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Bamboos are an important member of the subfamily Bambusoideae, family Poaceae.

The plant group exhibits wide variation with respect to the timing (1–120 years) and

nature (sporadic vs. gregarious) of flowering among species. Usually flowering in woody

bamboos is synchronous across culms growing over a large area, known as gregarious

flowering. In many monocarpic bamboos this is followed by mass death and seed

setting. While in sporadic flowering an isolated wild clump may flower, set little or

no seed and remain alive. Such wide variation in flowering time and extent means

that the plant group serves as repositories for genes and expression patterns that

are unique to bamboo. Due to the dearth of available genomic and transcriptomic

resources, limited studies have been undertaken to identify the potential molecular

players in bamboo flowering. The public release of the first bamboo genome sequence

Phyllostachys heterocycla, availability of related genomes Brachypodium distachyon and

Oryza sativa provide us the opportunity to study this long-standing biological problem

in a comparative and functional genomics framework. We identified bamboo genes

homologous to those of Oryza and Brachypodium that are involved in established

pathways such as vernalization, photoperiod, autonomous, and hormonal regulation

of flowering. Additionally, we investigated triggers like stress (drought), physiological

maturity and micro RNAs that may play crucial roles in flowering. We also analyzed

available transcriptome datasets of different bamboo species to identify genes and their

involvement in bamboo flowering. Finally, we summarize potential research hurdles that

need to be addressed in future research.

Keywords: bamboo, flowering pathways, genes, drought, plant age, future research

INTRODUCTION

Flowering is one of the most important adaptations in the evolution of land plants. Numerous
studies have been performed on annual, herbaceous model plants from dicotyledonous
(Arabidopsis, Antirrhinum) and monocotyledonous (Oryza) groups to identify and characterize
important floral pathway genes (Putterill et al., 2004; Colasanti and Coneva, 2009). However, the
majority of commercially important plants are perennial and there remains a gap in translating
knowledge gained from annual, model plants to perennial plants. Therefore, increasing research
attention is being paid to perennial plants. While poplar (Jansson and Douglas, 2007) and white
spurge have emerged as model perennial dicotyledonous plants (Anderson et al., 2007), research
on perennialism remains elusive in monocots.
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Bamboos are an important member of subfamily
Bambusoideae, family Poaceae (Kellogg, 2015). Wide variations
exist across bamboo species with respect to the flowering time,
ranging from annual flowering to flowering after 120 years
of vegetative growth (Janzen, 1976). There are even species
for which the flowering time is not yet known. Variations in
flowering time are not only diverse among species, but also
at the population level. For instance, in the case of gregarious
flowering all the individuals of a species growing over a wide
geographical area bloom within a brief interval of time, and
then all die after flowering (Nadgauda et al., 1997; Bhattacharya
et al., 2009; Marchesini et al., 2009; Austin and Marchesini, 2012;
Chaubey et al., 2013; Xie et al., 2016). In contrast, for sporadic
flowering only a few culms of a population flower at a time
(Ramanayake and Yakandawala, 1998; Bhattacharya et al., 2006;
Xie et al., 2016). Such a wide variation in flowering time and
extent indicates that the plant group serves as a repository for a
wide range of genes and expression patterns that support such
a life style. The ecological consequences of bamboo flowering,
such as changes in dynamics of neighboring plant populations
(Sertse et al., 2011), and impacts on endangered animals that
depend on bamboo shoots (Reid et al., 1991; Azad-Thakur and
Firake, 2014) have been topics of active research over decades.
In comparison, the molecular aspects of bamboo flowering
remain at a nascent stage. Studies have been conducted to
characterize a limited number of flowering genes in different
bamboo species such asMADS18 from Dendrocalamus latiflorus
(Bo et al., 2005), FLOWERING LOCUS T (FT) from P. meyeri
(Hisamoto et al., 2008), TERMINAL FLOWER 1 (TFL1) like
gene from Bambusa oldhamii (Zeng et al., 2015), FRIGIDA
(FRI) from P. violascens (Liu et al., 2015), MADS1 and MADS2
from P. praecox (Lin et al., 2009), 10 genes related to floral
transition and meristem identity in D. latiflorus (Wang et al.,
2014) and 16 MADS box genes from B. edulis (Shih et al.,
2014). Such targeted approaches are being complemented by
high-throughput approaches, namely, de novo transcriptome
sequencing and suppression subtractive hybridization (Lin et al.,
2010; Liu et al., 2012; Zhang et al., 2012; Peng et al., 2013; Gao
et al., 2014; Ge et al., 2016; Wysocki et al., 2016; Zhao et al.,
2016).

