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Protein homeostasis (proteostasis) requires the timely degradation of misfolded proteins

and their aggregates by protein quality control (PQC), of which molecular chaperones

are an essential component. Compared with other cell types, PQC in neurons

is particularly challenging because they have a unique cellular structure with long

extensions. Making it worse, neurons are postmitotic, i.e., cannot dilute toxic substances

by division, and, thus, are highly sensitive to misfolded proteins, especially as they

age. Failure in PQC is often associated with neurodegenerative diseases, such as

Huntington’s disease (HD), Alzheimer’s disease (AD), Parkinson’s disease (PD), and

prion disease. In fact, many neurodegenerative diseases are considered to be protein

misfolding disorders. To prevent the accumulation of disease-causing aggregates,

neurons utilize a repertoire of chaperones that recognize misfolded proteins through

exposed hydrophobic surfaces and assist their refolding. If such an effort fails,

chaperones can facilitate the degradation of terminally misfolded proteins through

either the ubiquitin (Ub)-proteasome system (UPS) or the autophagy-lysosome system

(hereafter autophagy). If soluble, the substrates associated with chaperones, such

as Hsp70, are ubiquitinated by Ub ligases and degraded through the proteasome

complex. Some misfolded proteins carrying the KFERQ motif are recognized by

the chaperone Hsc70 and delivered to the lysosomal lumen through a process

called, chaperone-mediated autophagy (CMA). Aggregation-prone misfolded proteins

that remain unprocessed are directed to macroautophagy in which cargoes are

collected by adaptors, such as p62/SQSTM-1/Sequestosome-1, and delivered to the

autophagosome for lysosomal degradation. The aggregates that have survived all these

refolding/degradative processes can still be directly dissolved, i.e., disaggregated by

chaperones. Studies have shown that molecular chaperones alleviate the pathogenic

symptoms by neurodegeneration-causing protein aggregates. Chaperone-inducing

drugs and anti-aggregation drugs are actively exploited for beneficial effects on

symptoms of disease. Here, we discuss how chaperones protect misfolded proteins from

aggregation andmediate the degradation of terminally misfolded proteins in collaboration

with cellular degradative machinery. The topics also include therapeutic approaches

to improve the expression and turnover of molecular chaperones and to develop

anti-aggregation drugs.
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INTRODUCTION

Proteins may lose their folding when cells are exposed to
stresses, such as oxidative stress, heat, and toxic chemicals.
Misfolded proteins and their aggregates grow into intracellular
or extracellular amyloid plaques or neurofibrillary tangles
(Taylor et al., 2002). Eukaryotic cells operate the PQC system
to remove these cytotoxic agents in a timely fashion. The
excessive formation of protein aggregates and their fibrillar
structures are universally observed in at least 30 different human
diseases (Taylor et al., 2002; Broersen et al., 2010). These
protein misfolding disorders include various neurodegenerative
diseases, such as Alzheimer’ disease (AD), Parkinson’ disease
(PD), Huntington disease’ (HD), transmissible spongiform
encephalopathies (TSE), and amyotrophic lateral sclerosis (ALS)
(Moreno-Gonzalez and Soto, 2011; Doyle et al., 2013; Hetz and
Mollereau, 2014; Valastyan and Lindquist, 2014).

One essential component of PQC ismolecular chaperones that
enhance the refolding of misfolded proteins and, thus, counteract
their aggregation (Hartl et al., 2011; Kim et al., 2013). Molecular
chaperones constitute up to 10% of the proteome and play
important functions in proteostasis under normal conditions
as well as during cellular stress responses (Kastle and Grune,
2012). The majority of molecular chaperones are called heat-
shock proteins (HSPs) because they are induced by various
stresses such as heat shock, oxidative stress, toxic chemical, and
inflammation (Garrido et al., 2001). HSPs are divided into several
subgroups based on their sizes, such as Hsp70, Hsp90, Hsp60,
Hsp40 (DnaJ), and small HSPs. These molecular chaperones can
assist the refolding of misfolded proteins through three distinct
action modes. First, most chaperones such as Hsp70 can hold the
clients in an unfolded state until spontaneous fold is achieved
(Rudiger et al., 1997; Hartl et al., 2011; Kastle and Grune, 2012).
Second, some molecular chaperons such as Hsp70 and Hsp60s
can use ATP to unfold stable misfolded proteins and convert
them into natively refoldable species (Ranford et al., 2000; Itoh
et al., 2002; Tutar and Tutar, 2010). Third, some chaperones, such
as yeast Hsp104 and human Hsp70 in complex with Hsp40 and
Hsp110, can act as “disaggregases” because they use the energy
of ATP hydrolysis to forcefully unfold and solubilize preformed
aggregates into natively refolded proteins (Mosser et al., 2004;
Shorter and Lindquist, 2004; Arimon et al., 2008; Lo Bianco et al.,
2008; DeSantis et al., 2012). Despite distinct action modes, they
share general properties to recognize and bind the hydrophobic

Abbreviations: 17-AAG, 17-N-allylamino-17-demethoxygeldanamycin; Aβ,

amyloid-β; AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; BBB,

blood brain barrier; C-domain, C-terminal dimerization domain; CHIP, C-

terminus of Hsc70-interacting protein; CMA, chaperone-mediated autophagy;

DUBs, deubiquitination enzymes; ERAD, ER-associated degradation; HD,

Huntington’s disease; Hsc70, heat shock cognate 70; HSF1, heat-shock factor 1;

HSP, heat-shock protein; HSR, heat-shock response; M-domain, mid-domain;

mHTT, mutant huntingtin; N-domain, N-terminal ATP-binding domain; NEF,

nucleotide exchange factor; PD, Parkinson’s disease; PDI, protein disulfide

isomerase; PQC, protein quality control; RING, really interesting new gene;

RIP-1, receptor interacting protein 1; SBD, substrate binding domain; TDP-43,

transactive response DNA binding protein; TRiC, TCP-1 Ring Complex; TSE,

transmissible spongiform encephalopathies; Ub, ubiquitin; UBL, Ub-like; UCHL5,

ubiquitin C-terminal hydrolase L5; UPS, Ub-proteasome system; VAPB, vesicle

associated protein B.

sequences which are not normally exposed in the native folding
(Buchner, 1996). Their binding to and dissociation from clients
can be driven by adenosine-5′-triphosphate (ATP) hydrolysis.
The ATPase and chaperone activity are typically regulated
through their cooperation with cochaperones. In addition to
ATP-dependent chaperones, neurons express ATP-independent
chaperons that bind misfolded proteins and promote refolding
(D’Andrea and Regan, 2003). These chaperones typically form
a coordinated network with cochaperones and the machinery in
proteolytic pathways.

While the primary function of molecular chaperones is to
assist misfolded or unfolded proteins to regain or acquire the
normal folding, they can facilitate the degradation of terminally
misfolded proteins in collaboration with proteolytic machinery
(Hoffmann et al., 2004; Ellis, 2006, 2007; Ellis and Minton,
2006; Pauwels et al., 2007). Eukaryotic cells operate two major
proteolytic systems, the UPS and autophagy. In principle,
terminally misfolded proteins are ubiquitinated by E3 Ub ligases
and processively degraded by the proteasome. If the substrates
are prone to aggregation or escape the surveillance of the UPS,
however, they are redirected tomacroautophagy in which cargoes
are separated in the double membrane structure, called the
autophagosome, and degraded by lysosomal hydrolases (Cha-
Molstad et al., 2015). Some misfolded proteins carrying the
KFERQ pentapeptide sequence can be sorted out by molecular
chaperones and directly delivered to the lysosome through
chaperone-mediated autophagy (CMA) (Chiang et al., 1989;
Dice, 1990; Cuervo et al., 1997).

