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Adult hippocampal neurogenesis, the constitutive generation of new granule cells in
the dentate gyrus of the mature brain, is a robust model of neural development
and its dysregulation has been implicated in the pathogenesis of psychiatric and
neurological disorders. Previous studies in mice have shown that altered expression
of Disrupted-In-Schizophrenia 1 (Disc1), the mouse homolog of a risk gene for
major psychiatric disorders, results in several distinct morphological phenotypes during
neuronal development. Although there are advantages to using rats over mice for
neurophysiological studies, genetic manipulations have not been widely utilized in
rat models. Here, we used a retroviral-mediated approach to knockdown DISC1
expression in dividing cells in the rat dentate gyrus and characterized the morphological
development of adult-born granule neurons. Consistent with earlier findings in mice,
we show that DISC1 knockdown in adult-born dentate granule cells in rats resulted in
accelerated dendritic growth, soma hypertrophy, ectopic dendrites, and mispositioning
of new granule cells due to overextended migration. Our study thus demonstrates
that the Disc1 genetic manipulation approach used in prior mouse studies is feasible
in rats and that there is a conserved biological function of this gene across species.
Extending gene-based studies of adult hippocampal neurogenesis from mice to rats
will allow for the development of additional models that may be more amenable
to behavioral and in vivo electrophysiological investigations. These models, in turn,
can generate additional insight into the systems-level mechanisms of how risk genes
for complex psychiatric disorders may impact adult neurogenesis and hippocampal
function.
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Introduction

Significant progress has been made over the past several years to identify genetic disruptions that
increase susceptibility to psychiatric disorders. However, very little is known about how most of
these genes contribute to the dysregulation of cellular processes or can influence the integrity of
distributed neural systems. One such gene of interest is Disrupted-In-Schizophrenia 1 (DISC1),
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which was initially identified at the breakpoint of a chromosomal
translocation t(1;11)(q42.1;q14.3) that co-segregates with
schizophrenia (Millar et al., 2000; Blackwood et al., 2001) and
mood disorders (Hamshere et al., 2005; Hashimoto et al., 2006).
Unlike most genetic risk factors identified thus far, Disc1 has
been the focus of several investigations into its functional role,
and its effect on neuronal development is well-appreciated
(Thomson et al., 2013; Wen et al., 2014).

DISC1 is broadly expressed in many brain regions during
embryonic development and promotes cell proliferation,
migration, and neurite outgrowth (Bradshaw et al., 2011). It
also interacts with GSK3beta to regulate neural progenitor
proliferation (Kamiya et al., 2005; Shinoda et al., 2007; Mao
et al., 2009). In the adult mouse brain, DISC1 expression is
more restricted than in the developing brain, with particularly
high expression in the dentate gyrus. (Austin et al., 2004).
The dentate gyrus is a critical site of adult neurogenesis, the
process of generating new dentate granule cells from neural
stem cells (Ming and Song, 2011; Braun and Jessberger,
2013). Neural stem cells in the subgranular zone give rise to
intermediate neural progenitors and, ultimately, postmitotic
newborn neurons that migrate into the inner granule cell
layer and become mature dentate granule cells (Altman
and Das, 1965; Kaplan and Hinds, 1977; Gage et al., 1998;
Lennington et al., 2003; Ming and Song, 2005). Newly
generated adult-born neurons establish synaptic connections
and functionally integrate into the existing circuitry (van
Praag et al., 2002; Ming and Song, 2005; Ge et al., 2006;
Rahimi and Claiborne, 2007). Studies have shown that DISC1
is a critical mediator of the tempo of neuronal development
and integration during adult neurogenesis in mice (Duan
et al., 2007; Kang et al., 2011; Kim et al., 2012a). Strikingly,
knockdown of DISC1 in a subset of newborn neurons was
sufficient to elicit behavioral impairments (Zhou et al., 2013).
Together, these studies suggest that Disc1 mutations affect
not only early neural development but continue to disrupt
neuronal development in the hippocampus into adulthood.
Dysregulation of adult neurogenesis has been implicated
in several psychiatric and neurological disorders, but the
causal relevance and potential mechanisms are not well
understood (Kitabatake et al., 2007; Christian et al., 2010,
2014).