The main aim of this article is to consider the current
status of molecular understanding of bamboo flowering from
the perspective of comparative genomics and transcriptomics.
We queried the only sequenced genome of a temperate bamboo,
P. heterocycla syn. P. edulis, to identify marker genes in
established floral pathways (e.g., photoperiodic, vernalization,
hormonal, and autonomous) and the influence of additional
factors such as drought stress and physiological maturity.
P. edulis is a diploid, temperate bamboo with chromosome
number 2n = 48 and having a genome size of 2.075 Gb (Gui
et al., 2007; Peng et al., 2013). In addition, we also explored
transcriptome datasets of available bamboo taxa to assess their
possible role in bamboo flowering. Finally, we have identified
challenges that need to be overcome to understand what triggers
bamboo flowering, the genetic controls of flowering, and the
effects of gregarious monocarpic flowering cycles on bamboo
evolution.

BAMBOO GENES RELATED TO
ESTABLISHED FLOWRING PATHWAYS

Depending on the nature of environmental or endogenous cues,
flowering pathways can be broadly classified into vernalization
(cold responsive), photoperiodic (day length responsive),
autonomous (endogenous factors) and hormonal pathways.

VERNALIZATION PATHWAY

In the model monocot Oryza the important vernalization
genes are VERNALIZATION 1 (VRN1), VERNALIZATION
INSENSITIVE LIKE 2, and 3 (VIL 2, 3). An additional
vernalization sensitive gene VRN2 was isolated from Triticum
(Dubcovsky et al., 2006), while its Brachypodium homolog
BdVRN2L is vernalization insensitive (Ream et al., 2014). BLAST
analyses have identified multiple copies of OsVRN1, OsVIL2, and
OsVIL3 homologs in P. heterocycla genome, but the homolog of
VRN2 remained undetected (Table 1). In order to understand
their possible involvement in bamboo flowering, all available
floral transcriptomes were searched. VRN1 was detected in the
shoot tissue specific EST library of B. oldhamii (Lin et al.,
2010), while VIN3 was identified from the floral transcriptomes
of P. heterocycla (Peng et al., 2013) and D. latiflorus (Zhang
et al., 2012). Another important vernalization gene, At.FLC,
performs cold-mediated suppression of the floral activator At.FT
during the seasonal transition from fall to winter (Michaels and
Amasino, 1999). However, during prolonged cold exposure in
winter, FLC activity is gradually down-regulated byVRN1,VRN2,
and VIN3 so that flowering is delayed until spring (Levy et al.,
2002; Sung and Amasino, 2004). It was believed that FLC-like
genes are absent in monocot plants (Choi et al., 2011), but
recently two major FLC clades, namely, MADS37 and MADS51
genes, were identified in the temperate grass Brachypodium
distachyon (Ruelens et al., 2013). Our BLAST analyses, however,
could not detectMADS37 orMADS51 homologs in P. heterocycla
at the set criterion of e−40, identity ≥50% and length coverage
≥60% of the query sequence (Table 1).

PHOTOPERIODIC PATHWAY

In the photoperiodic pathway, the circadian rhythm of light
and dark periods plays a major role in flower initiation. In
Oryza a series of genes that include PHYTOCHROMES A and
B (PHYA and PHYB), CRYPTOCHROMES 1 and 2 (CRY1 and
CRY2), CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), EARLY
FLOWERING 4 (ELF4), TIMING OF CAB EXPRESSION 1
(TOC1), CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1),
EARLY FLOWERING 3 (ELF3), GIGANTEA (GI), FLAVIN-
BINDING KELCH REPEAT F BOX 1(FKF1) and ZEITLUPE
(ZTL) receive the circadian signal and transfer it to CONSTANS
(CO) for further downstream regulation. Our BLAST analyses
identified at least one one homologous copy of each of these genes
in the queried P. heterocycla genome (Table 1). ESTs homologous
to CRY1, CRY2, PHY, FKF1, COP1, ELF3, ELF4, GI, CCA1,
and CO were found in the floral transcriptomes of P. edulis,
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TABLE 1 | Identification of important flowering gene homologs in the model temperate grass- Brachypodium distachyon and temperate bamboo-

Phyllostachys heterocycla using Oryza sativa amino acid sequences as query in BLAST-P analyses.

