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In order to understand how the mammalian neocortex is performing computations,

two things are necessary; we need to have a good understanding of the available

neuronal processing units and mechanisms, and we need to gain a better understanding

of how those mechanisms are combined to build functioning systems. Therefore, in

recent years there is an increasing interest in how spiking neural networks (SNN) can be

used to perform complex computations or solve pattern recognition tasks. However, it

remains a challenging task to design SNNs which use biologically plausible mechanisms

(especially for learning new patterns), since most such SNN architectures rely on training

in a rate-based network and subsequent conversion to a SNN. We present a SNN for

digit recognition which is based on mechanisms with increased biological plausibility,

i.e., conductance-based instead of current-based synapses, spike-timing-dependent

plasticity with time-dependent weight change, lateral inhibition, and an adaptive spiking

threshold. Unlike most other systems, we do not use a teaching signal and do not

present any class labels to the network. Using this unsupervised learning scheme,

our architecture achieves 95% accuracy on the MNIST benchmark, which is better

than previous SNN implementations without supervision. The fact that we used no

domain-specific knowledge points toward the general applicability of our network design.

Also, the performance of our network scales well with the number of neurons used and

shows similar performance for four different learning rules, indicating robustness of the

full combination of mechanisms, which suggests applicability in heterogeneous biological

neural networks.

Keywords: spiking neural network, STDP, unsupervised learning, classification, digit recognition

1. Introduction

The mammalian neocortex offers an unmatched pattern recognition performance given a power
consumption of only 10–20 watts (Javed et al., 2010). Therefore, it is not surprising that the
currently most popular models in machine learning, artificial neural networks (ANN) or deep
neural networks (Hinton and Salakhutdinov, 2006), are inspired by features found in biology.
However, this comparison should be taken with a grain of salt since, despite the biological
inspiration, those models use mechanisms for learning and inference which are fundamentally
different from what is actually observed in biology. While ANNs rely on 32 bit or even 64 bit
messages being sent between units, the neocortex uses spikes, akin to 1 bit precision (if the possible
influence of spike-timing on the transmitted message is omitted). Additionally, ANN units are
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usually perfect integrators with a non-linearity applied after
integration, which is not true for real neurons. Instead
neocortical neurons are rather leaky integrators, and they use
conductance-based synapses which means the change of the
membrane voltage due to a spike depends on the current
membrane voltage. Another non-biological aspect of ANNs is
the type of learning. In ANNs the standard training method is
backpropagation (Rumelhart et al., 1985), where after presenting
an input example, each neuron receives its specific error signal
which is used to update the weight matrix. It seems unlikely
that such a neuron-specific error signal would be implemented
in the brain (O’Reilly and Munakata, 2000), instead evidence is
more pointing toward unsupervised learning methods like spike-
timing-dependent plasticity (STDP) (Bi and Poo, 1998), which
could be modulated by a global reward signal and therefore could
be also used for reinforcement learning.

On the other end of the spectrum, many models in
computational neuroscience are modeling biological properties
very well but often they are not large scale functional systems.
However, understanding the computational principles of the
neocortex needs both aspects, the biological plausibility and good
performance on pattern recognition tasks. If we only focus on
biological plausibility, even if we are able to develop functional
systems, it is difficult to know which mechanisms are necessary
for the computation, i.e., being able to copy the system does not
necessarily lead to understanding. Similarly, if we focus only on
good performance we will create systems that are working well
but which also do not lead to a better understanding since they
are too abstract to compare them to the computational primitives
of real brains. In recent years many models were developed for
pattern recognition tasks that use more biologically plausible
mechanisms, marrying both approaches of understanding. One
popular approach is to still rely on backpropagation training but
afterwards converting the ANN into a spiking neural network
(SNN), which we will call “rate-based learning” (Merolla et al.,
2011; O’Connor et al., 2013; Hussain et al., 2014; Neil and Liu,
2014; Diehl et al., 2015). While they show very good performance
on tasks like the classical machine learning benchmark MNIST
(LeCun et al., 1998), this rate-based learning is not very
biologically plausible or is at least very much abstracted from
the biological mechanism. Other spike-based learning methods
often rely on different variants of models of STDP (Brader et al.,
2007; Habenschuss et al., 2012; Beyeler et al., 2013; Querlioz et al.,
2013; Zhao et al., 2014), providing a closer match to biology
for the learning procedure. However, most of those models rely
on a teaching signal which provides every single neuron that
is used for classification with feedback indicating the correct
response, which shifts the problem to the “supervisor neurons”
that already need to know the solution. Also, commonly they
use features in the neuron/synapse models which make learning
easier but are not necessarily biologically plausible; examples
include STDP models with highly application specific parameter
tuning or current-based synapses, both of which often do not
use graded weight changes or graded currents that are observed
experimentally.