The UPS is an intracellular proteolytic system that mediates
the degradation of more than 80% of normal and abnormal
intracellular proteins (Wang and Maldonado, 2006). The
importance of molecular chaperones in the UPS was initially
proposed and demonstrated by Ciechanover and colleagues who
showed that the molecular chaperone Hsc70 is required for
Ub-dependent degradation of several substrates (Ciechanover
et al., 1995; Bercovich et al., 1997). The UPS involves a
cascade of E1, E2, and E3 enzymes whose cooperative activities
mediate the conjugation of Ub to target proteins (Pickart,
2001). In this cascade, Ub with a size of 76 residues is
activated by the Ub activating enzyme E1 and transferred to
the Ub conjugating enzyme E2. The Ub moiety carried by E2
is conjugated to substrates, which requires the ubiquitination
activity of the Ub ligase E3. In PQC, most E3s cannot recognize
misfolded proteins and rather depend on molecular chaperones
for substrate recognition. Ubiquitinated substrates are degraded
by the proteasome into short peptides, typically with sizes of
8–12 amino acids. These peptides are displayed on the cell
surface for immunosurveillance (Kloetzel and Ossendorp, 2004)
or degraded into free amino acids by aminopeptidases. The UPS
plays a pivotal role in proteostasis during neurodegeneration
and prevents protein misfolding and aggregation (Morawe et al.,
2012). In addition to PQC, the UPS regulates a variety of
biological processes, including cell cycle, transcription, DNA
repair, and apoptosis (Eldridge and O’Brien, 2010; Xie, 2010).

Autophagy is a process by which cytosolic materials are
degraded by the lysosome. Depending on the mechanism of
cargo delivery to the lysosome, autophagy can be divided into
three pathways: microautophagy, CMA, and macroautophagy.
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In macroautophagy, terminally misfolded proteins in complex
with molecular chaperones are collected by autophagy adaptors,
such as p62 and NBR1. Cargo-loaded p62 undergoes self-
polymerization and are deposited to the autophagosome through
the interaction of p62 with LC3 (Lamark et al., 2009; Stolz et al.,
2014). The autophagosome is fused with the lysosome to form
the autolysosome wherein cargoes along with p62 are degraded
by lysosomal hydrolases. Virtually all the misfolded proteins
including those prone to aggregation in neurodegenerative
diseases can be degraded by macroautophagy. In contrast to
macroautophagy, CMA targets a subset of misfolded cytosolic
proteins, especially those containing the KFERQ pentapeptide
sequence (Fuertes et al., 2003; Massey et al., 2006; Kaushik and
Cuervo, 2012). The substrates of the CMA are recognized by
the molecular chaperone Hsc70 belonging to the Hsp70 family
(Chiang et al., 1989). The cargo-Hsc70 complex is translocated
into the lysosomal lumen and degraded by lysosomal hydrolases
(Cuervo and Dice, 1996). Overall, lysosomal proteolysis through
macroautophagy and CMA plays an important role in the
removal of misfolded proteins that cannot be readily degraded
by the UPS.

Misfolded proteins that survive the attempts of molecular
chaperones to refold or degrade eventually form aggregates. As
the last defense mechanism of PQC, molecular chaperons can
directly resolve, i.e., disaggregate the already formed aggregates
(Parsell et al., 1994; Mogk et al., 1999; Doyle et al., 2013).
The disaggregation activity has been characterized in yeasts
and mammals (Weibezahn et al., 2005; Hodson et al., 2012;
Winkler et al., 2012). In yeasts, Hsp104 in collaboration with
Hsp70, Hsp40, Hsp110, and sHSPs can directly disaggregate and
reactivate proteins deposited in high order aggregates (Shorter,
2011; Torrente and Shorter, 2013). In mammals, Hsp110,
Hsp105, Hsp100, and Hsp70/Hsp40 have been implicated in
disaggregation (Lindquist and Kim, 1996; Glover and Lindquist,
1998; Doyle and Wickner, 2009). Through these multi-step
defense processes, molecular chaperones play a key role in
proteostasis.

Recent studies using mouse models suggest that molecular
chaperones play a protective role in the pathogenesis of
neurodegenerative disorders (Wyatt et al., 2012; Carman et al.,
2013; Witt, 2013). By using disease models, HSPs have been
shown to inhibit the aggregation of aggregation-prone proteins,
such as Aβ , tau, HTT, and α-synuclein, and facilitate their
degradation by the UPS or autophagy (Wyttenbach, 2004).
As such, small molecule compounds that can modulate HSPs
and proteolytic machinery are emerging as a means to treat
neurodegenerative diseases. Below, we discuss the current
understanding on the functions of HSPs in neurodegenerative
diseases, including the recent results obtained from animal
models of neurodegeneration.

REFOLDING OF MISFOLDED PROTEINS
BY MOLECULAR CHAPERONES

Neurons express various molecular chaperones which forms
a complicated network of PQC to prevent aggregation. Their

primary function is to assist the folding and assembly of newly
synthesized polypeptides and the refolding of misfolded or
damaged proteins. Depending on their sizes and action modes,
molecular chaperones can be divided into several classes based
on their sizes, such as Hsp70, Hsp90, Hsp60, Hsp40 (DnaJ), and
small HSPs. Although themajority ofmolecular chaperones share
similarity in action modes, such as substrate recognition and
ATP hydrolysis-driven substrate binding, they are also different
in substrate specificity, localization, and mechanistic details.

The Hsp70 Family
The cytosolic chaperone Hsp70 is evolutionarily conserved and
one of the most abundant chaperones. The homologs of Hsp70
are found in various subcellular compartments, including heat
shock cognate 70 (Hsc70) in the cytosol and BiP/GRP78 in
the ER. Hsp70 shows a broad range of activities in folding
newly synthesized polypeptides, refolding misfolded proteins,
the degradation of terminally misfolded proteins, and directly
resolving already formed aggregates (Kastle and Grune, 2012).
They commonly recognize diverse misfolded proteins through
the interaction with a four to five residue stretch of hydrophobic
amino acids exposed on the surface (Rudiger et al., 1997). The
hydrophobic signatures occur on average every 30–40 residues
in most misfolded proteins. Central to the chaperone activity
of Hsp70 proteins is the transition between open and closed
conformations of their substrate binding domain (SBD). In the
ATP-bound open conformation, the SBD has low affinity to
the client (Hartl et al., 2011). Once ATP hydrolysis is induced
by cochaperones, Hsp70 acquires high affinity to the clients.
The resulting ADP-bound form of Hsp70 facilitates the client’
refolding by holding them in an unfolded state until spontaneous
fold is achieved. The client that achieved the correct folding
no longer has the exposed hydrophobic patches and, thus,
is released from Hsp70. Extensive studies have shown that
Hsp70 directly binds various pathogenic misfolded proteins in
neurodegenerative diseases and facilitate their refolding. Such
substrates of Hsp70 proteins include mutant huntingtin (mHTT)
in HD and other polyQ diseases, α-synuclein in PD, amyloid-β
(Aβ) and hyperphosphorylated tau in AD, and mutant SOD1 in
ALS (Choo et al., 2004; Dedmon et al., 2005; Liu et al., 2005; Evans
et al., 2006; Dompierre et al., 2007; Luk et al., 2008).