Flowering pathways/

regulator

Genes O. sativa identifiers used as query BLAST hits in B. distachyon BLAST hits in P. heterocycla

Vernalization VRN1 Os03g54160 Bradi1g08340

Bradi1g59250

PH01000606G0250

PH01000222G1190

VIL2 Os12g34850 Bradi4g05950

Bradi2g36237

PH01000006G3670

PH01000674G0720

PH01000258G0590

PH01001556G0190

VIL3 Os02g05840 Bradi3g04140 PH01000836G0140

Bradi1g33450 PH01000114G1300

PH01002795G0050

FLC/MADS37 n.f.c Bradi3g41297 No hit

FLC/MADS51 Os01g69850 Bradi2g59191 No hit

n.f.c Bradi2g59119 No hit

Photoperiod PHY A Os03g51030 Bradi1g10520

Bradi1g10510

Bradi1g08400

PH01000222G1330

PH01000606G0390

PHY B Os03g19590 Bradi1g64360

Bradi1g08400

PH01000013G2240

PH01000013G2230

PH01000222G1330

PH01000606G0390

CRY 1 Os02g36380 Bradi3g46590

Bradi5g11990

Bradi3g49204

PH01000349G1020

PH01000968G0540

PH01002373G0140

PH01000263G1210

PH01002304G0120

CRY2 Os02g41550 Bradi3g49204

Bradi5g11990

Bradi3g46590

PH01000968G0540

PH01000349G1020

PH01002304G0120

PH01002373G0140

PH01002304G0180

CCA1 Os08g06110 Bradi3g16515 PH01001283G0510

PH01000383G0300

ELF 3 Os01g38530 Bradi2g14290 PH01000391G0450

PH01000410G0960

ELF 4 Os11g40610 Bradi4g13227

Bradi1g60090

PH01002557G0050

TOC 1 Os02g40510 Bradi3g48880 PH01003618G0130

PH01000345G0790

COP 1 Os02g53140 Bradi3g57667 PH01000928G0310

PH01000311G0870

FKF 1 Os11g34460 Bradi4g16630

Bradi1g33610

Bradi3g04040

PH01002958G0010

PH01000114G1110

PH01000836G0340

PH01002213G0250

PH01007024G0030

ZTL Os06g47890 Bradi1g33610

Bradi3g04040

Bradi4g16630

PH01007024G0030

PH01002213G0250

PH01000836G0340

PH01000114G1110

PH01002958G0010

CO Os06g16370 Bradi1g43670

Bradi3g56260

PH01005551G0030

GI Os01g08700 Bradi2g05226 PH01002142G0290

PH01001722G0270

(Continued)
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TABLE 1 | Continued

Flowering pathways/

regulator

Genes O. sativa identifiers used as query BLAST hits in B. distachyon BLAST hits in P. heterocycla