To investigate risk gene-mediated changes in adult
neurogenesis in a model system that is highly amenable to
physiological and behavioral experiments, we examined the
effects of DISC1 knockdown in neural progenitors in the adult
rat hippocampus. Using an oncoretrovirus-mediated RNA
interference approach, we characterized the morphological
changes of adult-born neurons following DISC1 knockdown.
Consistent with results from the studies in mice (Duan et al.,
2007; Faulkner et al., 2008; Kim et al., 2009, 2012a; Kang et al.,
2011), we show that DISC1 knockdown in adult-born neurons
results in soma hypertrophy, accelerated dendritic outgrowth
with the appearance of ectopic dendrites, and mispositioning
of granule cells due to overextended migration. These findings
indicate that DISC1 regulates morphological development
and neuronal integration during adult neurogenesis in

rats. Further, our study demonstrates the feasibility of
utilizing Disc1 genetic manipulations in rats, providing an
alternate animal model to elucidate the functional role of
schizophrenia risk genes in adult neurogenesis and hippocampal
function.

Materials and Methods

Constructs, Production and Stereotaxic Injection
of Engineered Oncoretroviruses
Self-inactivating murine oncoretroviruses were engineered to
co-express shRNAs under the U6 promoter, and green
fluorescent protein (GFP) under the Ubiquitin promoter, to
target proliferating cells and their progeny (Kang et al., 2011).
Specific shRNAs against Disc1 (e.g., shRNA-D1) were previously
shown to knockdown DISC1 in several mouse lines with rescue
experiments to show both efficacy and specificity (Duan et al.,
2007; Faulkner et al., 2008; Kim et al., 2009). The D1 hairpin
target sequence matches exactly to both mouse and rat Disc1
sequences (GGCTACATGAGAAGCACAG; nucleotide position
17701097–17701115) and its efficacy in rat models was validated
in previous studies (Maher and Loturco, 2012). High titers of
engineered retroviruses (108 TU/ml) were packaged by Allele
Biotechnology (San Diego, CA, USA). Adult male rats (10–12
weeks old; Charles River) were housed under standard 12 h
light/dark conditions with ad libitum access to food and water.
Rats were anesthetized and underwent stereotaxic injections of
concentrated retroviruses bilaterally in the hilus/dentate gyrus
region at 3 sites per hemisphere (1 µl per site at 0.25µl/min)
with the following coordinates: AP = 2.6 mm, ML = ±1.2 mm,
DV = 3.8 mm; AP = 3.6 mm, ML = ±2.0 mm, DV = 3.4 mm;
AP = 4.6 mm, ML = ±2.8 mm, DV = 3.2 mm. All animal
procedures used in this study were performed in accordance
with the protocol approved by the Institutional Animal Care
and Use Committee at Johns Hopkins University and in
accordance with the guidelines of the National Institutes of
Health.

Immunohistology, Confocal Imaging and Analysis
Following perfusion, coronal brain sections (40-µm thick)
were prepared from the dissected brains of injected rats at
2 weeks post-injection (wpi) and 4 wpi and processed for
immunostaining as previously described (Ge et al., 2006; Duan
et al., 2007; Song et al., 2013). Anti-GFP antibodies (goat, 1:500,
Rockland) were used in all conditions. Sections were incubated
for 30 min in 4′6′-diaminodino-2-phenylindole (DAPI, 1:5000)
before washing and mounting. Confocal images were acquired
(Zeiss LSM 710) using a multi-track configuration. At least
three rats per condition were analyzed. Statistical comparisons
of datasets were performed by JMP Statistical Software (SAS).

Morphological analyses were performed using Z-series stacks
of confocal images. Quantification (NIH ImageJ program) was
performed using the confocal image slice that contained the
largest soma area for an individual GFP+ neuron. Determination
of neuronal position was based on single section confocal images
of GFP+ neurons, counterstained with DAPI, to resolve cell
localization among the four areas defined in Figure 3B.

Frontiers in Systems Neuroscience | www.frontiersin.org 2 June 2015 | Volume 9 | Article 93

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Lee et al. DISC1 regulates neurogenesis in rats

Quantification of dendritic development was based on
three dimensional (3D) reconstructions of complete dendritic
processes of each GFP+ neuron using Z-series stacks of confocal
images and the 2D projection images were traced with NIH
ImageJ. As previously described, every GFP+ dentate granule cell
that had visibly intact dendritic processes was used in the analysis
of total dendritic length and branch number (Ge et al., 2006;
Duan et al., 2007; Sun et al., 2013). Corrections for inclinations
of dendritic process were not performed and dendritic process
reconstructions represent projected lengths.