The Hsp40 (DnaJ) Family
The Hsp40 proteins, also called J-proteins, form a large
cochaperone family composed of 49 members (Odunuga et al.,
2003). Amongst these, DnaJB6 and DnaJB8 are mainly expressed
in neurons and can suppress polyglutamine aggregation and
toxicity (Cheetham et al., 1992; Hageman et al., 2010). Although
these cochaperones have the activity to bind and counteract
protein aggregates or refold them, they also can modulate the
ATP hydrolysis of Hsp70. The 70-residue J domain of Hsp40
binds misfolded proteins and interacts with the ATPase domain
of Hsp70, which induces the ATP hydrolysis of Hsp70. ATP
hydrolysis, in turn, brings the Hsp40-bound substrate close to
the SBD of Hsp70 and increases Hsp70 affinity to the substrate,
leading to Hsp40 release from the substrate and Hsp70 (Summers
et al., 2009). As a consequence of this allosteric conformational
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change, the substrate is transferred fromHsp40 to Hsp70. Besides
the conserved J domain, Hsp40 proteins carry diverse domains
that mediate specific biological processes, such as intracellular
localizations and client binding for proteolysis (Cheetham and
Caplan, 1998; Kampinga and Craig, 2010). In neurodegenerative
disease, Hsp40 proteins can act as cochaperones for Hsp70
proteins to assist the refolding of soluble misfolded proteins
(Choo et al., 2004; Dedmon et al., 2005; Liu et al., 2005; Evans
et al., 2006; Dompierre et al., 2007; Luk et al., 2008).

The Hsp90 Family
The ATP-dependent chaperone Hsp90, which forms a dimer,
is universally present in various cellular compartments, such
as the cytosol, nucleus, ER, and mitochondria (Lindquist,
2009). Hsp90 is constitutively expressed in normal conditions,
accounting for 1–2% of cellular proteins, and its level can
increase to 4–6% if cells are exposed to stresses (Picard, 2002;
Whitesell and Lindquist, 2005; Taipale et al., 2010; Finka and
Goloubinoff, 2013). The activity of Hsp90 can be regulated
by the HSR (heat-shock response) regulator HSF1 (heat-shock
factor 1) (McLean et al., 2004; Putcha et al., 2010). Human
neurons have a stress-inducible Hsp90α (Hsp90AA1) and a
constitutively expressed Hsp90β (Hsp90AB1) that share 86%
identity in protein sequence (Ammirante et al., 2008). These
Hsp90 proteins bind a variety of clients and hold their folding,
including kinases, nuclear receptors, transcription factors and
cell surface receptors (Kastle and Grune, 2012). Remarkably,
Hsp90 is thought to interact with approximately 2,000 proteins
(Garnier et al., 2002), which accounts for up to 10% of total
cellular proteins (Ratzke et al., 2010). Structural studies have
shown that Hsp90 is composed of an N-terminal ATP-binding
domain (N-domain), a mid-domain that binds the substrate (M-
domain), and a C-terminal dimerization domain (C-domain)
(Picard, 2002; Whitesell and Lindquist, 2005; Taipale et al., 2010;
Finka and Goloubinoff, 2013). The substrate binding-release
cycle of Hsp90 is regulated by ATP hydrolysis, which induces a
large conformational transition between an open vs. closed form.
In a free form, Hsp90 is in an open V-shaped conformation and,
thus, binds clients. The ATP binding to the N-domain of client-
loaded Hsp90 induces a conformational transition (Pearl and
Prodromou, 2006). This results in a closed conformation where
the N-domains of twoHsp90molecules dimerize with each other.
Following ATP hydrolysis, the substrate is released, and Hsp90
returns to an open conformation. The conformational transition
of Hsp90 is regulated by various cochaperones, such as Hop,
p23/Sba1, and Cdc37 (Picard, 2002; Whitesell and Lindquist,
2005; Taipale et al., 2010; Finka and Goloubinoff, 2013). Overall,
the ability of Hsp90 to support the folding/refolding and stability
of proteins is a double edge blade in neurodegeneration because
it can also favor the accumulation of toxic protein aggregates
(Schulte and Neckers, 1998; Boland et al., 2008; Eskelinen and
Saftig, 2009; Chouraki and Seshadri, 2014).

The Hsp60 Family
Hsp60, also called chaperonins, is a 60 kDa mitochondrial
chaperone (Ranford et al., 2000; Itoh et al., 2002; Tutar and
Tutar, 2010). GroEL, a well characterized bacterial chaperone,

also belongs to this class. Although the primary location of Hsp60
is mitochondria, it can migrate to the cytosol under certain
cellular stresses (Ranford et al., 2000; Itoh et al., 2002; Tutar
and Tutar, 2010). Hsp60 forms a double ring complex, in which
each rich is composed of seven subunits. Clients are fed into
the central cavity of the double ring complex, in which their
exposed hydrophobic residues are sequestered during refolding
process (Ranford et al., 2000; Tutar and Tutar, 2010). The folding
process by Hsp60 is modulated by a lid, which are formed by
cochaperones such as Hsp10 in mitochondria. Following ATP
hydrolysis, the unfolded client is released through the opening
of the Hsp10 lid, now with a native folding (Ranford et al., 2000;
Tutar and Tutar, 2010). Hsp60 works together with Hsp70 for
protein folding of unfolded proteins. Neurons contain another
type of chaperonins in the cytosol, which do not depend on
cochaperones. They form a homotypic or heterotypic double
ring complex, each of which is composed of eight subunits. The
members of this group include the TCP-1 Ring Complex (TRiC),
alternatively called TCP1 complex (CCT) (Lopez et al., 2015).
Although, studies have shown that Hsp60 interacts with mutant
α-synuclein in PD (Irizarry et al., 1998; Spillantini et al., 1998),
the physiological importance of Hsp60 proteins in the refolding
of pathogenic misfolded proteins in neurodegeneration remains
poorly characterized.

The Small HSP Family
Different from other types of HSPs, small HSPs are ATP
independent. To date, 10 small HSPs with sizes ranging from 12
to 42 kDa are known in humans. In mouse brain, five small HSPs
are prominently expressed (Quraishe et al., 2008). Amongst these,
the neuronal expression of Hsp27 and αB crystallin is selectively
induced under stresses (Quraishe et al., 2008). Members of this
family are characterized by a 100-residue α-crystallin domain
flanked by variable N-terminal and C-terminal extensions. These
extensions are responsible for substrate recognition andmediates
the formation of oligomers. As holding factors, small HSPs bind
to unfolded or misfolded proteins and prevent their aggregation
until the clients are delivered to other chaperones, such as Hsp70
and Hsp40 system (Carra et al., 2012). Amongst these, Hsp27 is
the most abundant and well characterized. Their expression is
selectively induces by various stresses that perturb proteostasis
(Sarto et al., 2000; Sun and MacRae, 2005).