Autonomous FCA Os09g03610 Bradi4g08727 PH01002230G0270

FY Os01g72220 Bradi2g60817 PH01001355G0380

PH01002367G0110

PH01002367G0090

FLD Os04g0560300 Bradi5g18210

Bradi3g58720

PH01000272G0440

FPA Os09g0516300 Bradi4g35250 PH01000191G0930

FVE Os01g0710000 Bradi2g47940 PH01000048G0850

PH01000241G0710

LD Os01g70810 Bradi2g59937 PH01006816G0010

FLK Os12g40560 Bradi4g02690

Bradi1g14320

PH01000025G1210

Gibberellic acid GA1 Os02g17780 Bradi2g33686 PH01000557G0660

PH01002827G0080

PH01004049G0170

KAO Os06g02019 Bradi1g51780

Bradi1g30807

Bradi5g00467

Bradi4g05240

PH01000083G0900

PH01003454G0070

PH01000246G0620

GA2ox1 Os05g06670 Bradi2g34837

Bradi2g12440

PH01000685G0370

GA2ox2 Os01g22910 Bradi2g12440

Bradi2g34837

PH01000685G0370

GA2ox3 Os01g55240 Bradi2g50280

Bradi2g19900

Bradi2g16750

Bradi2g16727

Bradi2g32577

Bradi2g06670

PH01000018G1890

PH01001124G0470

PH01001567G0040

PH01000273G0650

PH01000274G0980

GA3ox1 Os05g08540 Bradi2g04840

Bradi4g23570

PH01002274G0400

GA3ox2 Os01g08220 Bradi2g04840

Bradi4g23570

PH01002274G0400

GID1 Os05g33730 Bradi2g25600 PH01001316G0350

PH01002734G0310

GID2 Os02g36974 Bradi3g46950 No hit

GAMYB Os01g59660 Bradi2g53010 PH01000009G0060

PH01000029G1950

Integrator FT Os06g06320/Hd3a Bradi1g48830

Bradi2g07070

Bradi5g14010

Bradi3g48036

Bradi2g49795

Bradi1g38150

Bradi2g19670

Bradi4g39730

Bradi4g39760

Bradi3g08890

Bradi4g39750

Bradi4g42400

Bradi3g44860

Bradi5g09270

Bradi1g42510

PH01002288G0050

PH01001134G0390

PH01003363G0220

PH01002570G0010

(Continued)
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TABLE 1 | Continued

Flowering pathways/

regulator

Genes O. sativa identifiers used as query BLAST hits in B. distachyon BLAST hits in P. heterocycla

Os06g06300/RFT1 Bradi1g48830

Bradi2g07070

Bradi3g48036

Bradi5g14010

Bradi2g49795

Bradi2g19670

Bradi3g08890

Bradi1g38150

Bradi4g39730

Bradi4g39760

Bradi4g42400

Bradi4g39750

Bradi4g35040

Bradi3g44860

Bradi5g09270

Bradi2g27860

Bradi2g01020

PH01002288G0050

PH01001134G0390

PH01003363G0220

PH01002570G0010

PH01007086G0020

SOC1

/MADS50

Os03g03070 Bradi3g32090

Bradi1g77020

Bradi3g51800

PH01000759G0450

PH01000059G1270

PH01000107G0570

PH01002152G0120

Drought Dof12 Os03g07360 Bradi1g73710

Bradi3g25670

PH01000113G0300

PH01000188G0230

PH01000219G0080

PH01001264G0440

Physiological maturity LFY Os04g51000 Bradi5g20340 No hit

TFL1 Os11g05470/RCN1 Bradi4g42400

Bradi5g09270

Bradi3g44860 Bradi1g48830

Bradi2g07070 Bradi3g48036

Bradi2g49795 Bradi5g14010

Bradi2g19670

Bradi3g08890

Bradi2g01020

Bradi1g38150 Bradi4g39730

PH01001134G0390

PH01003363G0220

PH01002570G0010

PH01007086G0020

PH01002288G0050

Os12g05590/RCN3 Bradi4g42400

Bradi5g09270

Bradi3g44860 Bradi1g48830

Bradi2g07070 Bradi3g48036

Bradi2g49795 Bradi5g14010

Bradi2g19670

Bradi3g08890

Bradi2g01020

Bradi1g38150 Bradi4g39730

PH01001134G0390

PH01003363G0220

PH01002570G0010

PH01007086G0020

PH01002288G0050

The criteria used were: e−40, identity = 50% and length coverage= 60% of the query sequence. If the O. sativa gene is yet to be functionally characterized (no functional characterization,

n.f.c), B. distachyon gene sequences were used as query. When no homologous sequences were identified in our set criteria, it is mentioned as no hit.

