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In our previous article (1), we presented
a unifying principle in the hypotheses
of Pasteur, Warburg, and Crabtree that
“an inverse relation exists between glucose
uptake and respiration.” Warburg’s hypoth-
esis laid emphasis on glucose metabolism
and damaged respiration (mitochondria)
for growth of cells in cancer (2). Pas-
teur recognized that yeast can grow only
if ammonium tartrate (nitrogen source) is
available, whether oxygen is available or not
(3) and ammonium is transformed into a
“complex albuminoid” (protein) material.
Growth is faster in the presence of oxy-
gen and for producing one unit of mass,
yeast requires only 1/15th of glucose when
compared to that in the absence of oxygen
(4–10 parts as against 60–80 parts). Since
the ratio of ATP produced per one glucose
molecule in glycolysis/oxidative phospho-
rylation (OXPHOS) is 1:15, the energy con-
sumed per unit of growth of yeast remains
same (60X1 and 4X15 ATP). We call this:
“the Pasteur’s dictum,” which is different
from the “Pasteur effect ” introduced by
Warburg. Lagunas et al. (4) in early 80s
reported that Pasteur effect is observed only
in resting cells in the absence of nitro-
gen, but not in growing cells. Warburg’s
hypothesis relies on energetics of glucose
metabolism and damaged respiration but

ignores Pasteur’s demonstration of nitro-
gen as the primary requirement for trig-
gering growth. It also ignores the ana-
bolic functions of mitochondria (5, 6) and
the role of glutamine, another key nutri-
ent avidly consumed by actively prolifer-
ating cells (7, 8). We present in this arti-
cle, a hypothesis that activation of com-
plexes of mechanistic target of rapamycin
(mTORC1 and C2) by amino acids (nitro-
gen source) is the molecular explanation of
the “Pasteur’s dictum.” Amino acids acti-
vate both mTORC1 and C2 independent
of insulin or growth factor signaling (IIS).
Amino acids are also required for activation
of mTORC1 in IIS dependent pathway.

MECHANISTIC TARGET OF RAPAMYCIN
AS THE HUB OF NUTRIENT SENSING
Pasteur’s work demonstrates that the qual-
ity of nutrients is important for cell growth.
PI3K–Akt–mTOR signaling is recognized
as a key player in uptake of nutrients
(9). mTOR is a multi-protein complex
and exists in two complexes, mTORC1
and mTORC2. While mLST8 and raptor
are key components of mTORC1, mLST8,
rictor, mSIN1 are required for mTORC2
assembly and activity [reviewed in Ref. (10,
11)]. Nutrients, growth factors, and oxy-
gen were shown to activate mTORC1 (12);

the upstream regulators of mTORC2 are
less understood. We have earlier shown
that a reciprocal relation exists between
mTORC1 and mTORC2, which is inter-
twined with Akt phosphorylations (13).
While mTORC2 is an upstream kinase of
Akt S473 phosphorylation (14), mTORC1
is the downstream effector of Akt T308
phosphorylated state. Activated mTORC1
inhibits mTORC2 assembly (see below).

ACTIVATION OF mTOR COMPLEXES BY
AMINO ACIDS IS THE MODERN
EXPLANATION OF “PASTEUR’S
DICTUM”
Amino acids were shown to activate
mTORC1, independent of the growth fac-
tor signaling (15–17) and are also required
for mTORC1 activity even under growth
factor mediated conditions (18). Recent
reports suggest that mTORC2 can also be
activated by amino acids (19, 20). Tato
et al. demonstrated that starvation and
culture conditions influence activation of
either mTORC1 or mTORC2 by amino
acids (20). Rosario et al. demonstrated that
in primary human placental cells, activa-
tion of amino acid transporters requires
both mTORC1 and mTORC2 (19);
localization of amino acid transporters
is Tor2-independent in fission yeast (21).

