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The phytohormone salicylic acid (SA) affects plant development and defense responses.

Recent studies revealed that SA also participates in the regulation of sphingolipid

metabolism, but the details of this regulation remain to beexplored. Here, we use in silico

Flux Balance Analysis (FBA) with published microarray data to construct a whole-cell

simulation model, including 23 pathways, 259 reactions, and 172 metabolites, to predict

the alterations in flux of major sphingolipid species after treatment with exogenous SA.

This model predicts significant changes in fluxes of certain sphingolipid species after SA

treatment, changes that likely trigger downstream physiological and phenotypic effects.

To validate the simulation, we used 15N-labeled metabolic turnover analysis to measure

sphingolipid contents and turnover rate in Arabidopsis thaliana seedlings treated with

SA or the SA analog benzothiadiazole (BTH). The results show that both SA and BTH

affect sphingolipid metabolism, altering the concentrations of certain species and also

changing the optimal flux distribution and turnover rate of sphingolipids. Our strategy

allows us to estimate sphingolipid fluxes on a short time scale and gives us a systemic

view of the effect of SA on sphingolipid homeostasis.

Keywords: ceramides, salicylic acid, sphingolipid

Introduction

Salicylic acid (SA), an important phenolic phytohormone, has well-known roles in pathogen-
triggered defense responses including microbe-associated molecular pattern-triggered immunity,
effector-triggered immunity, and systemic acquired resistance (Jones and Dangl, 2006; Spoel and
Dong, 2012; Yan and Dong, 2014). SA also participates in abiotic stress responses (Vlot et al., 2009;
Miura and Tada, 2014) and in plant development, including vegetative and reproductive growth
(Vicente and Plasencia, 2011). SA also has indispensible functions in the maintenance of redox
homeostasis (Durner and Klessig, 1995, 1996; Slaymaker et al., 2002) and respiratory pathways
(Moore et al., 2002). The SA analog benzothiadiazole (BTH) activates the SA signaling pathway,
triggers expression of defense genes (Shimono et al., 2007), and produces physiological effects
similar to those produced by SA (Lawton et al., 1996).

As a key mediator of defense responses, the SA pathway affects many metabolic pathways. Sph-
ingolipids are a family of complex lipids that have a serine-based head, a fatty acyl chain, and a
long-chain base (LCB). Covalent modifications and variability in the length of the fatty acyl chain
increase sphingolipid diversity. Sphingolipids are important structural and functional components
of the plasma membrane (Hannun and Obeid, 2008) and have important functions in the plant
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immune response, abiotic stress responses,and developmental
regulation (Chen et al., 2009; Pata et al., 2009; Markham et al.,
2013; Bi et al., 2014). In Arabidopsis, ceramides, a group of
sphingolipids, affect SA-mediated defense responses and pro-
grammed cell death (PCD). Some mutants in the sphingolipid
metabolic pathway show high levels of expression of defense-
related genes, accumulate SA, and undergo PCD. The ceramide
kinase-deficient mutant accelerated cell death 5 (acd5) accumu-
lates SA and ceramides late in development, but shows increased
susceptibility to pathogens (Greenberg et al., 2000; Liang et al.,
2003; Bi et al., 2014). Wang et al. (2008) reported that the
insertion knock-out mutant of Arabidopsis inositolphosphoryl-
ceramide synthase 2 (erh1) also spontaneously accumulates SA.
Similar increases in SA levels have also been observed in the sph-
ingosine transfer protein mutant acd11 (Brodersen et al., 2002),
the Arabidopsis sphingolipid fatty acid hydroxylase mutants fah1
fah2 (König et al., 2012), andmips1 (D-myo-inositol 3-phosphate
synthase 1) mutants (Meng et al., 2009). Moreover, SA accumu-
lation and PCD signaling mediated by MAPK affect the levels
of free LCB (Saucedo-García et al., 2011). However, fah1 fah2
mutants accumulate SA and have moderate levels of LCB (König
et al., 2012). Thus, the SA and sphingolipid pathways have sig-
nificant but complex crosstalk, particularly in defense and cell
death.

Metabolic modeling performs well in prediction of physio-
logical changes and metabolic outcomes resulting from genetic
manipulation, where changes in metabolite levels have a strong
effect on cellular behavior (Smith and Stitt, 2007; Stitt et al., 2010).
The genome of Arabidopsis thaliana has been sequenced, mak-
ing whole-genome metabolic reconstruction feasible (Thiele and
Palsson, 2010; Seaver et al., 2012). Much of the early modeling
work used steady-state Metabolic Flux Analysis (MFA), based
on a steady-state model of the plant metabolic network, and on
experiments using isotope labeling to trace metabolites of interest
(Libourel and Shachar-Hill, 2008; Allen et al., 2009; Kruger et al.,
2012). This method provided insights on metabolic organization
and modes, but has difficulty in labeling heterotrophic tissues
(Sweetlove and Ratcliffe, 2011), over-relies onmanual curation of
metabolic pathways (Masakapalli et al., 2010; Sweetlove and Rat-
cliffe, 2011; Kruger et al., 2012), and uses low-throughput detec-
tion, making systematic analysis difficult (Lonien and Schwender,
2009; Sweetlove and Ratcliffe, 2011).

By contrast, Flux Balance Analysis (FBA) overcomes many
of the drawbacks of MFA. FBA establishes a model based on a
group of ordinary differential equations that formulate a tran-
sient quasi-steady state of the metabolic fluxome of target path-
ways. The transient flux balance calculated by the FBAmodel has
an almost-negligible duration compared to the long-term, funda-
mental metabolic changes that occur during development or in
environmental responses (Varma and Palsson, 1994). In addition,
FBA does not require isotopic labeling, suits a variety of trophic
modes, and is more flexible than steady-state MFA in handling
groups of flux distributions by linear programming and other
methods for optimization under constraints (Edwards and Pals-
son, 2000; Reed and Palsson, 2003). SeveralArabidopsismetabolic
models based on FBA are available online (Poolman et al., 2009;
Dal’Molin et al., 2010; Radrich et al., 2010).