B. oldhamii, and D. latiflorus, suggesting their role in bamboo
flower induction (Lin et al., 2010; Zhang et al., 2012; Peng et al.,
2013; Gao et al., 2014). The transcriptional expression level of
CO varied across libraries. For instance, it was low in P. edulis
and correlated with the presence of L1 and GYPSY transposable
elements in the regulatory region of the gene (Peng et al., 2013).
On the other hand, a high level of CO expression was obtained
in the floral tissues of D. latiflorus (Zhang et al., 2012). CO,
along with the CCAAT box binding factor (NFY), bind to the

CCAAT box of FT promoter and result in flowering (Ben-Naim
et al., 2006). Therefore, the co-expression of CO and FT (i.e., CO-
FT regulon) plays a crucial role in the regulation of flowering
time. Our BLAST analyses identified 5 FT-like and 1 CO-like
homologs in P. heterocycla (Table 1). Similarly, single or multiple
FT copies have been identified and characterized in D. latiflorus,
P. meyeri, and P. violascens (Hisamoto and Kobayashi, 2007,
2013; Hisamoto et al., 2008; Wang et al., 2014; Guo et al.,
2015). Detailed expression analysis of PmFT revealed that its
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expression is primarily restricted to leaves, but highest during
full bloom (Hisamoto and Kobayashi, 2013). Expression of the
two FT genes and their functional diversification was reported
in P. violascens (Guo et al., 2015). PvFT1 is expressed in leaves
and induces flowering, while PvFT2 possibly plays a role in floral
organogenesis. Another important floral integrator, SUPRESSOR
OF OVEREXPRESSION OF CONSTANS 1 (SOC1), was identified
by our BLAST analyses (Table 1) and was also expressed in
the floral transcriptomes of P. edulis, Guadua inermis, Otatea
acuminate, Lithachne pauciflora, and P. aurea (Peng et al., 2013;
Wysocki et al., 2016).

AUTONOMOUS AND HORMONAL
PATHWAY

In addition to environmental cues, additional flower inducing
factors are present within a plant itself and are called
endogenous or autonomous signals. This pathway is well studied
in Arabidopsis, but is less characterized in monocot plants
(Lee et al., 2005; Abou-Elwafa et al., 2011). The important
genes are FLOWERING LOCUS CA (FCA), FLOWERING
LOCUS D (FLD), FLOWERING LOCUS KH DOMAIN (FLK),
FLOWERING LOCUS PA (FPA), FLOWERING LOCUS VE
(FVE), FLOWERING LOCUS Y (FY), and LUMINIDEPENDENS
(LD, Simpson, 2004). These genes promote flowering by
suppressing FLC expression (Simpson, 2004; Quesada et al.,
2005). Our BLAST analyses identified one or more P. heterocycla
homologs for the majority of these genes (Table 1), which were
reported in the floral transcriptomes of B. oldhamii (Lin et al.,
2010), D. latiflorus (Zhang et al., 2012), and P. heterocycla (Peng
et al., 2013) and suggest possible roles in bamboo flowering.

The role of gibberellic acid (GA) in the induction of flowering
is well established in Oryza (Kwon and Paek, 2016). Many
important genes related to GA biosynthesis (ent-KAURENE
SYNTHETASE A- GA1, ent-KAURENOIC ACID OXIDASE-KAO,
GA 2-OXIDASE-GA2ox, GA3ox) and receptors (GIBBERELLIN
INSENSITIVE DWARF1- GID1, GID2) have been characterized
(Sakamoto et al., 2004). GID1 and GID2 are responsible
for proteasome mediated DELLA degradation and promote
flowering through upregulation of GAMYB (Kwon and Paek,
2016). At least one P. heterocycla homolog has been detected for
the majority of these genes in our BLAST analyses (Table 1). The
possible involvement of GA in bamboo flowering is supported by
the identification of GA1, SLY, GID1, GID2, GAMYB ESTs in the
floral transcriptome of P. heterocycla (Gao et al., 2014) and D.
latiflorus (Zhang et al., 2012).

POSSIBLE PHYSIOLOGICAL AND
GENETIC FACTORS REGULATING
BAMBOO FLOWERING

Stress
Increasing evidence suggests a link between stress and bamboo
flowering (Rai and Dey, 2012; Peng et al., 2013; Ge et al.,
2016). Overall expression level of general stress responsive
genes involved in ABA, ethylene, sugar metabolism and Ca+2

dependent signaling pathway were 11.1-fold higher than that
of the flowering genes in P. heterocycla (Peng et al., 2013).
Particularly, a few members of the DNA binding with one finger
(Dof ) transcription factor family were highly up-regulated in
the floral transcriptome (Imaizumi et al., 2005). For instance,
Ph.Dof12 was about 16-fold up-regulated in the flowering tissues
of P. heterocycla collected from a drought affected area (Peng
et al., 2013). Similarly, 28 unigenes related to Dof3, Dof4, Dof5,
Dof12, and Cycling Dof Factors (CDF) were detected in the floral
transcriptome of P. edulis (Gao et al., 2014). The Dof family
is composed of 15 genes in Phyllostachys and a comprehensive
functional characterization of these genes may provide new
insights. Particularly, analyzing the enrichment of the drought-
responsive cis-elements in their promoter regions could identify
candidate genes that are induced under drought conditions.

