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Can we create engaging training programs that improve working memory (WM) skills?
While there are numerous procedures that attempt to do so, there is a great deal of
controversy regarding their efficacy. Nonetheless, recent meta-analytic evidence shows
consistent improvements across studies on lab-based tasks generalizing beyond the
specific training effects (Au et al., 2014; Karbach and Verhaeghen, 2014), however, there is
little research into how WM training aids participants in their daily life. Here we propose that
incorporating design principles from the fields of Perceptual Learning (PL) and Computer
Science might augment the efficacy of WM training, and ultimately lead to greater learning
and transfer. In particular, the field of PL has identified numerous mechanisms (including
attention, reinforcement, multisensory facilitation and multi-stimulus training) that promote
brain plasticity. Also, computer science has made great progress in the scientific approach
to game design that can be used to create engaging environments for learning. We
suggest that approaches integrating knowledge across these fields may lead to a more
effective WM interventions and better reflect real world conditions.
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INTRODUCTION
As long as scientists have explored memory, they have strived,
and often failed, to improve it. Most approaches to improve
memory implement strategies, such as creating mnemonic
devices (for example, the method of loci). However, despite
evidence these techniques improve memory performance, they
do not target underlying memory processes, and while they
do have some influence on memory systems in the brain
(Maguire et al., 2003), they typically fail to broadly general-
ize to untrained activities (Verhaeghen et al., 1992; Maguire
et al., 2003; St Clair-Thompson et al., 2010). Recent research
on “brain training” renews promise for improving memory
and other cognitive skills. Here, we focus on working memory
(WM), a limited-capacity system for storing and manipulating
information in a given moment. WM underlies performance in
virtually all complex cognitive tasks (Shah and Miyake, 1999).
Recent approaches targeting skills related to WM (Klingberg
et al., 2002, 2005; Jaeggi et al., 2008, 2010; Anguera et al.,
2013; Goldin et al., 2014) have shown generalizing benefits to
a wide number of non-trained cognitive tasks that are thought
to rely on WM, including executive control and fluid reasoning
(c.f. Au et al., 2014; Karbach and Verhaeghen, 2014 for recent
meta-analyses).

Here we review recent WM training approaches discussing
their strengths and limitations and suggest methods that are based
on the principles of perceptual learning (PL) and game design
to make them more effective. Off-the-shelf computer games and
standard cognitive approaches each contain component proper-
ties that can benefit WM. We propose that integrating knowledge

from psychology and neuroscience along with the science of video
game design could critically inform the development of engaging,
cognitively immersive challenges that will more optimally train
WM memory processes.

SPAN TRAINING
Span training targets WM capacity (Klingberg et al., 2002, 2005)
typically relying on two types of tasks, simple and complex.
Simple span tasks present sequences of stimuli that vary in set-
size with participants typically reporting the items in (reverse)
order of presentation. Research has shown that training on simple
span tasks results in transfer in a variety of measures, such as non-
trained WM tasks, response inhibition, and even fluid reasoning
(Klingberg et al., 2002, 2005; Thorell et al., 2009).

In contrast to simple span tasks, which focus predominantly
on WM storage, complex span tasks involve a secondary process-
ing task. An example of a complex span task is Reading Span
(Daneman and Carpenter, 1980) where participants judge the
semantic content of a series of sentences and then later recall
the last word of each sentence in order. Simple and complex
span tasks used as interventions are typically adaptive, where
the number of items to be recalled increases as training pro-
gresses. Adaptive complex span training leads to both near and
far transfer in a variety of populations. Chein and Morrison
(2010) showed that training on verbal and spatial complex span
tasks improves verbal and spatial short-term memory, response
inhibition, and reading comprehension in young and older adults
(Richmond et al., 2011). In another series of studies, typically
developing children (Loosli et al., 2012; Karbach et al., 2014)
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and older adults (Buschkuehl et al., 2008) were trained on
complex span (see Figure 1B) demonstrating improved read-
ing performance (Loosli et al., 2012; Karbach et al., 2014)
and improved visual WM and episodic memory (Buschkuehl
et al., 2008). Other groups have found similar effects from com-
plex span training in older adults that were maintained several
months after training completion (Borella et al., 2010, 2013,
2014).