Apart from FBA simulation, fluxomic changes can also be
measured experimentally. To examine the response of sphin-
golipids to SA and BTH, we needed to determine and compare
the turnover rates of sphingolipids. One of the major meth-
ods to measure turnover uses a time-course of stable isotopic
incorporation into target metabolites, which are detected by
mass spectrometry or nuclear magnetic resonance (Schwender,
2008; Hasunuma et al., 2010). The isotopic accumulation curve
indicates the turnover of target metabolites.

Since metabolic changes substantially affect the crosstalk
between SA and sphingolipids, in this study we constructed a
metabolic model to simulate SA-related changes in the sphin-
golipid pathway. We constructed an Arabidopsis whole-cell FBA
model including 23 pathways, 259 reactions, and 172 metabo-
lites. Based on their relative enrichment and responsiveness to SA
stimulation, our model includes 40 sphingolipid species, includ-
ing LCBs, ceramides, hydroxyceramide, and glucosylceramides.
Due to the lack of flux data on plant sphingolipid metabolism,
we used 15N-labeled metabolic turnover analysis to measure sph-
ingolipid flux in untreated plants and calibrate the FBA model.
After the calibration, we also supplied the model with addi-
tional expression profiles from plants treated with SA and BTH.
The FBA model was calculated in silico for prediction and com-
parison of the optimal flux distribution and flux variability in
SA- and BTH-treated and untreated conditions. We then used
metabolic turnover analysis with 15N-labeled samples to mea-
sure the flux changes directly. Both the computational model
and the experiments showed consistent and significant changes
in the sphingolipid pathway in response to SA and BTH. Our
data gives us a systemic view of the effect of SA on sphingolipid
homeostasis.

Materials and Methods

Plant Materials
Wild type Arabidopsis thaliana ecotype Columbia seedlings were
grown vertically on 1/2x Murashige and Skoog (MS) medium
for 10 days after 2-day vernalization. The culture dishes were
incubated at 22◦C under a 16 h light/8 h dark cycle. For label-
ing the plant seedlings in liquid medium, the culture dishes were
incubated at 22◦C with 24 h light.

Labeling and Treatments
The different sphingolipids have many carbon atoms in different
positions; therefore, labeling the only nitrogen in the serine-based
head group provides an easier approach for LC-MS/MS mea-
surements.We used 15N serine (Cambridge Isotope Laboratories,
Inc. MA, USA) in the labeling experiment. Ten-day-old seedlings
were transferred to N-deficient 1/2x MS liquid medium (Yoshi-
moto et al., 2004) in 12-well culture plates. 5mM 15N-labeled
serine was supplied to compensate for the shortage of nitrogen
(Hirner et al., 2006) and used as the only source of isotope. For SA
and BTH treatments, 100µM SA or 100µM BTH was supplied
in the labeling medium. The seedlings were treated or not treated
for 0, 1, 3, 5, 7, 9, and 24 h for 15N-labeled metabolic turnover
analysis before sphingolipid extraction.
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Experimental Measurement of Turnover Rate
Since serine has only one nitrogen atom and each sphingolipid
has only one serine, the fraction of each labeled sphingolipid
species can be measured as:

15N fraction% =
15N∗100/N

where 15N is the concentration of 15N-labeled molecules of a spe-
cific sphingolipid species, and N is the total concentration of that
sphingolipid species, whether labeled or not.

The turnover rate of a sphingolipid species is calculated from
the slope of the curve of the time-course of 15N incorporation
from the initial time that the fraction begins to increase to the
time that the fraction stabilizes. Also, the isotopic incorporation
rate r can be calculated as:

r =
d15Nfraction

dt
∗N

In the measurement, the natural enrichment of 15N remains
relatively constant between samples and treatments.

Sphingolipid Measurements
The plants cultured in labeling medium for the times described
above were weighed and metabolically quenched by freezing in
liquid nitrogen. Sphingolipid species were then extracted and
measured by LC-MS/MS as described by Bi et al. (2014), with
a slight modification to cope with isotopic-labeled sphingolipid
species. Major sphingolipid species were subsequently analyzed
with a Shimadzu 20A HPLC tandem AB SCIEX TripleTOF
5600+ mass spectrometer. The sphingolipid species were ana-
lyzed using the software Multiquant (AB SCIEX).

Metabolic Model Construction
The Arabidopsis whole-cell metabolic model was constructed
with 23 pathways, 259 reactions, and 172 metabolites. Primary
metabolic pathways refer to the KEGG (Kyoto Encyclopedia
of Genes and Genomes http://www.genome.jp/kegg/ Kanehisa
et al., 2008), the AraCyc database (Mueller et al., 2003), and the
AraGEM model (Dal’Molin et al., 2010), with manual curation
for sphingolipid metabolism, including major ceramide, hydrox-
yceramide, and glucosylceramide species (Table S1). We used
biomass as the objective function and the stoichiometries of
major components were assigned to their biomass fraction, which
comprises major carbohydrates, amino acids, and lipids, accord-
ing to experiments or data provided in the literature (Fiehn et al.,
2000; Welti et al., 2002; Dal’Molin et al., 2010). For sphingolipid
species, the objective function stoichiometries were set to the
adjusted isotopic incorporation rate in labeling experiments.

Flux Balance Analysis (FBA)
Flux balance modeling uses a group of ordinary differential equa-
tions. The analysis requires a stoichiometric matrix (S) and a vec-
tor (v) built for each reaction, where sij in the S matrix is the sto-
ichiometric number of the ith metabolite in the jth reaction and
vj is the rate of the jth reaction, which is subjected to upper and

lower boundary constraints. To reach the in silico “quasi-steady
state,” the following condition must be fulfilled:

S · v = 0

After solving the FBA equation with the constraints above
(Edwards and Palsson, 2000; Edwards et al., 2001), a linear-
programming optimizationmethod (Edwards and Palsson, 2000)
was applied to pick the most plausible (groups of) flux distri-
butions among the solution space according to the objective
setting.