DEGRADATION OF MISFOLDED
PROTEINS BY MOLECULAR
CHAPERONES THROUGH THE UPS

While the primary functions of molecular chaperones relate
refolding and unfolding of nascent and misfolded proteins, they
can facilitate the degradation of terminally misfolded clients,
either through the UPS or autophagy (Lanneau et al., 2010).
The majority of these clients are tagged with Ub chains for
degradation by the proteasome complex. However, the substrates
prone to aggregation are redirected to autophagy. In either case,
molecular chaperones are involved in the recognition and/or
delivery of terminally misfolded substrates.
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Ub-Dependent Selective Proteolysis
through the Proteasome
The UPS mediates selective proteolysis of short-lived proteins by
the proteasome and accounts for more than 80% of intracellular
proteolysis (Hershko and Ciechanover, 1998). In the UPS, Ub
is first activated by its conjugation to the ubiquitin activating
enzyme E1. This conjugation involves the ATP-dependent
formation of a thioester bond between the C-terminal glycine
residue of Ub and an active site cysteine of E1 (Hershko and
Ciechanover, 1998; Ciechanover, 2013). The activated Ub is
transferred to the Ub conjugating enzyme E2 through a thioester
bond. The Ub ligase E3 promotes the transfer of Ub from
E2 to the lysine (Lys) residue of substrates. This generates an
isopeptide bond between the C-terminal glycine residue of Ub
and lysine residues on the substrate (Hershko and Ciechanover,
1998; Ciechanover, 2013). The human genome encodes more
than 500 E3s. These E3s can be divided into three groups
depending on their ubiquitination domains, including the really
interesting new gene (RING) finger, the homologous to E6-AP
(HECT) domain, and the U-box domain (Qian et al., 2006).
Occasionally, E4 enzymes enhance the conjugation of additional
Ub molecules to form a Ub chain, typically through the K48
linkage (Upadhya andHegde, 2007). Once the first Ub is attached
to substrate, subsequent Ub conjugations may use any of its
seven Lys residues (Peng et al., 2003). This can generates a
Ub chain with many different topologies, each of which has
distinct functions. Amongst these topologies, the most widely
used Lys48 linkage typically leads to proteasomal degradation.
The Lys63 linkage mediates nonproteolytic processes, such as
Ub-dependent protein-protein interactions (Hadian et al., 2011).
Human cells also use the Lys11 linkage for cell cycle regulation
and cell division as well as ERAD (Matsumoto et al., 2010) and
K27 for ubiquitin fusion and degradation (Morawe et al., 2012).
Ub moieties conjugated to substrates are reversible and can be
detached and adjusted by deubiquitination enzymes (DUBs). The
substrates conjugated with polyubiquitin are degraded by the
26S proteasome (Hershko and Ciechanover, 1998). This 2.5-MDa

protease complex is composed of the 20S core particle with a
size of 700 kDa associated with two 19S regulatory particles
(Ravikumar et al., 2008; Douglas et al., 2009; Ciechanover
and Kwon, 2015). The Ub chains conjugated to substrates are
recognized by RPN10 and RPN13 of the 19S particle and stripped
off by DUBs such as RPN11, USP14, and UCHL5 (ubiquitin C-
terminal hydrolase L5; Ravikumar et al., 2008; Douglas et al.,
2009; Ciechanover and Kwon, 2015). Deubiquitinated substrates
are unfolded into a nascent polypeptide through ATP hydrolysis
in the 19S particle and fed into the 20S particle for degradation,
generating short peptides with average sizes of 8–12 amino
acids (Hershko and Ciechanover, 1998). These peptides are
degraded into amino acids by aminopeptidases, which are
recycled for protein synthesis, or presented on the cell surface for
immunosurveillance (Kloetzel and Ossendorp, 2004).

Molecular Chaperones and Ub Ligases
Work Together in the UPS
Several cytosolic or nuclear Ub ligases are known to be involved
in degradation of misfolded proteins in collaboration with
molecule chaperones, including UBR1, UBR2, San1, Hul5, E6-
AP, C-terminus of Hsc70-interacting protein (CHIP) and Parkin
(Gardner et al., 2005; Heck et al., 2010; Kettern et al., 2010;
Figure 1). CHIP is a 35 kDa protein that has dual functions,
one as a cochaperone of Hsp70 and Hsp90, and the other as
a Ub ligase that mediates ubiquitination of misfolded proteins
using its the RING-like U-box domain (Ballinger et al., 1999;
McDonough and Patterson, 2003). The E3 activity of CHIP
requires the interaction with the E2 Ub conjugating enzyme
UBCH5 (Cyr et al., 2002). When interacting with the Hsp70-
or Hsp90-client complex, CHIP in collaboration with UBCH5
captures and ubiquitinates the misfolded clients for proteasomal
degradation (Demand et al., 2001). To facilitate the delivery of the
ubiquitinated substrates to the proteasome, CHIP also interacts
with the S5a component (also known as Rpn10) of the 19S
proteasome particle (Connell et al., 2001). In this process, CHIP
indirectly recognize misfolded proteins through the interaction

FIGURE 1 | Protein degradation by molecular chaperones through the UPS. Molecular chaperones such as Hsp70 recognizes the hydrophobic sequences of

misfolded proteins as degrons. The Ub ligase CHIP guides the chaperone-client complexes to the UPS and mediates the clients’ ubiquitination. The UPS involves a

cascade of E1, E2, and E3 enzymes whose cooperative activities mediate the conjugation of Ub to target proteins. In PQC, most E3s cannot recognize misfolded

proteins and rather depend on molecular chaperones for substrate recognition. Ubiquitinated substrates are degraded by the proteasome into short peptides, typically

with sizes of 8–12 amino acids.
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between its TPR (tetratricopeptide repeat) domain with Hsp70
or Hsp90 (Lanneau et al., 2010). The substrates of CHIP include
hyperphosphorylated tau and mutant SOD1 (Lanneau et al.,
2010). CHIP-mediated degradation of Hsp70 clients is further
facilitated by the cochaperone BAG-1 (Takayama et al., 1997).
BAG-1 uses its C-terminal region to bind the ATPase domain of
Hsp70 and acts as a nucleotide exchange factor (NEF), inducing
the release of substrates from Hsp70 (Takayama et al., 1997).
On the other hand, BAG-1 has also a Ub-like (UBL) domain
at its N-terminal region that supports the interaction with the
proteasome (Alberti et al., 2003). BAG-1 directly interacts and
cooperates with CHIP to guide the terminally misfolded clients
to the UPS. In addition to BAG-1, Hsp27 belonging to the small
HSP family can directly interact with the proteasome tomodulate
the ubiquitination of clients (Garrido et al., 2006). Hsp27 also
binds the Ub chain of clients and, thus, increase the degradation
of ubiquitinated proteins (Garrido et al., 2006).

The clients of Hsp90 can also be degraded through the UPS
if they are no longer chaperoned by Hsp90, for example, owing
to misfolding. These misfolded clients dissociated form Hsp90
are ubiquitinated by E3 ligases, such as CHIP, and degraded by
the proteasome (Didelot et al., 2007). However, CHIP is mainly
associated with Hsp70, and there should be additional E3 ligases
that target the misfolded clients of Hsp90. One such candidate
is the E3 ligase Triad3A which forms a complex with Hsp90
and receptor interacting protein 1 (RIP-1) and mediates the
ubiquitination of RIP-1 and proteasomal degradation following
Hsp90 inhibition by geldanamycin (Fearns et al., 2006).

The N-end rule pathway is a proteolytic system in which a
single N-terminal residue acts as an essential component of a
class of degrons, called N-degrons (Bachmair et al., 1986; Tasaki
and Kwon, 2007; Sriram and Kwon, 2010; Sriram et al., 2011;
Varshavsky, 2011). In mammals, these N-terminal degrons are
recognized by the N-recognin family, including UBR1, UBR2,
UBR4, UBR5, and p62 (Kwon et al., 1999a, 2002; Tasaki et al.,
2005, 2009; An et al., 2006). Amongst these, the Ub ligases UBR1
and UBR2 have been shown to mediate the ubiquitination of
misfolded cytosolic proteins, leading to proteasomal degradation
(Eisele and Wolf, 2008; Heck et al., 2010; Prasad et al., 2010).
These RING finger E3 ligases indirectly recognize misfolded
proteins through molecular chaperones such as Hsp110 and
Hsp70 (Heck et al., 2010; Nillegoda et al., 2010). Misfolded
proteins targeted by N-recognins include TDP43 in ALS and
tau and amyloid β in AD (Brower et al., 2013). Interestingly,
in addition to the exposed hydrophobic residues, some of
their misfolded clients are post-translationally conjugated with
the amino acid L-Arg of Arg-tRNAArg by ATE1-encoded R-
transferases (Grigoryev et al., 1996; Balogh et al., 2000, 2001;
Kwon et al., 2000; Lee et al., 2005). The resulting N-terminal Arg
residue acts as N-degron which is recognized by N-recognins
such as UBR1 and UBR2 (Kwon et al., 1999b; Lee et al., 2008;
Sriram et al., 2009; Meisenberg et al., 2012). In yeasts, the
cytosolic E3 ligase Ubr1 has been shown to work with the
nuclear E3 ligase San1 if cytosolic misfolded proteins overwhelm
the capacity of E3 ligases (Heck et al., 2010; Prasad et al.,
2010). In this collaboration between cytosolic and nuclear PQC
systems, San1 associated with Hsp70 brings excessive cytosolic