Physiological Maturity and Micro RNAs
Scientific evidence emerging from research on various perennial
plants suggests an important role of TERMINAL FLOWER
1 (TFL1) and microRNAs (miRNAs) in maintaining a long
vegetative phase (Huijser and Schmid, 2011). Our BLAST
analyses identified five copies of Ph.TFL1 genes in P. heterocycla
(Table 1). A functional TFL1 gene was isolated from B. oldhamii
and was overexpressed in Arabidopsis (Zeng et al., 2015). The
overexpressed lines showed delayed flowering, suggesting that
TFL1 may have a role in maintaining vegetative growth. In
addition, TFL1may have an important function in differentiation
of bamboo floral organs, as indicated by higher expression of
TFL1 in late floral developmental stages relative to early stages
in B. oldhamii and D. latiflorus (Wang et al., 2014).

Long maintenance of the vegetative phase in the majority
of bamboos can also be regulated at the post-transcriptional
level, such as by miRNAs. In rice miR156 is known to repress
flowering by targeting SQUAMOSA PROMOTER BINDING
PROTEIN-LIKE (SBP/SPL) transcription factor (SPLs, Xiong
et al., 2006). Expression of miR156 showed significant down-
regulation through the transition from vegetative to flowering
stages in P. edulis (Gao et al., 2015). Additional candidates
that may have roles are miR164a, miR166a, miR167a, miR535a,
miR159a.1, miR164a, and miR168-3-p (Gao et al., 2015; Ge
et al., 2016). In contrast, some micro RNAs may play positive
roles in bamboo flowering. One such candidate is miR172,
which controls flowering time and the formation of floral organs
through the regulation of the AP2-like transcription factor (Lee
et al., 2014). miR172a showed an increase in expression level
during progression from vegetative to the flowering phase in P.
edulis (Gao et al., 2015). The expression of other miRNAs such
as miR169b, miR395h-5p, and miR529-3p were higher in floral
tissues than in vegetative tissues.

FUTURE CHALLENGES

Appropriate Tissue Sampling
Identification of proper tissue stages is critical since the majority
of flowering genes are transiently expressed soon before or after
floral induction. Unlike Arabidopsis orOryza, wild bamboo floral
tissue stages are not easily traceable. Therefore, tissue culture
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FIGURE 1 | Important vegetative and floral developmental stages of B. tulda. (A) External morphology of nodal vegetative bud (∼0.6× 0.7 cm in dimension);

(B) Longitudinal section (L.S.) of vegetative bud. The shoot apical meristem (SAM) is dome shaped (marked with arrow); (C) External morphology of an early stage

inflorescence bud (∼0.3× 0.3 cm in dimension); (D) LS of the early stage inflorescence bud having triangular inflorescence meristem (marked with arrow); (E) External

morphology of middle stage inflorescence bud (∼0.8× 0.5 cm in dimension); (F) LS of middle stage inflorescence bud showing differentiated floral primordia (marked

with arrow); (G) External morphology of late stage inflorescence bud (∼1.2× 0.6 cm in dimension); (H) LS of late stage inflorescence bud having differentiated anther

primordia (marked with arrow).