We applied isotopic incorporation rate as the reference for
stoichiometry in the objective function. Considering that the
stoichiometries of other components are biomass-derived (from
AraGEM, Dal’Molin et al., 2010), we used optimization to find
the proper fold-change of all isotopic incorporation rates simul-
taneously (Table 2, the column showing untreated isotopic incor-
poration rate) of sphingolipids, as their stoichiometries, tomake a
newmodel that deviated the least from the optimized steady-state
flux distribution from the AraGEM model. Then, we optimized
the individual stoichiometry of every sphingolipid species from
the results of the first step to get a set of final stoichiometries
(Table 1).

In Silico SA and BTH Treatments
To incorporate the effect of exogenous SA and BTH on the
wild-type plant into the model, we used published microarray
data for SA- and BTH-treated Arabidopsis (for SA, van Leeuwen
et al., 2007; for BTH, Wang et al., 2006). We assumed that the
metabolic flux change followed the same trend as the respective
gene expression levels. Therefore, we picked genes that changed
more than 1.5-fold in SA-treated plants and more than 2-fold
in BTH-treated plants (Table S2). Then, the adjusted model was
recalculated for optimal flux distribution.

Flux Variability Analysis (FVA)
The stoichiometry model is a self-balancing model in that any
flux distributions that fulfill the constraints are involved in its
solution space. Through the sampling of the solution space or
sensitivity analysis, each reaction is tested for its possible upper
flux limit and lower flux limit under constraints (Mahadevan and
Schilling, 2003). The calculated range of each flux is an impor-
tant indicator of the role of the corresponding reaction in the
robustness of the whole network. To make a physiologically rele-
vant estimation, we sampled the flux space that achieved at least
80% of the optimal objective rate (in our model, the biomass
production) in untreated or treated conditions.

Simulation Environment
The model of Arabidopsis was built in SBML (Systems Biol-
ogy Makeup Language) (Hucka et al., 2003) in XML format.
SBML Toolbox 2.0.2 (Keating et al., 2006; Schmidt and Jirstrand,
2006) and COBRA Toolbox 2.0.5 (Schellenberger et al., 2011)
in MATLAB 2012a (Mathworks Inc.; Natick, MA) were used
for model construction and calculation. Linear programming
was performed with GLPK (GNU Linear Programming Kit,
http://www.gnu.org/software/glpk/). The rank-test and multiple
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TABLE 1 | Overview of sphingolipid species in the FBA model.

Symbol Sphingolipid species Pool size (nmol· g −1) Stoichiometry in objective function

d18:0 LCB Long-chain base 0.2107728 0.050201

d18:1 LCB Long-chain base 0.0404768 0.017119

t18:0 LCB Long-chain base 0.280481 0.044619

t18:1 LCB Long-chain base 0.1117734 8.05E-05

t18:1 c16:0 Long-chain ceramide 0.171892 0.14095

t18:0 c16:0 Long-chain ceramide 0.0097841 0.006289

d18:1 c16:0 Long-chain ceramide 0.0129473 0.017411

d18:0 c16:0 Long-chain ceramide 0.0404391 0.040446

t18:0 c24:0 Very-long-chain ceramide 2.1899963 0.47712

t18:1 c24:0 Very-long-chain ceramide 3.766825 0.775466

t18:0 c24:1 Very-long-chain ceramide 0.587771 0.119545

t18:1 c24:1 Very-long-chain ceramide 1.2656188 0.344293

t18:0 c26:0 Very-long-chain ceramide 0.7455185 0.129493

t18:1 c26:0 Very-long-chain ceramide 3.6843313 0.671015

t18:0 c26:1 Very-long-chain ceramide 0.0407943 0.005744

t18:1 c26:1 Very-long-chain ceramide 0.8207395 0.208064

t18:1 h160 Long-chain hydroxyceramide 0.8007893 0.154383

t18:0 h160 Long-chain hydroxyceramide 0.0852554 0.012748

d18:1 h16:0 Long-chain hydroxyceramide 0.0439154 0.020931

d18:0 h16:0 Long-chain hydroxyceramide 0.0365444 0.019623

t18:0 h24:0 Very-long-chain hydroxyceramide 1.2986488 0.01712

t18:1 h24:0 Very-long-chain hydroxyceramide 10.114958 1.148618

t18:0 h24:1 Very-long-chain hydroxyceramide 1.0769261 0.124845

t18:1 h24:1 Very-long-chain hydroxyceramide 0.0211909 1.53E-05

t18:0 h26:0 Very-long-chain hydroxyceramide 0.4134975 0.003149

t18:1 h26:0 Very-long-chain hydroxyceramide 2.2138763 0.218833

t18:0 h26:1 Very-long-chain hydroxyceramide 0.1257489 9.05E-05

t18:1 h26:1 Very-long-chain hydroxyceramide 1.268245 0.27478

t18:1 h16:0 Long-chain glucosylceramide 0.9171223 0.03589

t18:0 h16:0 Long-chain glucosylceramide 1.25E-06 9.00E-10

d18:1 h16:0 Long-chain glucosylceramide 2.908355 0.177984

d18:0 h16:0 Long-chain glucosylceramide 0.0239498 0.001506

t18:0 h24:0 Very-long-chain glucosylceramide 0.1940488 0.00014

t18:1 h24:0 Very-long-chain glucosylceramide 1.8239438 0.055296

t18:0 h24:1 Very-long-chain glucosylceramide 1.25E-06 9.00E-10

t18:1 h24:1 Very-long-chain glucosylceramide 2.1610275 0.057862

t18:0 h26:0 Very-long-chain glucosylceramide 1.25E-06 9.00E-10

t18:1 h26:0 Very-long-chain glucosylceramide 1.0588451 0.032563

t18:0 h26:1 Very-long-chain glucosylceramide 1.25E-06 9.00E-10

t18:1 h26:1 Very-long-chain glucosylceramide 0.7133198 0.016164

covariance analysis were performed using IBM SPSS Statistics
19 (IBM Corp. Released 2010. IBM SPSS Statistics for Windows,
Version 19.0. Armonk, NY: IBM Corp.).