misfolded proteins to the nucleus for proteasomal degradation
(Heck et al., 2010; Prasad et al., 2010). Different from other
E3 ligases, San1 has many disordered structures and stretches
of hydrophobic residues and, thus, can directly bind misfolded
proteins (Rosenbaum et al., 2011). In mammals, the nuclear Ub
ligase UHRF2 has been proposed to be a functional homolog of
the yeast San1 (Nielsen et al., 2014).

Eukaryotic cells operate various degradative machinery
designated to specific types of misfolded proteins. In yeasts,
misfolded proteins generated by heat shock are specifically
ubiquitinated by the E3 ligase Hul5 that has a HECT
ubiquitination domain (Fang et al., 2011). In mammals,
mislocalized membrane proteins are ubiquitinated by the
Ub ligase RNF126 (RING finger 126) in collaboration with
the BAG6 chaperone system (Rodrigo-Brenni et al., 2014).
Proteins synthesized from aberrant mRNAs without stop
codons are ubiquitinated by Listerin/Ltn1 (Bengtson and
Joazeiro, 2010). Moreover, in the ER, membrane-associated
misfolded proteins are ubiquitinated by the Ub ligase DOA10
(Nielsen et al., 2014). By contrast, misfolded proteins in the
ER lumen are ubiquitinated by the Ub ligases Hrd1 and
Gp78 mediates through a process called ERAD (ER-associated
degradation) (Vembar and Brodsky, 2008). Except for San1
and Hul5, most of these E3s indirectly recognize misfolded
proteins through cooperating molecular chaperones. Overall,
the mechanistic details and clinical importance of these various
PQC machinery in neurodegenerative diseases remains largely
unexplored.

Deubiquitination Enzymes (DUBs) in the
Degradation of Misfolded Proteins
DUBs detach Ub molecules from substrates and, thus, can
modulate the proteasomal degradation of Ub-conjugated
substrates. The proteasome is associated with DUBs such as
RPN11, UCHL5, and USP14. RPN11 is a stoichiometric subunit
of the proteasome and detaches Ub molecules en bloc from
substrates (Hao et al., 2013). The free, unanchored Ub chains are
deposited to aggresomes and recognized by HDAC which brings
misfolded protein aggregates to aggresomes (Hao et al., 2013).
The interaction between HDAC and unanchored Ub chains is
essential for cargo-loaded HDAC to see where aggresomes are
(Hao et al., 2013). In contrast to RPN11, USP14 is a conditionally
recruited to the proteasome through its UBL domain. This
enhances its activity up to 800-folds and, thus, modulates the
degradation rate of substrates (Crosas et al., 2006). The treatment
of the USP14 inhibitor IU1 has been shown to facilitate the
degradation of aggregation-prone misfolded proteins such as
tau and polyQ-expanded mutant ataxin-3 (Lee et al., 2010). The
functions of DUBs in neurodegenerative diseases remain largely
unexplored.

The UPS Is Impaired during
Neurodegeneration
The pathogenesis of most neurodegenerative diseases, such as
AD, PD, ALS, HD, and prion diseases commonly involves the
downregulation of the components of the UPS. One prominent
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risk factor is aging. The activities of UPS components, such as
the proteasome, are often progressively declined as neurons age
(Keller et al., 2000; Hwang et al., 2007; Tydlacka et al., 2008;
Low, 2011). This may reduce the ability to degrade misfolded
proteins, contributing to the accumulation of pathological
protein aggregates. Making it worse, the accumulated aggregates
as a consequence of reduced UPS activities now further inhibit
the activities of UPS components, including the proteasome.
The proteasome is particularly vulnerable to protein aggregates
because its narrow chamber has a diameter of as small as
13 angstroms. Therefore, proteasome cannot digest protein
aggregates that cannot be easily unfolded. For example, β-
sheet-rich PrP aggregates were shown to block the opening
of the 20S proteasome particle, further reducing proteasomal
activity (Andre and Tabrizi, 2012). Following ubiquitination
and aggregation, tau in AD binds the recognition site of
the 19S catalytic particle and block its gate (Dantuma and
Lindsten, 2010; Tai et al., 2012). Aggregates of many other
pathogenic proteins in neurodegenerative disorders can directly
inhibit proteasome activity (Gregori et al., 1995; Snyder et al.,
2003; Lindersson et al., 2004; Kristiansen et al., 2007). The
resulting proteotoxicity has adverse effects on neurons (Hegde
and Upadhya, 2011). Indeed, the reduced UPS activity has
been associated with neuronal damage in AD, HD, PD,
ALS, ataxia, Angelman syndrome, Wallerian degeneration, and
gracile axonal dystrophy (Hegde, 2010; Hegde and Upadhya,
2011).

DEGRADATION OF MISFOLDED
PROTEINS BY AUTOPHAGY

Autophagy is a process by which cytosolic materials are
degraded by the lysosome. Depending on the mechanism of
cargo delivery to the lysosome, autophagy can be divided into
three pathways: microautophagy, CMA, and macroautophagy.
Terminally misfolded proteins in neurodegenerative diseases
can be degraded through macroautophagy or CMA (Figure 2).
The role of autophagy in proteostasis is vitally important for
postmitotic neurons with long extensions, in which cytotoxic
proteins cannot be diluted by cell division.

Macroautophagy
Misfolded proteins prone to aggregation can be directed to
macroautophagy for lysosomal degradation. These substrates,
typically as a Ub-conjugated form, are collected by autophagy
adaptors, such as p62 and NBR1 (Cha-Molstad et al., 2015).
P62 is normally inactive and can be activated by binding to
the N-terminally arginylated form of the molecular chaperone
BiP/GRP78, the ER counterpart of cytosolic Hsp70 (Cha-
Molstad et al., 2015). Upon the accumulation of non-degradable
autophagic cargoes, BiP and other ER-residing chaperones,
such as calreticulin and protein disulfide isomerase (PDI),
are N-terminally arginylated by ATE1-encoded R-transferase.
The resulting N-terminally arginylated BiP, R-BiP, locates
in the cytosol where R-BiP binds the ZZ domain of p62

FIGURE 2 | The role of molecular chaperones in PQC. Molecular chaperones, such as Hsp70 in combination with the cochaperone Hsp40, facilitate the refolding

of misfolded proteins. If the clients fail to refold, molecular chaperones can also mediate their degradation in collaboration with cellular proteolytic pathways. In

principle, soluble misfolded proteins are targeted by the UPS, in which the clients are ubiquitinated by E3 Ub ligases followed by degradation through the 26S

proteasome. However, if the clients are prone to aggregation or escape the surveillance of the UPS, they can be degraded by lysosomal hydrolases, either through

macroautophagy or CMA. As the last step of PQC, molecular chaperones can disaggregate already formed aggregates. Also shown are misfolded proteins induced

by oxidative stress in mitochondria.
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through its N-terminal arginine residue. This binding induces
a conformational change in p62, facilitating the polymerization
of p62 as well as the interaction of p62 with LC3-II which is
anchored on the membrane of autophagosomes (Cha-Molstad
et al., 2015). It is generally assumed that p62 and other
autophagic adaptors recognize the Ub moieties conjugated to
misfolded proteins and delivers them to the autophagosome
through specific interaction with LC3 (Lamark et al., 2009; Stolz
et al., 2014). The cargo-loaded autophagosome is fused with the
lysosome to form the autolysosome wherein cargoes along with
p62 are degraded by lysosomal hydrolases.