Here we present a spiking neural network which relies on
a combination of biologically plausible mechanisms and which

uses unsupervised learning, i.e., the weights of the network learn
the structure of the input examples without using labels. It
uses an architecture similar to the one presented in Querlioz
et al. (2013), i.e., it uses leaky-integrate-and-fire (LIF) neurons,
STDP, lateral inhibition and intrinsic plasticity. However, here
we usemore biologically plausible components like conductance-
based synapses and different STDP rules, all with an exponential
time dependence of the weight change. The possibility to vary
the design of the learning rule shows the robustness of the
used combination of mechanisms. We are training the network
on the MNIST dataset without any preprocessing of the data
(besides the necessary conversion of the intensity images to
spike-trains). The performance of this approach scales well
with the number of neurons in the network, and achieves
an accuracy of 95% using 6400 learning neurons. Varying the
learning rules but keeping the other mechanisms fixed not only
shows the robustness of the framework but it also helps to
better understand the relationship between the different observed
mechanism types. Specifically, we observe that lateral inhibition
generates competition among neurons, homoeostasis helps to
give each neuron a fair chance to compete, and that in such a
setup excitatory learning leads to learning prototypical inputs as
receptive fields (largely independent of the learning rule used).

In the next section we explain the architecture including the
neuron and synapse models, and the training and evaluation
process. Section 3 contains the simulation results and in Section
4 we compare our results to those of other architectures as well as
giving an intuition into how our network works.

2. Methods

To simulate our SNNs we used Python and the BRIAN simulator
(Goodman and Brette, 2008)1. Here we describe the dynamics
of a single neuron and a single synapse, then the network
architecture and the used mechanisms, and finally we explain the
MNIST training and classification procedure.

2.1. Neuron and Synapse Model
Tomodel neuron dynamics, we chose the leaky integrate-and-fire
model. The membrane voltage V is described by

τ
dV

dt
= (Erest − V)+ ge(Eexc − V)+ gi(Einh − V) (1)

where Erest is the resting membrane potential, Eexc and Einh the
equilibrium potentials of excitatory and inhibitory synapses, and
ge and gi the conductances of excitatory and inhibitory synapses,
respectively. As observed in biology, we use a time constant
τ , which is longer for excitatory neurons than for inhibitory
neurons. When the neuron’s membrane potential crosses its
membrane threshold vthres, the neuron fires and its membrane
potential is reset to vreset . Within the next few milliseconds after
the reset, the neuron is in its refractory period and cannot spike
again.

1The code, including used parameters, is available under https://github.com/peter-

u-diehl/stdp-mnist (only the Brian package has to be installed additionally to the

standard python packages to run the code).
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Synapses are modeled by conductance changes, i.e., synapses
increase their conductance instantaneously by the synaptic
weight w when a presynaptic spike arrives at the synapse,
otherwise the conductance is decaying exponentially. If
the presynaptic neuron is excitatory, the dynamics of the
conductance ge are

τge
dge

dt
= −ge (2)

where τge is the time constant of an excitatory postsynaptic
potential. Similarly, if the presynaptic neuron is inhibitory, a
conductance gi is updated using the same equation but with the
time constant of the inhibitory postsynaptic potential τgi .