Results

Model Construction for Plant Sphingolipid
Metabolism
We used computational modeling and experiments to explore
the changes in plant sphingolipid metabolism in response to

SA. Although sphingolipids function as important components

in plant development and stress responses, their metabolism
remains obscure, with only a few network parameters that

have been measured. FBA is well-suited to the simulation of

a metabolic fluxome with poorly understood dynamics (Varma
and Palsson, 1994), as optimization by FBA requires only the

stoichiometric relationship in each reaction and the objective
function. In our model, we obtained the numbers of molecules of

reactants and products of known reactions from public databases

(see Materials and Methods). For sphingolipid pathways (Table
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S1), we inferred the reactions that have not been determined from
their atomic composition or similar reactions. Considering that
metabolic balances are mainly affected by a few metabolites that
are either in a hub of the network or have high turnover, we
picked the sphingolipid species that are relatively abundant or
central to the known network (Table 1). Since inositolphospho-
rylceramide and its derivatives are difficult to measure in plants,
we excluded those species from our model.

15N-Labeled Metabolic Turnover Analysis of
Sphingolipids
To inform the objective function and to validate the model’s
prediction, we used the in vivo fluxomic method of 15N-labeled
metabolic turnover analysis to directly measure the turnover rate
of plant sphingolipids. In previous work, 13C was mostly used
to examine the fluxome of central pathways such as glucose
metabolism or photosynthesis (Hasunuma et al., 2010; Noack
et al., 2010; Nöh and Wiechert, 2011), where limited numbers of
labeled fragments are detected by mass spectrometry. However,
the simplest sphingolipid has at least 18 carbon atoms, and their
combined transitions, modifications, and fragmentation would
generate large numbers of labeled fragments; therefore mass
spectrometry quantification of 13C-labeled sphingolipid would be
extremely difficult. To circumvent this difficulty, we used 15N,
which will label only the single nitrogen atom in the head of
each sphingolipid. To distinguish between artificial and natural
15N, wemeasured the composition of natural 15N sphingolipid in
unlabeled samples, finding different levels of natural 15N in each
sphingolipid species. This fraction is constant between measure-
ments and treatments in each species, and thus cannot affect the
comparison of isotopic incorporation rates between experiments.

We transiently labeled 10-day-old seedlings in a time course.
The isotopic incorporation curves (see representative species
shown in Figure 1) reveal that the labeled serine is absorbed and
incorporated into sphingolipid in the first hour of labeling, and
the sphingolipid then undergoes turnover at a uniform rate. For
LCB (Figure 1D), ceramide (Figure 1A), and hydroxyceramide
species (Figure 1B), the isotopic incorporation curves gradually
flatten and finally reach a plateau of the isotopic fraction between
9 and 24 h. A noticeable, small drop occurs around the 5th hour
of incorporation in LCB (Figure 1D). The incorporation of 15N
in these simple sphingolipids is fast, and the final balanced iso-
topic fraction can reach 40–65% (Figures 1A,B,D). By contrast,
for the glucosylceramides the labeled fraction rose constantly
between 9 and 24 h (Figure 1C), and the glucosylceramides had
a lower rate of incorporation than the ceramides or hydroxyc-
eramides. Combined with the concentration of sphingolipids,
we calculated the isotopic incorporation rate as shown in
Table 2.

Flux Balance Analysis (FBA) of the Flux
Distribution in Untreated Plants
The objective function in the FBA model guides the flux deter-
mination by simulating a transient flux distribution. However,
at each time point, biomass is the complex result of develop-
ment throughout the organism’s life, and hence cannot provide
relevant information for setting the objective function in our

model of the Arabidopsis seedling. Instead, we built and adjusted
the objective function stoichiometries of the sphingolipid path-
way from the isotopic incorporation rates in the labeling experi-
ments (Table 1). Then, we performed flux balance optimization.
Figure 2 shows the simulated flux distributions of sphingolipid
species in untreated plants.

The simulation data in Figure 2 show that LCBs, very-long-
chain ceramides, and hydroxyceramides compose the highest
fraction of total flux. Combined with the rapid isotopic incor-
poration and high fraction of stabilized isotopic final levels of
LCB, ceramides, and hydroxyceramides (Figure 1), the results
demonstrate that LCBs, the sphingolipids that have the small-
est pool size, also have the highest turnover among plant sphin-
golipids. Very-long-chain ceramides and hydroxyceramides are
important not only for their hub position connecting gluco-
sylceramides and sphingosine, but also because they carry a
huge flux throughput in sphingolipid turnover and thus help
maintain sphingolipid homeostasis. Both the simulation and
experimental results indicate that these sphingolipid species are
probably more responsive to disturbance, and thus are fre-
quently used by pathogens to manipulate or interfere with
host sphingolipid metabolism (Markham et al., 2011; Bi et al.,
2014).

Although the glucosylceramides have much larger pool sizes
(Table 1) than the ceramides, hydroxyceramides, or LCBs, they
have smaller metabolic fluxes than their precursors (Figure 2).
These results are validated by the slow but lasting incorpora-
tion of isotope into glucosylceramide pools (Figure 1C). The
relatively slow turnover is in accordance with the function of
glucosylceramides as membrane structural components, indicat-
ing a slow but continuous accumulation in the cell membrane
during plant development. The accordance of simulation and
experimental results also supports our choice of objective func-
tion stoichiometry setting, as the scale of simulated andmeasured
sphingolipid metabolic flux distribution (Figure 2 and Table 2)
is nearly unrelated to the distribution of sphingolipid biomass
(Table 1).