CMA
CMA is a selective proteolytic system and does not involve vesicle
formation (Chiang et al., 1989; Dice, 1990; Cuervo et al., 1997).
The selectivity enables the degradation of misfolded or damaged
cytosolic proteins without interfering with the same kinds of
proteins with normal functions (Fuertes et al., 2003; Massey
et al., 2006; Kaushik and Cuervo, 2012). The target substrates
of the CMA include cytosolic proteins that carry the KFERQ
pentapeptide which functions as a degron. The CMA degron,
found in approximately 30% of cytosolic proteins (Chiang and
Dice, 1988; Dice, 1990), is recognized by chaperones associated
with cochaperones such Hsc70 belonging to the Hsp70 family
(Chiang et al., 1989) (Figure 3). The function of Hsc70 requires
cochaperones, such as Hsp40, Hsp90, HIP, HOP, and BAG-1
(Agarraberes and Dice, 2001). The substrates associated with
the Hsc70 chaperone system are translocated to the lysosomal
membrane through the interaction of Hsc70 with LAMP2A, a
single-span membrane protein (Cuervo and Dice, 1996). The
stability of LAMP2A requires its association with Lys-Hsc70, a
lysosomal homolog of Hsc70. Once the substrate is targeted to
the lysosome, Lys-Hsc70 assists the active LAMP2A complex
to be disassembled into the inactive monomeric form, which

FIGURE 3 | Chaperone-mediated degradation of misfolded proteins.

CMA is a selective proteolytic system in which cytosolic proteins carrying the

KFERQ pentapeptide are targeted by Hsc70. The function of Hsc70 requires

cochaperones, such as Hsp40, Hsp90, HIP, HOP, and BAG-1. The substrates

associated with the Hsc70 chaperone system are translocated to the

lysosomal membrane through the interaction of Hsc70 with LAMP2A, a

single-span membrane protein. L2A, LAMP2A.

is now available for the next round of the CMA process
(Bandyopadhyay et al., 2008). The levels of LAMP2A and Lys-
Hsc70 are important underlying the rate of CMA degradation
(Cuervo et al., 1995; Agarraberes et al., 1997; Cuervo and Dice,
2000). Although a large number of cytosolic proteins contain
the CMA degron sequence, only a limited number of these
proteins were demonstrated to be degraded by the CMA (Wing
et al., 1991). Post-translational modifications can generate the
substrates of the CMA (Chiang and Dice, 1988; Dice, 1990).
Studies have shown that CMA is essential for the survival of
neurons by degrading misfolded or damaged cytosolic proteins
(Cuervo et al., 2004). The misregulation of the CMA has been
shown to correlate to the pathogenesis of neurodegeneration
(Cuervo et al., 2004).

DISAGGREGATION OF AGGREGATES BY
MOLECULAR CHAPERONES

Misfolded proteins may form aggregates if the PQC system
is overwhelmed, for example, under severe stress conditions
or by genetic mutations that allows the accumulation of
non-degradable polypeptides. Yeast and mammalian cells have
molecular chaperones (disaggregases) that can disaggregate the
already formed aggregates (Parsell et al., 1994; Mogk et al., 1999;
Doyle et al., 2013). Proteins recovered from aggregates are either
refolded or degraded (Ravikumar et al., 2008; Douglas et al., 2009;
Ciechanover and Kwon, 2015).

Yeast Hsp104 belonging to the Hsp100 family is a powerful
AAA+ ATPase that has a hexameric ring structure with a central
channel (Shorter, 2011; Torrente and Shorter, 2013). Once
guided to protein aggregates by Hsp70, Hsp104 retrieves proteins
from aggregates and threads them into nascent polypeptides
(Seyffer et al., 2012; Lee et al., 2013; Lipinska et al., 2013; Carroni
et al., 2014). During threading, Hsp70 and Hsp40 assist the
unfolding of substrates to generate surface loops that are fed into
the core of Hsp104 (Zietkiewicz et al., 2006). This disaggregation
activity of Hsp104 was demonstrated to be effective for various
aggregates (Mosser et al., 2004; Shorter and Lindquist, 2004;
Arimon et al., 2008; Lo Bianco et al., 2008; DeSantis et al.,
2012). Despite the disaggregase activities, Hsp104 exhibited
the modest efficacy for the pathogenic misfolded proteins in
human neurodegenerative diseases (DeSantis et al., 2012). The
introduction of a few point mutations markedly increased its
disaggregase activity for the preformed aggregates of α-synuclein
in PD (Jackrel and Shorter, 2014), and TDP-43 and FUS in ALS
(Jackrel and Shorter, 2014; Jackrel et al., 2014). Compared with
wild-type Hsp104, the engineered form had increased ATPase
activity with reduced dependence on the Hsp70/Hsp40 and,
thus, exhibited enhanced activities in protein translocation and
remodeling (Jackrel and Shorter, 2014; Jackrel et al., 2014).

In humans, Hsp70 and Hsp40 interact with the cochaperone
Hsp110 to facilitate the disaggregation of protein aggregates
(Gao et al., 2015; Nillegoda et al., 2015). Hsp110 belonging to
the conserved Hsp70 superfamily has structural and functional
similarity to Hsp70 including the nucleotide binding domain
and acts as an NEF of Hsp70 (Polier et al., 2008). Although
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the action mechanism of the Hsp110-containing disaggregase
complex remains unclear, it appears that the NEF activity of
Hsp110 facilitates ADP release from Hsp70 (Rampelt et al.,
2012). This ability to facilitate disaggregation in vitro has been
equally observed with all three types of human Hsp110 isoforms:
Hsp105α/HSPH1, Apg-2/HSPH2, and Apg-1/HSPH3 (Rampelt
et al., 2012). The importance of Hsp110 in disaggregation
has been demonstrates with various amyloids and prefibrillar
oligomers and reactivate proteins from aggregates (Lo Bianco
et al., 2008). Loss-of-function studies of Hsp110 have also shown
its disaggregation activity in C. elegans (Rampelt et al., 2012),
mouse cells (Yamagishi et al., 2010) and Plasmodium falciparum
(Zininga et al., 2016).

PROTECTIVE ROLE OF CHAPERONES IN
NEURODEGENERATION

Many neurodegenerative diseases are directly caused by
the excessive accumulation of misfolded proteins and their
aggregates. During the pathogenesis, molecular chaperones play
a central role in the refolding, degradation, and disaggregation of
these pathogenic protein species. Extensive studies have shown
that molecular chaperones promote the removal of pathogenic
misfolded proteins and their aggregates.