Results

We used a retrovirus-mediated birth dating and genetic
manipulation approach to knock down DISC1 expression in
the adult rat dentate gyrus. Engineered retroviral constructs
expressed enhanced GFP as control or co-expressed GFP and
shRNA to knock down the expression of endogenous rat
DISC1 (sh-D1; Figure 1A). Viral constructs were generated as
previously described (Kang et al., 2011) and the shRNA sequence
used is 100% homologous to the mouse sequence (Duan et al.,
2007). High titers of engineered retroviruses were stereotaxically
injected into the hilar region of the adult rat hippocampus to
selectively target infection of proliferating neural progenitors
in vivo. GFP+ labeled newborn granule cells (green) can be
observed in the granule cell layer of the dentate gyrus at
4 wpi of control or sh-D1 retrovirus (Figure 1B). This result
demonstrated that the strategy for retroviral-mediated genetic
manipulation and labeling newborn neurons in mice was also
effective in rats.

DISC1-Deficient Adult-born Neurons Exhibit
Soma Hypertrophy
We first examined the morphology of sh-D1/GFP+ adult-
born neurons. The cell bodies of sh-D1/GFP+ adult-born
neurons were larger than those of control/GFP+ neurons
(Figure 2A). The mean soma size of the sh-D1/GFP+

adult-born neurons was significantly larger than that of the
control/GFP+ neurons (Figure 2B; Two-way ANOVA, group:
F(1,374) = 29.79, p < 0.0001; time: F(1,374) = 1.26, p = 0.26;
group × time: F(1,374) = 10.78, p = 0.0011). The soma
size of the sh-D1/GFP+ neurons was significantly different
from the control/GFP+ neurons at 2 wpi (post hoc Tukey
HSD, p < 0.05). A similar transient phenotype of enlarged
soma size was also observed in developing human cortical
neurons derived from patient induced pluripotent stem cells
carrying a DISC1 mutation (Wen et al., 2014). Dentate
granule cells in rodents normally extend only one primary
apical dendrite, which branches out to form an elaborate
arborization (Seress and Pokorny, 1981; Shapiro and Ribak,
2006). However, neurons with DISC1 knockdown exhibited
ectopic primary dendrites (Figure 2C). The number of primary
dendrites in the sh-D1/GFP+ neurons was significantly greater
than the control/GFP+ neurons at both 2 and 4 wpi (Two-
way ANOVA, group: F(1,795) = 128.68, p < 0.0001; time:
F(1,795) = 25.20, p < 0.0001; group × time: F(1,795) = 7.71,
p = 0.0056; Post hoc Tukey HSD, p < 0.05). These results

FIGURE 1 | Stereotaxic injection of retrovirus in the dentate gyrus of
the adult rat hippocampus. (A) Schematic diagram of the retroviral vector
used for in vivo birth-dating and genetic manipulation. (B) Sample projections
of Z-series confocal images at 4 wpi of retrovirus either expressing GFP
(control) or co-expressing shRNA against Disc1 and GFP (sh-D1) in the
dentate gyrus of the adult rat hippocampus. Scale bar: 200 µm.

showed that DISC1 regulates the morphogenesis of adult-born
neurons in rats.

DISC1 Knockdown Cells Exhibit Aberrant
Positioning in the Dentate Gyrus
Next, we examined whether knockdown of DISC1 affected the
migration of adult-born neurons. Adult-born neurons in the
dentate gyrus contribute almost exclusively to only the inner
two-thirds of the granule cell layer (Areas 1 and 2; Figure 3B;
Kempermann et al., 2003). However, the distributions of the
control/GFP+ and the sh-D1/GFP+ neurons in the granule and
the molecular cell layers were significantly different (Figure 3C:
Three-way Chi Square Test, G2 = 885.2, p < 0.0001). Most
of the control/GFP+ neurons migrated into the inner layer of
the granule cell layer (Area 1) at 2 and 4 wpi (Figures 3A,C).
In contrast, at 2 wpi, the sh-D1/GFP+ neurons had already
migrated into the middle (Area 2) and outer third (Area 3) of
the granule cell layer with some cells even migrating into the
molecular layer (Area 4; Figures 3A,C). By 4 wpi, the majority
of the sh-D1/GFP+ neurons were in the outer third of the
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FIGURE 2 | DISC1 regulates morphogenesis of adult born neurons
in the rat hippocampus. (A) Sample projections of Z-series confocal
images of GFP+ neurons at 2 and 4 wpi of retrovirus expressing GFP
(control) or co-expressing shRNA against Disc1 and GFP (sh-D1). Scale
bar: 10 µm. Note that the newborn neurons with DISC1 knockdown
show increased soma size and ectopic primary dendrites.
(B) Quantification of soma size of GFP+ neurons at 2 and 4 wpi.
Numbers indicated in each bar graph represent the total number of