In Silico SA and BTH Treatments
The FBA model hypothesizes the quasi-steady state condition of
the target network, and we assume that the sphingolipid pathway
will reach at least a transient metabolic balance after SA treat-
ment. Thus, we employed the previous model simulating the
resting state to predict the effects of SA treatment. We first used
data from microarray analysis of SA- and BTH-treated plants
to simulate the effect of these treatments on sphingolipid flux.
Sphingolipid-related genes were selected (see Method) from two
microarrays (Table S2). LAG 1 HOMOLOG 2 (LOH2), which
encodes a ceramide synthase (Brandwagt et al., 2000; Ternes et al.,
2011), showed the highest up-regulation after both SA and BTH
treatments, and other genes SPHINGOID BASE HYDROXYLASE
2 (SBH2), FATTY ACID/SPHINGOLIPID DESATURASE (SLD),
FATTY ACID HYDROXYLASE 2 (FAH2), SPHINGOSINE-1-
PHOSPHATE LYASE (AtDPL1) also had different expression lev-
els in the two treatments. The reactions regulated by the genes
with altered transcript levels were then picked for incorpora-
tion into the model. The flux boundaries of these reactions were
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FIGURE 1 | 15N incorporation curves for sphingolipid species.

Ten-day-old wild-type seedlings were transferred to 5mM 15N- serine

labeled N-deficient 1/2x MS liquid medium for the indicated times.

Sphingolipids were then extracted and measured as described in

Methods. The 15N fraction incorporation curve was calculated based on

the formula shown in Methods. Error bars represent the means ± SE

from triplicate biological repeats. The measured sphingolipid species were:

ceramide (A), hydroxyceramide (B), gluocosylceramide (C) and LCB (D).

LCB and fatty acid in ceramide species represent, LCB; d/t (di/trihydroxy)

18 (18 carbon chain), 1 (one desaturation) followed by fatty acid; c/h/g

(non-hydroxyl/hydroxyl/glucosy and hydroxyl) 24 (24 carbon chain), 0 (no

desaturations).

altered based on the gene expression, and the adjusted model was
recalculated for flux balance analysis.

Compared with themodel simulating the resting state, in silico
SA and BTH treatments resulted in a nearly three-fold increase
of predicted flux in long-chain ceramide species (Figure 2),
as expected from the up-regulation of LOH2 in the microar-
ray data. In particular, simulated SA and BTH treatment both
produced a significant rise in predicted metabolism of trihy-
droxy glucosylceramides. This increase was not specific to fatty
acid species, which showed an increase in both trihydroxy
long-chain and very-long-chain glucosylceramides (Figure 2).
These results are consistent with the data from 15N-labeled
metabolic turnover analysis (Table 2). Interestingly, the microar-
ray data showed no significant changes in genes that directly
catalyze the pathways in glucosylceramide metabolism, nor any
related to glucosylceramide, in response to SA or BTH treat-
ment (Table S2). Considering the down-regulation of SBH2
under BTH treatment, we believe that the increase of glucosyl-
ceramide metabolism may mainly be induced by the upstream
up-regulation of LOH2. Since the increase of the turnover
rate was not linked to metabolite concentration, the predicted

changes of glucosylceramides are almost negligible by typical
quantitative LC-MS/MS measurement, but the increase in lipid
renewal may have indispensible functions in the sensitivity of
membrane-based cell signaling.

In this simulation, although some genes change differently in
response to SA and BTH treatment (Table S2), SA and BTH have
similar effects on sphingolipid metabolism. Our model also pro-
poses a possible mechanism by which BTH affects the network
under flux balance constraint without mimicking all the gene
expression changes of its counterpart.

15N-Labeled Metabolic Turnover Measurement of
the Effect of SA and BTH
To confirm the predictions of the model, we directly measured
the in vivo flux change in response to SA and BTH treatments.
For SA and BTH treatments, the isotope incorporation rate
significantly increased for certain sphingolipid species such as
C16 and C26 ceramides (Table 2). These results are consistent
with our FBA model (Figure 2). After SA and BTH treatments,
turnover increased for seven out of twenty-two and ten out
of twenty-two major sphingolipids, respectively. Also, turnover
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TABLE 2 | Isotopic incorporation rate for major sphingolipids, with or without 100 µM SA or 100 µM BTH treatments.

Symbol Sphingolipid Isotope incorporation rate Isotope incorporation rate Isotope incorporation rate