HD and Other PolyQ Diseases
HD is a progressive neurodegenerative disease associated with
the accumulation of mutant huntingtin (mHTT) that has the
excessive repetition of glutamine residues, called polyQ, which
causes misfolding (Shastry, 2003; Lee et al., 2011). These
misfolded mHTT causes selective neuronal damage and death,
leading to cognitive and motor defects (Gusella and MacDonald,
1998; Ramaswamy et al., 2007; Roos, 2010). Studies have shown
that Hsp70 in a complex with Hsp40 plays a major role in
inhibiting the formation of mHTT aggregates. Specifically, the
Hsp70/Hsp40 machinery binds misfolded mHTT and holds its
folding state to attenuate the formation of mHTT oligomers
(Jana et al., 2000). The neuroprotective role of Hsp70 in the
pathogenesis of PD is highlighted by a genetic screening of
Drosophila PD model, which identified Hsp70 and Hsp40 as
two major suppressors of the neurotoxicity caused by mHTT
(Kazemi-Esfarjani and Benzer, 2000). Consistently, the knockout
of Hsp70 in R6/2 transgenic HD mice has been shown to
aggravate the symptoms in neurodegeneration (Wacker et al.,
2009). A similar neuroprotective efficacy was observed with
the neuronal chaperone HSJ1a (DNAJB2a) belonging to the
Hsp40 family (Labbadia et al., 2012). In addition to the Hsp70-
Hsp40 machinery, other members of the Hsp70 family have also
been shown to counteract mHTT cytotoxicity. Specifically, the
cytosolic chaperone Hsc70 binds and directly delivers mHTT to
the lysosome via CMA, leading to selective degradation of mHTT
and reduced toxicity (Bauer et al., 2010). This finding is further
supported by in vivo studies using mice (Bauer et al., 2010) as
well as flies (Gunawardena et al., 2003) overexpressing Hsc70. An
ER counterpart of Hsp70, BiP/GRP78, has also been shown to
counteract the accumulation of mHTT aggregates and apoptosis

(Jiang et al., 2012). Besides the Hsp70 family members and their
cochaperones, several other chaperones have been implicated in
the refolding and/or degradation of polyQ protein aggregates,
including Hsp84 (Mitsui et al., 2002), Hsp104 (Vacher et al.,
2005), Hsp104/Hsp27 (Perrin et al., 2007), the chaperonin TRiC
(Nollen et al., 2004; Behrends et al., 2006; Kitamura et al., 2006),
and the cochaperone Prefoldin (Tashiro et al., 2013). Finally,
HSPB7 belonging to small HSPs (Vos et al., 2010) and CHIP (Al-
Ramahi et al., 2006) were shown to counteract the formation of
polyQ aggregates in disease models.

PD
PD is the second most common neurodegenerative disease after
AD, affecting up to 10% of humans over 65 years. This protein
misfolding disorder is associated with the loss of dopaminergic
neurons in the substantia nigra pars compacta of brain
(Wirdefeldt et al., 2011). PD is characterized by the formation of
insoluble α-synuclein aggregates which are deposited as nuclear
inclusions (Goedert, 2001; Ross and Poirier, 2004; Hasegawa
et al., 2016) as a ubiquitinated form (Hasegawa et al., 2002).
These inclusion, called Lewy bodies, are mainly composed of
α-synuclein aggregates (Irizarry et al., 1998; Spillantini et al.,
1998) together with various components of PQC, including
Ub (Kuzuhara et al., 1988) and molecular chaperones such as
Hsp70, Hsp90, Hsp60, Hsp40, Hsp27, and CHIP (McLean et al.,
2002). This co-aggregation pattern indicates that α-synuclein
aggregates deposited in Lewy bodies are the remnants that
survived the attempts of molecular chaperones to maintain
proteostasis. Specifically, Hsp70 recognizes the hydrophobic
degron of misfolded α-synuclein through its substrate binding
domain (Dedmon et al., 2005; Luk et al., 2008). By holding the
folding status, Hsp70 facilitates the refolding of misfolded α-
synuclein and inhibits the formation of its oligomers (Outeiro
et al., 2008). The in vivo efficacy of Hsp70 was demonstrated with
overexpressed Hsp70 in flies (Auluck and Bonini, 2002; McLean
et al., 2004; Zhou et al., 2004; Opazo et al., 2008; Danzer et al.,
2011) and mice (Klucken et al., 2004). Moreover, the depletion of
molecular chaperones was shown to aggravate the degeneration
of neurons caused by proteotoxicity (Ebrahimi-Fakhari et al.,
2011).

The ER chaperone BiP belonging to the Hsp70 family
can interact with α-synuclein and reduce its neurotoxicity
(Gorbatyuk et al., 2012). Overexpressed BiP has been shown
to protect nigral dopaminergic neurons in a rat model of
PD, which correlates to reduced ER stress mediators and
apoptosis (Gorbatyuk et al., 2012). The anti-aggregation and
neuroprotective activity of BiP was further demonstrated
with photoreceptor cells expressing aggregation-prone mutant
rhodopsin (Gorbatyuk et al., 2010; Athanasiou et al., 2012). In
addition to Hsp70 proteins, αB-crystallin belonging to small
SHPs can interact with α-synuclein and inhibit the elongation
of its fibrillar seeds by forming nonfibrillar aggregates (Kudva
et al., 1997; Stege et al., 1999; Rekas et al., 2004; Shammas et al.,
2011). Another small HSP, Hsp27, can arrest the aggregation of α-
synuclein in the initial phage, perhaps by binding to the partially
folded monomers (Rekas et al., 2007; Bruinsma et al., 2011).
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AD
AD is the most common neurodegenerative disorder caused
by aggregation-prone proteins and selective loss, inactivation,
or shrinkage in the mature nervous system (Regeur et al.,
1994). The pathogenesis involves the deposit of amyloid-β (Aβ)
both outside and inside the neurons as well as intracellular
neurofibrillary tangles of hyperphosphorylated tau (Shankar
et al., 2008; Honjo et al., 2012). Self-assembly of Aβ, which is
not misfolded, generates its neurotoxic oligomers, which, in turn,
grows into amyloid fibrils (Shankar et al., 2008; Honjo et al.,
2012). Studies have shown that various molecular chaperones
interact with intracellular Aβ species, which has been internalized
by endocytosis, as well as tau and regulate their degradation.
Specifically, αB-crystallin (HSPB5) and DnaJB6 bind to Aβ fibrils
and inhibit their elongation and growth (Shammas et al., 2011;
Mansson et al., 2014). In addition, Hsp70, Hsp40, and Hsp90
interact with the oligomer form of Aβ peptides (Evans et al.,
2006). When overexpressed, Hsp70 and Hsp40 were shown to
reduce the formation of Aβ aggregates and redirected it from
growing into fibrillar to soluble circular structures (Evans et al.,
2006). In contrast to Hsp70, Hsp90 supports the folding of
tau and, thus, stabilizes this neurotoxic protein, facilitating tau
pathology in AD model (Carman et al., 2013). The cochaperone
BAG-1 forms a complex with Hsp70 and tau and can inhibit
tau degradation in cultured cells, leading to the accumulation of
both tau and APP (Elliott et al., 2007, 2009). Given the opposing
roles of Hsp70 and Hsp90, the Hsp90 inhibitor 17-AAG was
successfully used to induce the expression of various chaperones,
such as Hsp70, Hsp40, and Hsp60 (Chen et al., 2014). The
induction of these chaperones reduced Aβ toxicity in neurons
(Chen et al., 2014). Another line of evidence supporting the
protective role of chaperones in AD is provided by a study with
UBB+1, a frameshift mutation of ubiquitin B (Hope et al., 2003).
UBB+1 can inhibit the proteasome and, thus, can be deposited
into intracellular protein inclusions in AD. The overexpression
of UBB+1 induced the expression of HSPs, which, in turn,
protected cells against oxidative stress.