N-BACK TRAINING
Among the best known WM tasks used for training is the n-back
task (Jaeggi et al., 2008; Smith et al., 2009; Buschkuehl and Jaeggi,
2010). Here, participants memorize and constantly update the
serial positions “n steps back” in a continuous stimulus stream
and report whether or not the current stimulus matches the stim-
ulus n-items back in a sequence (Figure 1A). Task difficulty (equal
to level of n) is adaptively adjusted in response to participants’
performance. N-back training-related improvements are wide-
ranging, including non-trained WM functions (e.g., Lilienthal
et al., 2013), executive functioning (e.g., Salminen et al., 2012),
episodic memory (e.g., Rudebeck et al., 2012), and even fluid
reasoning (Stephenson and Halpern, 2013). Effects are observed
across the lifespan ranging from typically developing children
(Jaeggi et al., 2011) to older adults (Stepankova et al., 2014). Both
the amount of training (Stepankova et al., 2014) and achievement
on the training task (Jaeggi et al., 2011) have been related to con-
sequent improvements in the untrained fluid intelligence tasks.
However, findings of far transfer (e.g., that WM training leads to
improved performance on tasks unrelated to the training), are not
ubiquitous in the literature (Shipstead et al., 2012). Some of these
inconsistencies across studies may be explained by variations in
training schedules, outcome measures, or individual differences
(Jaeggi et al., 2012, 2014; Shah et al., 2012).

MECHANISMS THAT PROMOTE LEARNING
While there is growing evidence that WM training impacts per-
formance in a wide variety of tasks, the mechanisms driving
plasticity in WM systems remain unclear. However, research
of PL has identified numerous mechanisms that promote the
magnitude and generalization of learning. PL refers to a long
lasting improvement in perceptual abilities as a result of expe-
rience. Interestingly, key approaches to working WM training,
such as extended practice and adaptive procedures (the latter is
to use computer algorithms to customize the challenge to each
participant), were originally modeled after successful approaches
in PL (Klingberg et al., 2002, 2005). Classically, a translational
barrier to PL has been its high degree of specificity to trained
stimulus features (Fahle, 2005), such as orientation (Fiorentini
and Berardi, 1980), retinal location (Karni and Sagi, 1991) or
the eye trained (Poggio et al., 1992; Seitz et al., 2009). This
specificity to the training task and stimuli mirrors issues that
face modern WM training. However, recent research illustrates
how to overcome this “curse of specificity” with approaches
that integrate many techniques (Deveau et al., 2014a,b) showing
greater generalization of learning.

A key question is what mechanisms gate learning? Seitz and
Dinse (2007) proposed a model of PL in which mechanisms

including attention, reinforcement, optimal stimulation proto-
cols, and multisensory facilitation interact to boost sensory
signals over a learning threshold. This model and a host of
empirical research on PL demonstrate that learning generalizes
best when: (1) a larger set of stimulus features are trained
(Xiao et al., 2008; Hung and Seitz, 2014); (2) using multi-
sensory stimuli (Shams and Seitz, 2008); (3) using motivat-
ing tasks (Shibata et al., 2009); (4) participants are confident
in their performance (Ahissar and Hochstein, 1997); and (5)
consistent reinforcement to the training stimuli is used (Seitz
and Watanabe, 2009). Combining these approaches increase the
magnitude and generality of learning (Deveau et al., 2014a,b).
In the following, we review some of the mechanisms that
promote PL and discuss how they could be applied to WM
training.