species (nmol· g−1
·h−1) untreated (nmol· g−1

·h−1) SA-treated (nmol· g−1
·h−1) BTH-treated

d18:0 LCB Long-chain base 0.062022 0.055779 0.038494#

d18:1 LCB Long-chain base 0.005016 0.059469* 0.031829*

t18:0 LCB Long-chain base 0.030297 0.049577 0.023784

t18:1 LCB Long-chain base 1.43E-02 8.94E-06# 5.44E-04#

t18:1 c16:0 Long-chain ceramide 0.100845 0.241159* 0.221878*

d18:0 c16:0 Long-chain ceramide 0.04256 0.066754* 0.0477

t18:0 c24:0 Very-long-chain ceramide 0.386836 0.495358 0.505011*

t18:1 c24:0 Very-long-chain ceramide 0.418402 0.60068* 0.538219

t18:0 c24:1 Very-long-chain ceramide 0.217738 0.144568# 0.176221

t18:1 c24:1 Very-long-chain ceramide 0.485274 0.500902 0.547493

t18:0 c26:0 Very-long-chain ceramide 0.049354 0.048909 0.031827

t18:1 c26:0 Very-long-chain ceramide 0.136971 0.179349 0.184011*

t18:1 c26:1 Very-long-chain ceramide 3.44E-02 5.44E-02* 6.98E-02*

t18:1 h16:0 Long-chain hydroxyceramide 0.268339 0.253601 0.177361#

t18:1 h24:0 Very-long-chain hydroxyceramide 1.25246 1.139387 0.965043

t18:0 h24:1 Very-long-chain hydroxyceramide 0.092809 0.13231 0.167954*

t18:1 h26:0 Very-long-chain hydroxyceramide 0.157256 0.200213* 0.183134

t18:1 h26:1 Very-long-chain hydroxyceramide 1.86E-01 1.06E-01* 1.29E-01

d18:1 h16:0 Long-chain glucosylceramide 0.142007 0.126636 0.199323*

t18:1 h24:0 Very-long-chain glucosylceramide 0.076921 0.13433* 0.265554*

t18:1 h24:1 Very-long-chain glucosylceramide 0.073858 0.076487 0.15701*

t18:1 h26:0 Very-long-chain glucosylceramide 0.040668 0.053585 0.060641*

* and # indicate significant up and down, respectively (P < 0.05, FDR < 0.05 in multiple covariance analysis) of incorporation rate compared to untreated plants. The bold numbers are

in disagreement with simulation data shown in Figure 2.

decreased for two out of twenty-two and three out of twenty-two
major sphingolipids after SA and BTH treatments, respectively.
We found that the few inconsistencies between in silico predic-
tions (Figure 2) and experimental data (Table 2) mainly came
from LCB and glucosylceramides. Given the low in vivo level of
LCB and the high variability of LCB measurement, the incon-
sistency of LCB turnover could result from experimental error.
Interestingly, we found discrepancies between the effect of BTH
and SA on glucosylceramide turnover. For example, the isotope
incorporation rate significantly increased for glucosylceramides
after BTH treatments (Table 2), indicating that it may underlie
different mechanisms in the responses to BTH and SA.

Flux Variability Analysis
To examine the change in network rigidity in response to SA
and BTH treatments, we estimated the accessible flux ranges of
sphingolipid species in silico. To make a physiologically relevant
estimation, we sampled the flux space that achieved at least 80%
of the optimal objective rate (in our model, the biomass pro-
duction) under untreated or treated conditions. We sorted the
flux range into three types (Oberhardt et al., 2010): rigid flux
(flux range near zero but with non-zero flux value), bounded
flexible flux, and infinitely flexible flux (boundary spans from 0
or -1000 to 1000 in the model). In the fluxome of treated and
untreated plants, LCB fluxes were infinitely flexible (showing a

high capacity to tolerate disturbance), ceramide and glycosylce-
ramide fluxes showed bounded flexibility, and hydroxyceramide
fluxes were rigid (Table 3). The limited flux variability of most
sphingolipids is consistent with stoichiometric modeling result
in S. cerevisiae (Ozbayraktar and Ulgen, 2011). Similar to the iso-
topic incorporation experiments, we found disturbances of flux
variability in ceramide and glucosylceramide metabolic fluxes
after SA and BTH treatments, indicating that plant cells have
the freedom to adjust their sphingolipid flux homeostasis during
defense processes.

Discussion

Our FBA model and isotope labeling experiments systematically
explored the alterations in the sphingolipid pathway that occur
in response to SA and BTH. Traditional metabolic responses
can cause significant changes in the concentrations of cer-
tain metabolites. However, the systematic responses caused by
plant activators and phytohormones cannot be achieved by only
doubling the concentration of certain nodes; these responses
also affect the dynamic properties of the whole network. To
detect the underlying changes of network parameters caused
by the modulation, both up and down, of certain nodes, one
of the most direct measurements is the fluxome. FBA analy-
sis has been applied in microbial metabolic engineering and
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FIGURE 2 | Simulated flux distribution of selected sphingolipid

species. The untreated plants (black) and in silico SA (light gray)

and BTH-treated plants (gray) were taken from the flux balance

model. The effects of exogenous SA and BTH were simulated by

changing the target flux bound proportional to its related gene

expression alteration identified by published microarray data (Wang

et al., 2006; van Leeuwen et al., 2007). LC, long-chain (≤C18);

VLC: very-long-chain (>C18).

modeling of other systems. However, construction of the model
for sphingolipid metabolism presented difficulties related to
the unique features of sphingolipid pathways. Although sphin-
golipid species are among the most reactive components in plant
development and stress responses, they reside in the periph-
ery of the network of plant metabolism, having loose metabolic
connections with other subnetworks. Their lack of connec-
tion and remote position make the flux in the self-balanced
function more susceptible to the objective settings, rather
than being affected by artificial constraints and neighboring
subnetworks.

Indeed, studies of sphingolipids in S. cerevisiae (Ozbayraktar
and Ulgen, 2011) found that the sphingolipid pathways are also
remote from central metabolism, but these models are backed
by experimental data on enzyme kinetic parameters or known
fluxes. Experimental exploration of plant sphingolipid pathways
has been hindered by the vast diversity, low abundance, and lack
of sensitive and replicable measurements of sphingolipids. In
addition, the enzymes linking metabolites often are embedded in
the layers of membranes, making the isolation and estimation of
their kinetic properties difficult. Until now, a limited set of exper-
iments has revealed only a rough sketch of plant sphingolipid
metabolism. Considering that, we used the experimentally mea-
sured isotopic incorporation rate to set the stoichiometry of each

sphingolipid species in the objective function, and we found
that the resulting flux distribution of each species was in accor-
dance with the isotopic incorporation pattern, demonstrating
that isotopic incorporation data produce a better fit than biomass
fraction in objective stoichiometry determination, as the max-
imization of biomass is often considered as the aim of plant
metabolism regardless of any inconsistency between biomass
contents and the generation rate of each component.