ALS
ALS is the most common adult onset motor neuron disease that
affects the brainstem, cortex and spinal cord. It is characterized
by the atrophy, weakness, and paralysis of muscles, leading
to death within 3–5 years post diagnosis (Robberecht and
Philips, 2013). The majority of ALS patients are sporadic,
whereas 5–10% are familial, i.e., linked to mutations in specific
genes. Numerous genetic mutations are linked to ALS, either
genetically and/or pathologically. Amongst these, the mutations
of SOD1, a free radical scavenger enzyme, accounts for 20%
of familial ALS cases (Rosen et al., 1993). Several other ALS-
linked mutated proteins form intracellular aggregates, including
C9ORF72 (DeJesus-Hernandez et al., 2011), transactive response
DNA binding protein (TDP-43), fused in sarcoma/translocated
in liposarcoma (FUS), vesicle associated protein B (VAPB),
ubiquilin-2, optineurin, and protein disulphide isomerase 1 and
3 (PDIA1 and PDIA3) (Robberecht and Philips, 2013). The
majority of ALS cases are considered protein misfolding disorder
because these mutations cause the accumulation of misfolded
proteins and their aggregates.

Various molecular chaperones are implicated in the formation
of these protein aggregates in ALS. For example, Hsp70/Hsp40,
Hsp27, Hsp25, and αB-crystalline can form complexes with an
ALS-causing mutant form of SOD, SOD1G93A. However, the
overexpression of Hsp70 alone was not sufficient to reduce
mutant SOD1 toxicity in ALS mouse model (Liu et al.,
2005). Instead, PDI proteins exhibit a protective role in ALS
models (Walker et al., 2010; Jeon et al., 2014). PDI assists the
rearrangement of incorrectly arranged disulfide bonds of ER
clients. It can also act as a chaperone that not only counteracts
the aggregation of proteins independent of disulfide bonds but
also delivers terminally misfolded proteins to ERAD (Quan et al.,
1995). Over 15 missense mutations of PDIA1 and ERp57/PDIA3
were linked to ALS (Yang and Guo, 2016). Various in vitro and
animal studies showed that PDI is deposited to the aggregates
formed by the mutant forms of TDP-43 and FUS (Honjo et al.,
2011; Farg et al., 2012), TDP-43 (Honjo et al., 2011; Walker
et al., 2013), and VAPB (Tsuda et al., 2008). The overexpression
of PDI reduces mutant SOD1 inclusions in vitro whereas PDI
knockdown facilitates the formation of ALS inclusions (Walker
et al., 2010).

Hsp27 also plays a protective role in the pathogenesis of
ALS. Hsp27 binds mutant SOD1 in vitro and inhibits its fibril
elongation (Yerbury et al., 2013). The overexpression of Hsp27
was shown to inhibit mutant SOD1-induced cell death (Patel
et al., 2005). Hsp27 exhibited a synergistic efficacy when Hsp70
was coexpressed (Patel et al., 2005). In addition to Hsp27, HSJ1a
shows a similar protective activity against the formation of
mutant SOD aggregates at the late stage of the disease (Novoselov
et al., 2013). HSJ1a interacts with SOD1G93 and facilitates its
ubiquitination and proteasomal degradation.

THERAPEUTIC APPLICATION TARGETING
MOLECULAR CHAPERONES IN
NEURODEGENERATION

Given the protective role of molecular chaperones against
pathogenic protein aggregates in neurodegenerative diseases,
molecular chaperones are logical targets for drug development
to modulate aggregation and clearance of the aggregates. Indeed,
pharmaceutical induction of molecular chaperones has been
demonstrated to effectively inhibit the formation of pathogenic
aggregates in disease models.

Hsp90 supports in the folding/refolding and stability of
a number of clients, including pathogenic misfolded protein
aggregates in neurodegenerative diseases. While these activities
are overall beneficial for refolding, however, Hsp90 also assists in
the stability of neurotoxic proteins, favoring the accumulation of
toxic protein aggregates (Schulte andNeckers, 1998; Boland et al.,
2008; Eskelinen and Saftig, 2009; Chouraki and Seshadri, 2014).
Therefore, one such strategy is the pharmaceutical inhibition
of Hsp90. Geldanamycin competes with ATP and inhibits the
folding and stabilization of neurotoxic proteins (Schulte and
Neckers, 1998; Boland et al., 2008; Eskelinen and Saftig, 2009;
Chouraki and Seshadri, 2014). In addition, upon binding to
geldanamycin, Hsp90 releases a HSP-inducing transcript factor,
HSF1 (McLean et al., 2004; Putcha et al., 2010). The dissociated
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HSF1 which otherwise would be sequestered by Hsp90 move to
the nucleus and transcriptionally induces HSPs, such as Hsp70
(McLean et al., 2004; Putcha et al., 2010). Geldanamycin was
successfully used to inhibit protein aggregation in the Drosophila
(McLean et al., 2004; Putcha et al., 2010) and mouse PD model
(Shen et al., 2005) and in a primary culture model of familial ALS
(Batulan et al., 2006).

Despite its therapeutic efficacy, geldanamycin is toxic and
cannot penetrate the blood brain barrier (BBB). A number
of geldanamycin derivatives or the compounds that target
HSF1 are now available, including geranylgeranylacetaone,
celastrol, arimoclomol, withaferin A, 17-N-allylamino-17-
demethoxygeldanamycin (17-AAG), and PU-DZ8 (Kieran
et al., 2004; Niikura et al., 2006; Hoogstra-Berends et al.,
2012; Khan et al., 2012; Kalmar et al., 2014; Sharma et al.,
2015). Amongst these, celastrol is an anti-inflammatory and
antioxidant compound extracted from a perennial creeping
plant belonging to the Celastraceae family (Cleren et al., 2005).
The treatment of celastrol in HD model mice resulted in the
induction of Hsp70 expression associated with reduced loss of
dopaminergic neurons induced by MPTP in the substantia nigra
pars compacta (Cleren et al., 2005). Celastrol protected neurons
against polyglutamine toxicity in vivo and in vitro (Zhang and
Sarge, 2007) and reduced the β-amyloid level in mouse AD
(Paris et al., 2010) and HD (Zhang and Sarge, 2007) models.
BBB-permeable Hsp90 inhibitors, 17-AAG and PU-DZ8, were
used to decrease the levels of phosphorylated tau in the AD
model (Luo et al., 2007) and to inhibit neurodegeneration in
a fly HD model (Fujikake et al., 2008). In addition, as Hsp90
inhibition causes undesirable proteotoxicity, HSF1A, a small
benzyl pyrazole-based compound, has been developed to activate
Hsf1 without inhibiting Hsp90 (Neef et al., 2010). Overall,
studies using these HSP-inducing compounds in animal models
of neurodegenerative diseases demonstrate that this strategy has
potential for therapeutic application.

CONCLUDING REMARKS

Neurodegenerative diseases are caused by failure in PQC, which
can be attributed to genetic mutations or alternatively an age-
related decline in proteolytic activities. Molecular chaperones are
an essential component of PQC in that they recognize unfolded

or misfolded proteins, hold their folding status, and release
them for spontaneous refolding. These nanoscale molecular
machines can also facilitate the degradation of terminally
misfolded proteins either through the UPS and autophagy. As
the last defense mechanism of PQC, molecular chaperons can
disaggregate the already formed aggregates. Thus, molecular
chaperones play a pivotal role to protect neurons from the
accumulation of pathogenic protein aggregates. It is therefore not
surprising that pharmaceutical means are exploited to modulate
the activities and functions of molecular chaperones. Indeed,
small molecule compounds that target molecular chaperones
such as Hsp90 have been successfully demonstrated to be
effective in various neurodegenerative diseases. There is now
an emerging consensus that proteostasis in diseases could
be restored by using small molecule compounds or RNA
interference that modulates chaperone expression or activities.
A better understanding of chaperone functions in neurons
will help the development of therapeutic means to restore
proteostasis.
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