neurons analyzed from 3–8 animals under each condition. Values
represent mean ± SEM (*p < 0.05; Two- way ANOVA; 2 wpi: control,
n = 87, sh-D1, n = 88; 4 wpi: control 105, sh-D1, n = 98). (C)
Quantification of number of primary dendrites of GFP+ neurons at 2 and
4 wpi. Numbers indicated in each bar graph represent the total number
of neurons analyzed from 3–8 animals under each condition. Values
represent mean ± SEM (*p < 0.05; Two-way ANOVA; 2 wpi: control,
n = 202, sh-D1, n = 346; 4 wpi: control, n = 155, sh-D1, n = 323).

granule cell layer (Area 3) and the molecular layer (Area 4),
while none of the control/GFP+ neurons were in the molecular
layer (Area 4; Figures 3A,C). These results demonstrated that
DISC1 regulates the positioning of adult-born neurons in
rats.

DISC1 Modulates Dendritic Development of
Adult-Born Neurons
We also examined the effect of DISC1 knockdown on the
dendritic development of the adult-born neurons. Sh-D1/GFP+

neurons exhibited much more elaborate dendrites than the
control/GFP+ neurons both at 2 and 4 wpi (Figure 4A).
Total dendritic length (Figure 4B: Two-way ANOVA, group:
F(1,376) = 50.18, p < 0.0001; time: F(1,376) = 117.87, p < 0.0001;
group × time: F(1,376) = 0.28, p = 0.59) and the number
of dendrite branches (Figure 4C: Two-way ANOVA, group:
F(1,376) = 112.39, p < 0.0001; time: F(1,376) = 4.64, p = 0.03; group
× time: F(1,376) = 0.09, p = 0.77) were significantly greater for the
sh-D1/GFP+ neurons at both 2 and 4 wpi than the control/GFP+

neurons (Post hoc Tukey HSD, p < 0.05). Thus, DISC1 regulates
the dendritic development of adult-born neurons in rats.

Discussion

We have shown that knockdown of DISC1, caused abnormal
morphological changes in adult-born dentate granule cells
in rats. DISC1 knockdown resulted in soma hypertrophy,
accelerated dendritic outgrowth with the appearance of ectopic
dendrites, and mispositioning of new granule cells due to
overextended migration. These findings are consistent with
previous findings in mice (Duan et al., 2007) showing that DISC1
also orchestrates the tempo of neuronal integration during
adult neurogenesis in rats. Our results support a conserved

biological function of DISC1 in rats and mice and the viability
of a viral-mediated approach to manipulate risk genes in adult
hippocampal neurogenesis in rats.

Determining the biological role of psychiatric disorder risk
genes in neuronal development, structure, and function is
a critical step toward understanding how these genes may
contribute to dysregulation of neural processes necessary for
adaptive behavior. Many risk genes have been identified but
only a few have been studied in detail, most of which have
been investigated exclusively in mice. And the majority of these
studies show a correlation between genetic risk variants and
changes in behavior and/or cellular properties, but very few have
been focused on identifying mechanisms at the systems level.
Although mice are highly amenable to genetic manipulation,
there are a wealth of behavioral data in other species and
several advantages in using rats. First, rat models have been
used extensively in physiological studies and provide technical
advantages. The size of the rat allows for larger implants that
can support more tetrodes for unit recordings, compared to
what can be implanted in mice. A greater number of tetrodes
for recording results in a larger number of cells that can be
recorded simultaneously to study network ensemble activities.
Second, studies have shown that place fields can be less stable
in mice than in rats (Kentros et al., 2004; Muzzio et al., 2009).
Place cells in the hippocampus are thought to contribute to
pattern separation by reorganizing their spatially-tuned firing
patterns, referred to as ‘‘remapping’’, which is induced when
there are changes to the input patterns (Muller and Kubie,
1987; Bostock et al., 1991; Leutgeb et al., 2005, 2007; Neunuebel
and Knierim, 2014). Although place field instability in mice is
not well understood, it may cause difficulties in interpreting
and understanding hippocampal place cell properties and
functions related to remapping. Third, studies have shown
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FIGURE 3 | DISC1 regulates the positioning of the adult born
neurons in the rat hippocampus. (A) Sample confocal images of GFP
and DAPI. Scale bar: 20 µm. (B) Schematic diagram of the adult rat
dentate gyrus region divided into four domains. (C) Distribution of GFP+

cells within each area as defined in (B). Numbers indicated in each bar
graph represent the total number of neurons analyzed from 3–8 animals
under each condition (2 wpi: control, n = 404, sh-D1, n = 295; 4 wpi:
control, n = 358, sh-D1, n = 353).

that a higher percentage of mature neurons survive in rats as
compared to mice (Snyder et al., 2009). Thus, to study the
physiological effects of DISC1 knockdown in newborn neurons,
rat models provide an important complement to existing mouse
models.