Abbreviations: Akt, protein kinase B (T308, S473 – phosphorylated sites threonine 308 and serine 473); AMPK, AMP-activated protein kinase; FoxO, fork head tran-
scription factors of O group; GLUT, glucose transporter; GLS, Glutaminase; Her2, human epidermal growth factor receptor-2; IGF, insulin growth factor; IRS, insulin
receptor substrate; IGF-IR, insulin-like growth factor-I receptor; mTORC1, 2, mechanistic target of rapamycin complex 1 and 2 (mTOR, formerly known as mammalian
target of rapamycin); mLST8, MTOR associated protein, LST8 homolog (S. cerevisiae); mSIN1, mitogen-activated protein kinase associated protein 1; Myc, v-myc avian
myelocytomatosis viral oncogene homolog (c-Myc); OXPHOS, oxidative phosphorylation; PEP, phosphoenolpyruvate; PA, phosphatidic acid; PDGF, platelet-derived
growth factor; PI3FK, phosphatidylinositol 3-kinases; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5-trisphosphate; PLD1, phospholipase
D1, phosphatidylcholine-specific ROS, reaction oxygen species; S6K, the p70 ribosomal, Sestrins, stress response proteins.
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FIGURE 1 | (A) Model depicting amino acids that trigger the downstream
signals: amino acids activate mTORC1 and mTORC2 and protein biosynthesis.
Both mTORC1 and mTORC2 cooperate with each other in stabilizing Akt
translation. mTORC2 phosphorylates AktS473 and promotes glucose uptake.
Akt S473 phosphorylates and causes nuclear exclusion of FoxO and promotes
oxidative phosphorylation and ATP production (see Ref. 73). IIS activates
PDPK1 (3-phosphoinositide dependent protein kinase-1), which
phosphorylates the Akt at T308. Akt phosphorylations are stabilized by high
ATP/ADP ratio. Akt under IIS activates mTORC1 to promote the anabolic
environment. High ATP/ADP ratio inhibits uptake of glucose by
phosphorylation of glucose transporter. S6K, one of the targets of mTORC1,
inhibits mTORC2 by phosphorylating both rictor and mSin1. Inhibition of

autophagy and mitophagy by mTORC1 shifts the mitochondrial function from
ATP production to supply of amino acids, citrate for biosynthesis of
proteins/lipids. (B) Model depicting the role of glutamine in mitochondrial
function and anabolic environment in cells: glutamine entering into cells is
hydrolyzed to generate glutamate by glutaminase. Glutamine – leucine
antiporter promotes the uptake of leucine, which activates mTORC1 and
protein synthesis. Glutamate has multiple functions; uptake of cystine in
exchange for glutamate promotes glutathione biosynthesis, which regulates
ROS. ROS accumulation inhibits ATP production. Glutamate replenishes
α-ketoglutarate (α-KG) to Krebs cycle and promotes ATP production and
inhibits HIF1-α. ROS promotes non-enzymatic decarboxylation of α-KG to
succinate, which is an activator of HIF1-α, glycolysis, and angiogenesis.

This indicates that mTORC1 could be
the primary requirement for amino acid
uptake. Activation of mTORC1 appears to
precede mTORC2, which is in tune with its
role in protein translation. But,Akt stability
during translation requires mTORC2 (22);
it later phosphorylates Akt at S473 (14).

Activation of mTORC1 and creation
of anabolic environment depend on
ATP/ADP ratio (13). ATP production
depends on glucose uptake. Studies on the
relation between oxygen and glucose con-
sumption (Crabtree effect) in the middle of
twentieth Century [reviewed by Ibsen (23)]
suggest that in response to glucose, cells
consume initially high amounts of oxy-
gen for about 20–120 s, which is followed
by an inhibitory period but rises to stabi-
lize around 30% of the original. Uncou-
plers of OXPHOS were shown to release
the inhibitory effect on oxygen consump-
tion, thus relating oxygen consumption
and glucose uptake to ATP production. In
terms of time frame, mitochondria devote
only a short time (<2 min) for producing
ATP in response to glucose availability and
the buildup of ATP has regulatory effect

on glucose uptake (24). ATP production,
under OXPHOS, is 15-folds higher than in
glycolysis and high ATP/ADP ratio is essen-
tial for functional stability of oncoprotein,
Akt (25, 26) and to transform the intra
cellular environment to ATP rich anabolic
environment (Figure 1A).