In our experiments, isotopic transient labeling provided a
direct measurement of in vivo flux. We note that none of the sph-
ingolipid species reached 100% labeled. Similar phenomena were
also observed in other experiments (Delwiche and Sharkey, 1993;
Hasunuma et al., 2010). Considering the internal serine sources
and anaplerotic reactions of complex existing sphingolipids, the
pattern indicates a balance of labeled and unlabeled sphingolipids
in the metabolic pool. Since the only exogenous source of nitro-
gen is labeled, we can also speculate that sphingolipid synthe-
sis uses external and internal sources of nitrogen, based on the
isotopic incorporation curve.

There are various models linking plant sphingolipid pathways
with hormones and their synergistic roles in plant development
and stress responses. In these models, the possible sphingolipid
inducers of defense responses include LCBs (Saucedo-García
et al., 2011) and ceramides (Markham et al., 2011; Bi et al., 2014),
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TABLE 3 | Simulated flux variability of sphingolipid-related reactions in untreated and SA-treated plants.

Reaction Reaction property Flux range of Flux Flux range of in silico Flux Flux range of in silico Flux

ID untreated plant category SA-treated plant category BTH-treated plant category

(nmol/g/h) (nmol/g/h) (nmol/g/h)

r400 LCB synthesis 0.6816942 BF 0.933054 BF 0.7323672 BF

r401 LCB hydroxylation 996.1271 IF 990.0517 IF 940.56259 IF

r402 LCB desaturation 891.39928 IF 633.8894 IF 588.71726 IF

r403 LCB desaturation 744.41581 IF 858.1732 IF 898.85107 IF

r404 LCB hydroxylation 555.71359 IF 740.9661 IF 602.70542 IF

r405 LCB degradation 965.6077 IF 962.8005 IF 757.88787 IF

r406 LCB degradation 669.54014 IF 678.1669 IF 572.0321 IF

r407 LCB degradation 961.18543 IF 981.1921 IF 985.3995 IF

r408 LCB degradation 0.6124747 BF 0.886632 BF 0.6845704 BF

r409 LCB degradation 0.6124747 BF 0.886632 BF 0.6845704 BF

r410 Long-chain ceramide synthesis 2.7399016 BF 1.488821 BF 2.5018621 BF

r411 Long-chain ceramide synthesis 1.3103871 BF 1.71169 BF 1.9698516 BF

r412 Long-chain ceramide synthesis 1.7084488 BF 1.822309 BF 2.0970869 BF

r413 Long-chain ceramide synthesis 3.3413012 BF 2.752579 BF 2.0658496 BF

r414 Long-chain ceramide degradation 2.739888 BF 1.488661 BF 2.501841 BF

r415 Long-chain ceramide degradation 1.3095469 BF 1.70886 BF 1.9655798 BF

r416 Long-chain ceramide degradation 1.7077694 BF 1.821901 BF 2.097133 BF

r417 Long-chain ceramide degradation 3.3422485 BF 2.75117 BF 2.0645697 BF

r418 Very-long-chain ceramide synthesis 4.3578539 BF 7.715646 BF 4.3136348 BF

r419 Very-long-chain ceramide synthesis 8.7817641 BF 5.694421 BF 6.7077636 BF

r420 Very-long-chain ceramide synthesis 3.5295194 BF 2.408687 BF 2.9528709 BF

r421 Very-long-chain ceramide synthesis 4.2127446 BF 3.453244 BF 5.0346985 BF

r422 Very-long-chain ceramide synthesis 4.608139 BF 3.854737 BF 3.4107203 BF

r423 Very-long-chain ceramide synthesis 5.6709963 BF 7.263345 BF 6.1313472 BF

r424 Very-long-chain ceramide synthesis 3.5244325 BF 3.770128 BF 4.3695179 BF

r425 Very-long-chain ceramide synthesis 4.6239162 BF 3.720505 BF 3.7953091 BF

r426 Very-long-chain ceramide degradation 2.1905924 BF 4.899526 BF 2.6481642 BF

r427 Very-long-chain ceramide degradation 1.9294142 BF 1.400288 BF 2.3380799 BF

r428 Very-long-chain ceramide degradation 2.7824852 BF 2.919854 BF 2.5284588 BF

r429 Very-long-chain ceramide degradation 6.2532973 BF 3.182878 BF 2.3868717 BF

r430 Very-long-chain ceramide degradation 2.7924997 BF 3.175204 BF 3.2417941 BF

r431 Very-long-chain ceramide degradation 1.654875 BF 3.178278 BF 2.1331369 BF

r432 Very-long-chain ceramide degradation 3.7449578 BF 3.378223 BF 4.2554344 BF

r433 Very-long-chain ceramide degradation 2.7185461 BF 4.234617 BF 4.8273498 BF

r434 Ceramide LCB-hydroxylation 3.2847564 BF 3.234191 BF 4.0981726 BF

r435 Ceramide LCB-hydroxylation 2.3948574 BF 3.112839 BF 2.9876163 BF

r436 Long-chain ceramide alpha-hydroxylation 0.0002983 RF 0.000267 RF 0.0002828 RF

r437 Long-chain ceramide alpha-hydroxylation 0.0065064 RF 0.005832 RF 0.0061698 RF

r438 Long-chain ceramide alpha-hydroxylation 0.0006397 RF 0.000573 RF 0.0006066 RF

r439 Long-chain ceramide alpha-hydroxylation 0.0069564 RF 0.006235 RF 0.0065965 RF

r440 Very-long-chain ceramide alpha-hydroxylation 4.7098229 BF 3.792224 BF 3.5955032 BF

r441 Very-long-chain ceramide alpha-hydroxylation 9.5915915 BF 5.22986 BF 6.284673 BF

r442 Very-long-chain ceramide alpha-hydroxylation 0.0028754 RF 0.002577 RF 0.0027266 RF

r443 Very-long-chain ceramide alpha-hydroxylation 0.0023156 RF 0.002075 RF 0.0021958 RF

r444 Very-long-chain ceramide alpha-hydroxylation 4.7663799 BF 4.426039 BF 5.1332466 BF

r445 Very-long-chain ceramide alpha-hydroxylation 6.2567661 BF 5.436772 BF 6.3043047 BF

r446 Very-long-chain ceramide alpha-hydroxylation 2.916E-06 RF 2.61E-06 RF 2.765E-06 RF

r447 Very-long-chain ceramide alpha-hydroxylation 0.0126184 BF 0.01131 BF 0.0119656 BF

r448 Long-chain hydroxylceramide glucosylation 2.4344115 BF 2.286215 BF 4.6218412 BF