Evidence suggests that adult hippocampal neurogenesis
itself may be important in psychiatric disorders, including
schizophrenia (Toro and Deakin, 2007; Eisch et al., 2008;
Kempermann et al., 2008; DeCarolis and Eisch, 2010).
Neuroimaging and postmortem neuropathologic studies indicate
decreased hippocampal volume and function in patients with
schizophrenia (Lawrie and Abukmeil, 1998; Nelson et al., 1998;
Mccarley et al., 1999; Wright et al., 2000; Goldman and Mitchell,
2004; Harrison, 2004). One study showed a reduction in putative
precursor cell proliferation in schizophrenia patients, suggesting
a direct link between adult neurogenesis and schizophrenia (Reif
et al., 2006). Moreover, animal models of schizophrenia exhibit
altered adult neurogenesis, and antipsychotic treatments can
normalize the changes (Liu et al., 2006; Keilhoff et al., 2010;
Procaccini et al., 2011; Wolf et al., 2011). Despite these putative
associations between dysregulation of adult neurogenesis and
schizophrenia, there are little data to support a causal role of
aberrant neurogenesis in the emergence or maintenance of
relevant symptomatology.

Schizophrenia is a developmental disorder and thus adult
neurogenesis may be most informative as a model system in
which to explore how genetic risk factors may lead to specific
molecular, cellular and circuit-level phenotypes (Singh et al.,
2004). In the patient population, consequences of genetically-
mediated risk could be present in any region of the brain
and cell type in which the gene is normally expressed. In
contrast, our manipulation affects a specific cell type in the
dentate gyrus and it is difficult to ascribe any subset of the
diverse and complex array of clinical symptoms to impairments
in this region alone. Nevertheless, the hippocampus is a
critical site of learning and memory and the dentate gyrus
appears to play a role in several adaptive behaviors that
could directly or indirectly contribute to some of the core
symptomatology. Among the specific behaviors that have been
associated with the dentate gyrus and/or neurogenesis are
spatial learning, contextual and spatial discrimination, temporal
encoding, associative learning, and anxiety and mood regulation
(Valenzuela-Harrington et al., 2007; Procaccini et al., 2011;
Sahay et al., 2011; Zhou et al., 2013; Carretero-Guillén et al.,
2015), which have been reviewed in detail elsewhere (Kim et al.,
2012c; Aimone et al., 2014; Miller and Hen, 2015). Although
both upregulation and downregulation of adult neurogenesis
can result in clear behavioral phenotypes, dysregulation of this
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FIGURE 4 | DISC1 regulates the dendritic development of adult born
neurons in the rat hippocampus. (A) Sample projections of Z-series confocal
images of GFP+ neurons at 2 and 4 wpi. Scale bar: 10 µm. (B) Total dendritic
length of GFP+ neurons at 2 and 4 wpi. Numbers indicated in each bar graph
represent the total number of neurons analyzed from 3–8 animals under each

condition. Values represent mean ± SEM (*p < 0.05; Two-way ANOVA; 2 wpi:
control, n = 87, sh-D1, n = 89; 4 wpi: control, n = 105, sh-D1, n = 99).
(C) Number of branches of GFP+ neurons at 2 and 4 wpi. Values represent
mean ± SEM (*p < 0.05; Two-way ANOVA; 2 wpi: control, n = 87, sh-D1,
n = 89; 4 wpi: control, n = 105, sh-D1, n = 99).

process can take many different forms and could have distinct
effects on the local circuitry and information processing in this
region.

In order to understand how adult neurogenesis contributes
to hippocampal function and, conversely, how its genetically-
mediated dysregulation can lead to impairments that may be
associated with psychiatric or neurological disorders, we need to
be able to test explicit hypotheses in a well-established system.

Both as a model for neural development and an intrinsic
phenomenon with a functional role in behaviors mediated by
the hippocampus, adult neurogenesis is a focus of many studies.
By demonstrating that manipulation of a psychiatric disorder
risk gene has a clear effect on neuronal development in the
adult rat hippocampus, we have established another viable model
in which to investigate the physiological correlates of aberrant
neurogenesis in the hippocampus.
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