GLUCOSE UPTAKE IS MEDIATED BY Akt
S473 WHICH IS PHOSPHORYLATED BY
mTORC2
Akt by phosphorylating its substrate AS160
was shown to mediate GLUT4 transloca-
tion to the membrane and promote glucose
uptake. Interestingly, exercise/contractile
activity also phosphorylates AS160 in mus-
cle and AMP-activated protein kinase
(AMPK) appears to have a role in this (27).
Studies with rictor knock out cells had
demonstrated that integrity of mTORC2
and phosphorylation of Akt S473 are essen-
tial for GLUT4 translocation and uptake
of glucose (28, 29). Insulin resistance was
shown to be the result of mTORC1 acti-
vation; one of its downstream targets,
S6K, was shown to cause insulin resis-
tance (30). Although phosphorylation of

IRS1 by S6K was suggested to be the cause
(31), recent studies demonstrated that S6k
phosphorylation of rictor (32, 33) and
mSin1 (34) results in mTORC2 inactiva-
tion. Further, inactivation of mTORC2 was
shown to affect IIS mediated as well as
PGDF and EGF mediated phosphorylation
of Akt (34). This suggests that mTORC2
is upstream of Akt; it protects Akt dur-
ing translation by phosphorylation of its
turn motif site T450 and prevents its ubiq-
uitination (22). Rapamycin inhibition of
mTORC1 activates mTORC2 dependent
AktS473. Rapamycin was also shown to
up-regulate IGF-IR, Her2 expression, and
reduced the phosphorylation of GSK-3β

and NF-κB in an mTORC2 dependent way
(35). These reports suggest that mTORC2
is up-regulated in metabolically starved
or in mTORC1 inhibited cells and it is
upstream of Akt activation.

FoxO IS THE REGULATOR OF BOTH
mTOR AND IIS
FoxO, as the transcription factor of ric-
tor, plays a key role in the assembly of
mTORC2; FoxO also inhibits mTORC1,
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but the inhibition depends on expression
of Sestrin3, rictor, and activation of AMPK
(36). FoxO3a is mainly activated by reactive
oxygen species (ROS) and inhibits the
mitochondrial gene expression (37). FoxO
is the transcriptional regulator of insulin
receptor (38), its substrate IRS-2 (39), and
a reciprocal relation between FoxO and IRS
was demonstrated in β-cells (40). In addi-
tion, it can inhibit Wnt pathway and pro-
liferation of cells (41). FoxO also inhibits
Myc and controls cell metabolism (42, 43).

AEROBIC GLYCOLYSIS, AN
ABERRATION ON MITOCHONDRIAL
FUNCTION
Warburg’s hypothesis of aerobic glycol-
ysis centers on the respiratory damage
(mitochondrial dysfunction) as the pri-
mary cause of malignancy. This, in our
opinion, is an aberration of mitochon-
drial function. Traditionally mitochondria
had been viewed as the ATP producing
“power house” of the cell. It should be rec-
ognized that ATP production is only one
of the short time functions of mitochon-
dria. Substrate shuttles like, malate, aspar-
tate, glutamate and citrate are critical for
anaplerotic and cataplerotic reactions of
Krebs cycle. They are the key sources of car-
bon and nitrogen requirements for protein
and lipid biosynthesis of growing cells (5,
6). These reports suggest that mitochon-
dria shift their function from ATP produc-
tion to coordinate the biosynthetic func-
tion of proliferating cells and it has a time
frame, which depends on ATP/ADP ratio
and production of ROS in mitochondria.
During active ATP production, ROS is kept
under check and glutamine plays a critical
role in redox homeostasis.

GLUTAMINE IN MITOCHONDRIAL
METABOLIC REPROGRAMING
Glutamine, avidly consumed by actively
proliferating cancer cells (7, 8), has
pleiotropic functions; chief amongst which
are activation of mTORC1 signaling (44),
regulation of glutamate levels, uptake
of cysteine and leucine through the
amino acids antiporters [reviewed in
Ref. (8)]. Deamination of glutamine by
two step reactions, glutaminase (GLS)
and glutamate dehydrogenase, replenishes
α-ketoglutarate (α-KG), which is crit-
ical for sensing oxygen, ATP produc-
tion in transformed cells (Figure 1B).