(Continued)

Frontiers in Plant Science | www.frontiersin.org 9 March 2015 | Volume 6 | Article 186

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Shi et al. The effect of SA on sphingolipid homeostasis

TABLE 3 | Continued

Reaction Reaction property Flux range of Flux Flux range of in silico Flux Flux range of in silico Flux

ID untreated plant category SA-treated plant category BTH-treated plant category

(nmol/g/h) (nmol/g/h) (nmol/g/h)

r449 Long-chain hydroxylceramide glucosylation 1.6341334 BF 2.627672 BF 1.7824886 BF

r450 Long-chain hydroxylceramide glucosylation 1.592099 BF 1.690888 BF 2.2631503 BF

r451 Long-chain hydroxylceramide glucosylation 1.9261375 BF 1.513117 BF 2.5673956 BF

r452 Long-chain glucosylceramide degradation 2.4344115 BF 2.286215 BF 4.6218412 BF

r453 Long-chain glucosylceramide degradation 1.634039 BF 2.627359 BF 1.7825829 BF

r454 Long-chain glucosylceramide degradation 1.5920983 BF 1.690883 BF 2.2631602 BF

r455 Long-chain glucosylceramide degradation 1.9267482 BF 1.513729 BF 2.568496 BF

r456 Very-long-chain hydroxylceramide glucosylation 3.118642 BF 2.280832 BF 1.7163731 BF

r457 Very-long-chain hydroxylceramide glucosylation 1.9581782 BF 3.500058 BF 2.1010147 BF

r458 Very-long-chain hydroxylceramide glucosylation 1.8737974 BF 2.168017 BF 1.6308077 BF

r459 Very-long-chain hydroxylceramide glucosylation 1.865647 BF 2.35413 BF 2.1378746 BF

r460 Very-long-chain hydroxylceramide glucosylation 2.2127127 BF 1.990514 BF 3.1107668 BF

r461 Very-long-chain hydroxylceramide glucosylation 1.9563111 BF 2.108021 BF 1.9282944 BF

r462 Very-long-chain hydroxylceramide glucosylation 2.773781 BF 2.214492 BF 2.2287123 BF

r463 Very-long-chain hydroxylceramide glucosylation 2.3197591 BF 2.983733 BF 4.8624845 BF

r464 Very-long-chain glucosylceramide degradation 3.1186404 BF 2.280831 BF 1.7163742 BF

r465 Very-long-chain glucosylceramide degradation 1.9582823 BF 3.49983 BF 2.1013099 BF

r466 Very-long-chain glucosylceramide degradation 1.8737974 BF 2.168017 BF 1.6308077 BF

r467 Very-long-chain glucosylceramide degradation 1.8649995 BF 2.353971 BF 2.1378732 BF

r468 Very-long-chain glucosylceramide degradation 2.2127127 BF 1.990514 BF 3.1107668 BF

r469 Very-long-chain glucosylceramide degradation 1.9565562 BF 2.107267 BF 1.9284395 BF

r470 Very-long-chain glucosylceramide degradation 2.773781 BF 2.214492 BF 2.2287123 BF

r471 Very-long-chain glucosylceramide degradation 2.3197341 BF 2.983678 BF 4.862662 BF

We used the criteria described by Oberhardt et al. (2010) to classify different reaction fluxes based on their flux ranges. RF represents Rigid Flux; IF represents Infinitely Flexible flux; BF

represents Bounded Flexible flux.

with SA both up- and downstream of sphingolipid-mediated
PCD (Saucedo-García et al., 2011; Bi et al., 2014). As mutants
affecting sphingolipids often accumulate SA, the effect of
SA on ceramide species may include positive feedback on
the imbalance of sphingolipids. Our results are in accor-
dance with the observed frequent variation in the concen-
tration of LCB and sometimes ceramide, and the reduced
variation in the concentrations of hydroxyceramide and
glucosylceramide in wild-type Arabidopsis. Functionally speak-
ing, since LCB and ceramides are fundamental to sphin-
golipid metabolism and show high flexibility in their flux,
they can be more responsive to stimuli such as SA or BTH
without disrupting the total fluxomic balance of sphingolipid
metabolism.

In a living cell, the synthesis and degradation of all sub-
stances occurs through metabolism. However, current research
tends to separate metabolites and functional molecules. The
most exciting aspect of plant sphingolipids is that they are
metabolites and functional molecules. Our current model only
deals with their metabolic properties in a self-balanced man-
ner. It will be interesting to incorporate the signaling net-
work that involves sphingolipids to build an integrated model
that can consider the direct effect of metabolism on cell
signaling.

Conclusion

In this study, we established a sphingolipid FBA model and used
15N-labeled isotopic transient labeling to systematically explore
the effects of SA and BTH on sphingolipid metabolic pathways.
The results show that increases in ceramide and glucosylceramide
flux occur in response to exogenous SA and BTH and that alter-
ation of their flux variability also occurs. Our results also give us
insights that help explain the mechanism of crosstalk between SA
and sphingolipids, and their roles in the plant defense response.
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