methods have been tried to induce flowering and to study
defined stages of induced floral transcriptomes of B. oldhamii
in vitro (Lin et al., 2010). However, this study raised doubt
about comparability of the transcription patterns under in vitro
conditions vs. naturally occurring flowering. A large unigene set
(146,395) generated from the floral transcriptomes of naturally
grown D. latiflorus could not detect the important integrator
gene FT, although it was detected in the transcriptome of
P. edulis. This emphasizes the need to define in vivo floral
stages with higher accuracy in order to make data generated
by different research groups more comparable. Therefore, we
studied the microscopic histology of different flowering stages
of wild B. tulda plants and compared them with the external
morphology of buds to identify phenotypic markers for specific
growth stages (Figure 1). The external morphological features
of nodal vegetative buds are indistinguishable from those of
early stage inflorescence bud. However, this is one of the most
crucial tissue stages with respect to the identification of genes
involved in flower induction. Close observation of the early
inflorescence bud revealed that it is slightly smaller in size,
pale yellow in color, and bulged in the middle (Figures 1A,C).
Histological analyses reveal that the shoot apical meristem of
the nodal vegetative bud is dome shaped and covered with
compactly arranged leaf primordia (Figure 1B). But the early

staged inflorescence meristem is slightly smaller in size and
triangular in shape (Figure 1D). The middle stage floral bud
could be differentiated from the early stage by its elongated
shape and bright green color (Figure 1E). Histological analysis
revealed that it is composed of one or two floral primordia
at the base of the rachis and an undifferentiated inflorescence
meristem at the apex (Figure 1F). The late inflorescence bud
is easily identifiable from all the other stages by its long and
slender shape (Figure 1G). It is composed of three to four visible
florets having differentiated anther primordia at the base of
the rachis and an undifferentiated apical inflorescence meristem
(Figure 1H).

Gene Family Expansion, High Sequence
Homology and Associated Challenges
Bamboos are highly polyploid plants with big genomes
(2075 Mb for P. heterocycla compared to 125 Mb for
A. thaliana). Consequently, the majority of genes are present
in multiple copies. It would be important to dissect their
evolutionary origin (orthologs-functional, paralogs-old/recent
vs. tandem duplicates) and deduce their functional conservation
or divergence by studying detailed transcriptional expression
patterns (Das et al., 2016). However, the majority of these
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genes are very similar in sequence, which creates challenges
in maintaining specificity in gene expression analyses. Example
of this are FT and TFL1 genes, which are members of the
Phosphatidylethanolamine-binding protein (PEBP) family and
share high sequence similarity (>60%). However, they are
functionally antagonistic to each other. There are diagnostic
amino acids, which are crucial to maintain either FT (Tyr-85)
or TFL1 (His-88) function (Hanzawa et al., 2005). Our BLAST
analyses identified five P. heterocycla homologs each for FT
and TFL1 and they are completely overlapping with each other
(Table 1). Follow-up analysis indicated PH01002288G0050 as the
predicted FT gene, while the other four, PH01001134G0390,
PH01003363G0220, PH01002570G0010, PH01007086G0020 are
TFL1. Therefore, in addition to large-scale sequence analyses
such as BLAST, individual gene sequences should be checked for
correct gene function annotation.

Genetic Tools for functional Validation
With the completion of gene sequencing and expression pattern
characterization, the next challenge would be to confirm gene
functions using loss- or gain-of-function mutants. This is
especially important for multi copy genes for which expression
data is not indicative of functional differentiation among copies.
Therefore, a model plant is needed in which tissue culture and
genetic transformation are easy to perform. Woody bamboos are
generally recalcitrant and present several challenges (Das and
Pal, 2005a). Since loss-of-function mutation analyses would be
challenging, other model plants could be exploited to perform
genetic complementation analyses by ectopically expressing
bamboo flowering genes. Rice could be useful for such purposes
due to its close evolutionary relationship, related floral biology
and availability of mutant lines for several genes. However, many
rice genes and associated mutant phenotypes have yet to be
characterized.

Development of a New Model System for
Tropical Bamboo
The majority of available research reports are on the tetraploid
bamboo Phyllostachys, predominantly found in the temperate
regions of China and Japan. However, enormous biodiversity
is found in the tropical regions and dominated by members of
the genus Bambusa. Therefore, the genome/transcriptomes of a
tropical bamboo should be characterized. These have enormous
economic importance, a large population size, wide genetic
diversity (Das et al., 2008), molecular methods for species level
identification (Das et al., 2005), a standardized micropropagation
protocol (Das and Pal, 2005b), incidents of both gregarious
(Mohan Ram and Harigopal, 1981) and sporadic flowering
(Bhattacharya et al., 2006), which taken together makes B. tulda
a good choice as a model species of tropical bamboos.
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