It is also a substrate for prolyl hydrox-
ylases (PHDs), which inhibit HIF1α sig-
naling (45, 46). ROS decarboxylate α-KG
non-enzymatically to succinate (47) and
inactivate PHDs and activate HIF1α

signaling.
Glutaminase, which hydrolyzes gluta-

mine to glutamate and ammonia, is up-
regulated in several cancer cells (48, 49).
Silencing of phosphate-activated mito-
chondrial GLS2 gene of HeLaR exposed
to irradiation increased intracellular ROS
and reduced the productions of antiox-
idants GSH, NADH, and NADPH (50).
Glutamate exchange with cystine plays crit-
ical role in maintenance of the redox
homeostasis mediated by cysteine thiol
oxidation, thioredoxin system, and glu-
tathione (GSH) peroxidases [reviewed in
Ref. (51)].

Glutamine and glutamate are the sub-
strates for leucine and cystine antiporters,
while leucine is an activator of anabolism
(52), cystine inside the cells is reduced to
cysteine, which plays a key role in glu-
tathione biosynthesis and redox homeosta-
sis (53, 54). Interestingly, glutamine trans-
port into cells is regulated by the inflam-
matory cytokine, the tumor necrosis factor
α (TNF-α), which inhibits glutamine/Na+

co-transport (55) promotes the export of
glutamate by activating cystine/glutamate
transporters of microglia causes neurotox-
icity in Japanese encephalitis (56). In con-
trast to cystine/glutamate transporter, acti-
vation of the leucine/glutamine antiporter
SLC7A5/SLC3A2 and the amino acid
sensor MAP4K3 improve leucine availabil-
ity and were shown to activate mTORC1
and anabolic environment (57).

THE LACTIC ACID PUZZLE
Production of lactic acid in cancer cells
is one of the strong arguments in favor
of aerobic glycolysis (58). Lactate is pro-
duced from pyruvate in glycolysis; but in
actively proliferating cells, oncogenes and
ROS inhibit pyruvate kinase (PK) and
block pyruvate production (59). Accumu-
lated phosphoenolpyruvate (PEP) acts as
a feedback regulator of glycolysis (60);
altered glycolytic pathway supplies build-
ing blocks for biosynthesis of lipids and
nucleic acids (61–63). It has been sug-
gested in support of lactate theory, that
cancer tissue is a mixture of catabolic
and anabolic cells with variable access to

oxygen and exhibits metabolic symbiosis;
lactate produced in non-proliferating cells
could be a source of fuel for proliferating
cells (64, 65).

MALATE AS A SOURCE OF PYRUVATE
Mitochondrial substrate shuttles, like
aspartate, glutamate, and succinate, which
are key source of NADPH required for
biosynthesis and the ATP, are also sources
for malate [reviewed in Ref. (8, 45, 66)].
Malic enzyme (ME), which catalyzes the
decarboxylation of malate to pyruvate
exists in three isoforms, the cytosolic, mito-
chondrial NADP+ dependent forms, and
the mitochondrial NAD+ dependent form
(67, 68). ME plays a key role in lipoge-
nesis and glutamine metabolism by gen-
erating the NADPH (69). Inhibition of
MEs reciprocally activates p53, which reg-
ulates cell metabolism and proliferation
(70). Anaplerotic flux of aspartate and glu-
tamate in liver cells was shown to increase
the lactate production (71); transamina-
tion of alanine to glutamate produces pyru-
vate, especially under glutamine deprived
conditions.

In summary, we suggest that nitrogen
source is critical to cell growth and oxy-
gen’s role is to activate ATP production
and limit glucose uptake. Nitrogen uptake
and reduced dependency on glucose for
growth in the presence of oxygen is the
“Pasteur’s dictum.”Activation of mTORC1
by amino acids, independent of IIS, is the
molecular recognition of “Pasteur’s dic-
tum.” Activation of mTORC1 appears to
precede mTORC2, which perhaps facili-
tates translation of Akt and its subsequent
S473 phosphorylation and promotes glu-
cose uptake and energy production as well
as IIS activation. Stabilization of mTORC1
by IIS for anabolic activity of cells depends
on ATP/ADP ratio in the absence of which,
cells may recycle as stem cells. In ana-
bolic environment, mitochondria repro-
gram their function for biosynthetic activ-
ity to replenish the carbon and amino
acid resources for lipid and protein biosyn-
thesis. Inhibition of mTORC1 in grow-
ing cells depends on ROS and AMPK.
Higher levels of dietary amino acids result
in longtime mTORC1 activation and inhi-
bition of mTORC2 and insulin resistance,
which appear to be the cause of metabolic
pathologies and the secret of healthy life
under dietary restriction (72).
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