ATTENTION AND REINFORCEMENT
Attention refers to a set of mental processes that selectively
modulate the processing of relevant information over irrelevant
information; attention influences decisions, guides memory pro-
cesses and our executive functions to direct resources to act upon
the world. Numerous studies show that attention gates learning
(Shiu and Pashler, 1992; Ahissar and Hochstein, 1993; Schoups
et al., 2001; Leclercq and Seitz, 2012b). For example, Schoups
et al. (2001) found neuronal plasticity of V1 cells corresponding
to attended stimuli but no plasticity for cells with receptive fields
overlapping unattended stimuli, suggesting that attention selects
what is learned and what is not. A key aspect of WM capacity
entails the ability to avoid distraction and is positively correlated
with performance on a variety of attention tasks (Engle, 2002;
Hutchison, 2007). Furthermore, WM capacity is highly predictive
for scholastic achievement (Gathercole et al., 2003) and it is
among the major cognitive deficits of children with attention
deficit hyperactivity disorder (ADHD; Klingberg et al., 2002).
Using casual games found on the Internet, Baniqued et al. (2013)
found that playing games focusing on attention/object tracking
improved WM abilities, on the other hand, playing games that
focused on WM did not improve measures of attention. These
and other findings suggest a key role of attention in WM, and
that proper engagement of attention during training may be a key
factor in WM training success.

Also, reinforcement processes (rewards, punishments, moti-
vation, etc.) have fundamental importance in guiding learning.
For example, Seitz et al. (2009) found improved discrimination
of orientation stimuli masked in noise after temporal-pairing
between a liquid reward and a subliminal presentation of that
orientation stimulus. Seitz and Watanabe (2005) suggested a
model where learning is gated by reinforcement signals that
trigger learning of aspects of the environment (even those for
which the organism is not consciously aware) that are predictive
or co-vary with the reinforcing event. They suggested that both
attention and reinforcement operate in part through the release of
neuromodulatory signals in the brain. For example, the orienting
of attention, in the direction of the target-arrow, has been linked
with the acetylcholine neuromodulatory system (Davidson and
Marrocco, 2000). Of interest, cholinergic enhancement through
the use of donepezil improves both the attentional processing
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FIGURE 1 | (A) Diagram of an n-back task presented as a 2-back task
(Jaeggi et al., 2008, 2010). Here, visual and auditory stimuli are presented
simultaneously and participants have to respond to both modality streams
independently. (B) Diagram of a complex span training task (Buschkuehl

et al., 2008; Loosli et al., 2012). Animal pictures are presented sequentially,
and participants respond to the orientation of each picture, and then
reproduce the sequence in which the animals were presented.
(C) Schematic of gamified n-back training task.

(Rokem et al., 2010) as well as the magnitude (Rokem and Silver,
2010) and longevity (Rokem and Silver, 2013) of PL. Other
neuromodulatory systems, such as dopamine and norepinephrine
have also been linked to attention (Posner and Petersen, 1990; Fan
et al., 2003), learning (Kilgard and Merzenich, 1998; Bao et al.,

2001; Dalley et al., 2001; Blake et al., 2006) and WM (Brehmer
et al., 2009; Bellander et al., 2011). These studies suggest that
a good training approach should involve the direction of both
attention and reinforcement in a coordinated manner to promote
learning.
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MULTISENSORY FACILITATION
The human brain has evolved to learn and operate opti-
mally in natural environments in which behavior is guided
by information integrated across multiple sensory modalities.
Crossmodal interactions are ubiquitous in the nervous sys-
tem and occur even at early stages of perceptual processing
(Shimojo and Shams, 2001; Calvert et al., 2004; Schroeder
and Foxe, 2005; Ghazanfar and Schroeder, 2006; Driver and
Noesselt, 2008). For example, recent research shows that sub-
jects trained with auditory-visual stimuli exhibit a faster rate
of learning and a higher degree of improvement than found
in subjects trained in silence (Seitz et al., 2006; Kim et al.,
2008).

