced upon leptin treatment in ERα-
negative MDA-MB-231 and in MDA-MB-468 breast cancer cells.
Exposure of cells to leptin stimulation resulted in loss of expres-
sion of E-cadherin and up-regulation of mesenchymal markers,
which include N-cadherin, fibronectin, and vimentin. Expression
of EMT inducers such as Snail, Slug, Zeb1, and Twist has also been
found. The key mechanism underlying this important function
of leptin involves a previously unrecognized interactions between
leptin, metastasis-associated protein 1 (MTA1) and Wnt/β-catenin
pathways.

Over the last decade, it is emerged that EMT is involved in
the generation and function of breast cancer stem cells (BCSCs), a
population of highly tumorigenic cells characterized by the expres-
sion of molecular markers (phenotype CD44+CD24−/ALDH+)
that, in favorable microenvironments, self-renew, proliferate, and

can differentiate to cells that include the bulk of the tumor mass.
These cells appear to promote angiogenesis and escape immune
surveillance, and chemo- and radio-therapy (52). Leptin has been
reported to regulate and activate several signaling pathways and
oncogenes, such as HER2, and AKT as well as transcription fac-
tors, such as STAT3 and NF-κB, which are critically implicated
in BCSCs (53, 54). In addition, leptin also activates the Notch
signaling pathway (55, 56) that is an important stem-cell signal-
ing network. Interestingly, it has been found that leptin induces
the expression of CD44 and ALDH1 in several cancer cell lines
(53). Zheng et al. have reported a decreased tumor outgrowth and
a functional depletion of BCSCs in obese leptin-deficient mice
transplanted with murine mammary tumor virus (MMTV)-Wnt-
1 tumor cells, showing that leptin signaling has an important role
in tumor cell growth and stem-cell survival (35). Another study
has also demonstrated that expression of Ob-R is a characteristic
feature of CSCs, that display sensitized responses to leptin, such as
STAT3 phosphorylation and activation along with Oct4 and Sox2
overexpression, thereby creating a self-reinforcing signaling net-
work (57). More recently, it has been shown that the leptin receptor
is necessary for maintaining CSC-like and metastatic properties in
triple-negative breast cancer cells (58).

Given all the potential roles of leptin in the multistep processes
of breast cancer progression, involving tumor initiation, primary
tumor growth, invasion and metastasis, the leptin-signaling net-
work is emerging as a novel therapeutic target for patients with
breast cancers.

LEPTIN AS A POTENTIAL TARGET OF THE NOVEL
THERAPEUTIC STRATEGIES FOR BREAST CANCER
TREATMENT
Several therapeutic approaches that could interfere with the
actions of leptin and thereby prevent or delay leptin-related disease
have been proposed (59).

SOLUBLE LEPTIN RECEPTORS
Recombinant leptin-binding domains have been indicated as a
treatment to block free leptin but they do not completely neu-
tralize leptin activity due to a lower affinity for leptin compared
to the intact soluble leptin receptor. (60, 61). However, several
investigators have synthesized receptor-binding fragments able to
inhibit leptin-induced proliferation and oncogenic signaling in
both ER-positive and -negative breast cancer cells (62–64).

PEPTIDE-BASED LEPTIN ANTAGONISTS
An altered form of human leptin containing the mutation
Arg128Gln was the first leptin antagonist synthesized. This muta-
tion, tested in BAF/3 cells (an immortalized murine bone marrow-
derived pro-B-cell line) stably transfected with the long form
of human leptin receptor, exhibited binding properties similar
to wild-type leptin, although it demonstrated reduced biological
activity and weak antagonist properties when tested in cell pro-
liferation assays (65). Another study has demonstrated that high
doses of a short peptide sequences corresponding to amino acids
70–95 of human leptin is able to reverse leptin activity in vitro
and in vivo (66–68). Moreover, Gertler et al. have demonstrated
that mutations in sequence 39-42 (LDFI) of leptin lead to leptin
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FIGURE 1 | Endocrine, paracrine and autocrine actions of leptin.
Leptin circulating at high levels in obesity impacts breast cancer
initiation and progression in an endocrine manner. Leptin secreted
by adipocytes and fibroblasts resident in breast tumor

microenvironment acts on breast cancer cells in a paracrine fashion.
Leptin produced by breast cancer cells supports tumor proliferation
and invasion into the surrounding tissue through a short autocrine
loop.

muteins that still bind the receptor, but do not activate it (69, 70).
Conversion of these amino acids to alanine resulted in the cre-
ation of leptin antagonists, being able to block endogenous leptin
action in intact animals. Subsequent studies have (71–73) discov-
ered another residue, Asp23, whose mutagenesis is associated with
a dramatic increase in leptin-binding affinity. The simultaneous
mutation of Asp23 with leucine and LDF with alanine, made it
possible to synthesize the mutein D23L/L39A/D40A/F41A having
a binding affinity receptor 60 times greater and antagonistic activ-
ity 14 times greater, in vitro, compared to the simple mutation
LDF. Recently, we have synthesized a small peptide based on the
wild-type sequence of leptin-binding site I, and demonstrated its
efficacy in antagonizing leptin activity in breast cancer cell lines
and in in vivo experimental models (data not published).

LEPTIN-RECEPTOR-BLOCKING ANTIBODIES
Leptin binding and signaling could be prevented by using high-
affinity monoclonal antibodies that act as antagonists by interact-
ing with the leptin receptor (74–76). A leptin-receptor-specific
antibody has been tested in an in vitro study, and resulted in
a reduction of both leptin signaling and leptin’s capability to
activate monocytes and induce proliferation of peripheral blood
mononuclear cells (75). The use of polyclonal antibodies that
block leptin has also been proposed (74, 76). However, such anti-
bodies could increase, rather than block, the activity of leptin
in vivo, by prolonging its half-life in the circulation. The leptin-
antibody complex would be larger than leptin alone, thereby

decreasing kidney-mediated clearance of leptin (71). An alter-
native approach is represented by single-domain antibodies, i.e.,
small, monomeric antibody fragments of around 15 kDa that con-
tain a single antigen-binding domain. These fragments are able to
target the leptin receptor and block the ligand-induced confor-
mational switch without interfering with leptin–leptin receptor
interactions. They can bind to the leptin receptor with high affin-
ity and do not cross the blood–brain barrier; thereby, they could
selectively inhibit the peripheral activity of leptin (71).

CONCLUSION
Adipokine leptin, produced by adipocytes, fibroblasts, and breast
cancer cells, may act in an endocrine, paracrine as well as autocrine
manner on breast cancer tissue (Figure 1). Activation of leptin-
signaling results in concurrent activation of multiple oncogenic
pathways leading to increased proliferation, acquisition of mes-
enchymal phenotype, enhanced migration, and invasion of tumor
cells. Knowledge of the complex biological molecular network of
leptin-signaling responsible for mammary carcinogenesis within
tumor microenvironment provides a strong rationale for devel-
oping new agents, tailored to target the leptin and its receptor
pathways, for therapeutic intervention in breast cancer treatment,
particularly in women with obesity.
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