Both memory storage and retrieval involves multiple senses.
For example, the smell of a loved one’s perfume (olfaction) can
invoke memories of their face (vision), and so on. However, exist-
ing memory tasks, such as the dual n-back, often employ multiple
(stimulus) modalities that are not coordinated, which research
shows does not promote learning, and may in fact interfere with
it (Seitz et al., 2005). Instead, we suggest a different approach
where multisensory objects are incorporated into WM training.
By defining objects through multi-modal feature sets, each sense
can boost learning in the other. For example, an individual
with limited visual capabilities will benefit from training utilizing
concordant auditory stimuli.

MULTISTIMULUS TRAINING
One way to overcome specificity of learning is by training with
multiple stimuli, as demonstrated in PL (Dosher and Lu, 1998;
Yu et al., 2004; Xiao et al., 2008; Deveau et al., 2014a,b). For
example, the recently developed technique of “double training”
found that classically specific learning effects can show broad
transfer when more than one stimulus attribute is trained. Xiao
et al. (2008) trained participants on a Vernier discrimination task
at a specific orientation at a specific location in the visual field,
which normally yields location and orientation specific learning
(Poggio et al., 1992). However, subsequently training subjects a
second orientation at a different spatial location, the training-
induced changes for the second orientation transferred to the
first location. This data suggests that WM training with a diverse
stimulus set might lead to a greater degree of transfer to untrained
tasks than training on a narrow set (Estes and Burke, 1953;
Schmidt and Bjork, 1992).

Furthermore, PL shows that the arrangement of multiple task
elements in space and time can play a pivotal role in determining
learning. Poor arrangements, such as when different stimuli are
presented in a random order, as opposed to fixed order (Zhang
et al., 2008), lead to poor learning (Seitz et al., 2005). Similar rules
operate in guiding memory where sudden onsets of task-related
stimuli can disrupt memorization of objects paired with those
images (Leclercq and Seitz, 2012a). This may explain the recent
counter-intuitive finding of WM training where the addition of
motivational features in a simple gamification of n-back training
led to impaired learning (Katz et al., 2014; see Figure 2), by inad-
vertently leading to greater distraction. We suggest that greater
congruence between training stimuli and motivational factors will
lead to greater and broader learning from WM training. In the

FIGURE 2 | Interference of learning by gamification. Motivational
features such as scores, prizes, and scene-changes seem to interfere with
learning. Specifically, training with all these features led to a lesser degree
of learning compared to training without motivational features over the
course of three sessions of n-back training (adapted from Katz et al., 2014).

next section we describe how this may be achieved through game
design principles.

VIDEO GAMES
There are many examples of off-the-shelf video games leading to
substantial improvements in a variety of perceptual and cognitive
abilities. For example, Green and Bavelier (2003) found that
training novices for 10 h on an action video game improved
performance on enumeration, useful field of view, and attentional
blink tasks when compared to participants trained with a non-
action video game. Basak et al. (2008) found that playing a
real-time strategy game improved executive control as measured
by task switching, visual short-term memory, and reasoning in
older adults. Another recent study (Shute et al., 2015) showed
that an off-the-shelf video game (Portal 2) led to substantial
improvements on measures of problem solving, spatial skills,
and persistence (in fact, even more so than training with the
popular brain training games of Lumosity). Furthermore, dyslexic
children improved reading speed and attentional abilities after
playing an action video game (Franceschini et al., 2013). Finally,
Goldin et al. (2014) employed several computer games target-
ing executive control, and found improvements in attention,
inhibitory control, and planning, which also translated to school
performance (Goldin et al., 2014). Together these studies suggest
that video games include important attributes that contribute to
learning.

Given the attractive motivational features of video games,
recent research in cognitive science is increasingly moving towards
adding game-like elements to their assessments. However, with-
out proper design these can impair task performance, and even
weaken test quality and learning (Hawkins et al., 2013; Katz et al.,
2014). We suggest a better approach is to create training software
that will dovetail, and/or implement non-competing concepts
from game design that support learning. The video-game field is
maturing, proper design rules and constraints are becoming more
refined and the practices of coordinated design are becoming
better understood and documented (Rabin, 2005). For example,
in order to optimally engage players games must establish clear
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goals and allow players to realize those goals through meaningful
actions (Salen and Zimmerman, 2004). Successful game design
has critical aspects that make software engaging, including its
mechanics, interaction, visual/sensory experience, and progres-
sion (Gee, 2007).

Many game design criteria mirror components found to
improve learning from the PL literature, and literature on delib-
erate practice (Ericsson et al., 1993). For example, consistent
reinforcement to training stimuli (Seitz and Watanabe, 2009)
maps directly to consistent player feedback, a key part of player-
centric interface design (Adams, 2009). Adams says (of players)
“most critically, they need information about whether their efforts
are succeeding or failing, taking them closer to victory or closer
to defeat”. Likewise, motivating tasks (Shibata et al., 2009) and
ensuring subjects are confident of their performance (Ahissar and
Hochstein, 1997) are consistent with good game-design principles
such as establishing clear goals (Salen and Zimmerman, 2004) and
balancing games challenges (related to the adaptive approaches
used in PL and WM training) to match player performance
(Adams, 2009). Applying video-game techniques purposefully
into WM training can inject the cognitive benefits found from
off-the-shelf video games into principled cognitive training, while
also being fun to play.

INTEGRATING LEARNING AND GAMING PRINCIPLES
Two relevant lines of research have made significant break-
throughs in brain training: (1) Studying incidental benefits of off-
the-shelf video games; and (2) Transforming standard cognitive
tasks into training tasks. We suggest that the most success will
come from integrating knowledge of memory systems with that
of brain plasticity and modern game-design principles.

As a first attempt to implement this approach, we created a
prototype game that incorporates mechanics of the n-back into
an engaging 3D space-themed game1 (see Figure 1C). Typically,
the n-back task is very basic, e.g., selecting matches from a grid
or a picture series. In contrast, our prototype is a space-themed
“collection” game with navigation challenges and obstacles,
multi-layered progression through levels, and rich, thematic
visual and sound effects. The n-back task is integrated into
the game mechanics, where players select the “right” fuel cells
while avoiding decoys. Levels are designed to get progressively
harder through increasing cognitive challenge (n-level) and other
game challenges (such as obstacles). While the game is more
difficult and attention is spread over more elements than the
conventional n-back, participant’s control over their environment
is anticipated to increase their engagement with the game.

The game also incorporates principles from PL, where partic-
ipants are trained on multisensory (auditory and visual) features,
where sounds and visuals are designed to facilitate each other,
and where attention and reinforcement are carefully sculpted to
lead to the best learning. While much work is still required to
maximize the game’s efficacy, e.g., by incorporating a broader
stimulus set, adding other memory tasks, and creating an even
more compelling game framework, we put it forward as a first
example of how to build such an integrative game. Initial piloting

1https://itunes.apple.com/us/app/recall-the-game/id890271623?mt=8

with our prototype indicates participants are engaged in the game
and improve performance (n-level) across training sessions. How-
ever, more research is needed to make firm conclusions regarding
its transfer potential.

In summary, we suggest that more integrative approaches will
lead to better learning outcomes. We suggest that the general
mechanisms that promote PL are shared across brain regions
and will also promote WM. Furthermore, there is enough known
about the aspects of conventional video games that lead to pos-
itive learning outcomes that these principles can be applied to
achieve more effective WM training. Additionally, there are other
principles, that were beyond the scope of the present review,
such as deliberate practice (Ericsson et al., 1993), and many
aspects of healthy lifestyles (Walsh, 2011; Sigman et al., 2014)
that also promote cognitive fitness. Integrating these approaches
with good design could lead to a more comprehensive impact
on WM function that might ultimately transfer to real-world
conditions.
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