We use biologically plausible ranges for almost all of the
parameters in our simulations, including time constants of
membranes, synapses and learning windows (Jug, 2012); the
exception is the time constant of the membrane voltage of
excitatory neurons. Increasing the time constant of the excitatory
neuron membrane potential to 100ms (from 10 to 20ms that are
typically observed for biological neurons), greatly increased the
classification accuracy. The reason is that rate-coding is used to
represent the input, see Section 2.5, and therefore longer neuron
membrane constants allow for better estimation of the input
spiking rate. For example, if the recognition neuron can only
integrate inputs over 20ms at a maximum input rate of 63.75 Hz,
the neuron will only integrate over 1.275 spikes on average, which
means that a single noise spike would have a large influence. By
increasing the membrane time constant to 100ms, a neuron can
integrate over 6.375 spikes on average, reducing the effects of
noise. The problem of too few inputs spikes only exists since the

architecture uses a much lower number of input neurons than
biologically observed to increase simulation speed. An increase of
the number of input neurons would allow for the same averaging
effect.

2.2. Network Architecture
The network consists of two layers, see Figure 1. The first layer
is the input layer, containing 28 × 28 neurons (one neuron
per image pixel), and the second layer is the processing layer,
containing a variable number of excitatory neurons and as many
inhibitory neurons. Each input is a Poisson spike-train, which is
fed to the excitatory neurons of the second layer. The rates of each
neuron are proportional to the intensity of the corresponding
pixel in the example image, see Section 2.5.

The excitatory neurons of the second layer are connected in
a one-to-one fashion to inhibitory neurons, i.e., each spike in
an excitatory neuron will trigger a spike in its corresponding
inhibitory neuron. Each of the inhibitory neurons is connected
to all excitatory ones, except for the one from which it receives
a connection. This connectivity provides lateral inhibition and
leads to competition among excitatory neurons. The maximum
conductance of an inhibitory to excitatory synapse is fixed at 10
nS. However, the exact value did not have a big influence on
the results of the simulation, instead the ratio between inhibitory
and excitatory synaptic conductance has to be balanced to ensure
that lateral inhibition is neither too weak, which would mean
that it does not have any influence, nor too strong, which would
mean that once a winner was chosen that winner prevents other
neurons from firing.

FIGURE 1 | Network architecture. The intensity values of the 28 × 28 pixel

MNIST image are converted to Poisson-spike with firing rates proportional to

the intensity of the corresponding pixel. Those Poisson-spike trains are fed

as input to excitatory neurons in an all-to-all fashion. The blue shaded area

shows the input connections to one specific excitatory example neuron.

Excitatory neurons are connected to inhibitory neurons via one-to-one

connections, as shown for the example neuron. The red shaded area

denotes all connections from one inhibitory neuron to the excitatory neurons.

Each inhibitory neuron is connected to all excitatory neurons, except for the

one it receives a connection from. Class labels are not presented to the

network, so the learning is unsupervised. Excitatory neurons are assigned to

classes after training, based on their highest average response to a digit class

over the training set. No additional parameters are used to predict the class,

specifically no linear classifier or similar methods are on top of the SNN.
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2.3. Learning
All synapses from input neurons to excitatory neurons are
learned using STDP. To improve simulation speed, the weight
dynamics are computed using synaptic traces (Morrison et al.,
2007). This means that, besides the synaptic weight, each synapse
keeps track of another value, namely the presynaptic trace xpre,
which models the recent presynaptic spike history. Every time
a presynaptic spike arrives at the synapse, the trace is increased
by 1, otherweise xpre decays exponentially. When a postsynaptic
spike arrives at the synapse the weight change 1w is calculated
based on the presynaptic trace

1w = η(xpre − xtar)(wmax − w)µ (3)

where η is the learning-rate, wmax is the maximum weight, and µ

determines the dependence of the update on the previous weight.
xtar is the target value of the presynaptic trace at the moment
of a postsynaptic spike. The higher the target value, the lower
the synaptic weight will be. This offset ensures that presynaptic
neurons that rarely lead to firing of the postsynaptic neuron
will become more and more disconnected and is especially
useful if the postsynaptic neuron is only rarely active. A similar
effect can be achieved by adding some noise to the input and
adding a weight decrease mechanism to the learning rule (like
in classical STDP, Bi and Poo, 1998) to disconnect irrelevant
inputs. However, in our simulations it comes at the cost of an
increased simulation time. The learning rule is similar to the one
used in Querlioz et al. (2013) but here we use an exponential
time dependence which is more biologically plausible (Abbott
and Song, 1999) than a time independent weight change.

In order to compare the robustness of the chosen architecture
to the exact form of the learning rule, we tested three other STDP
learning rules. The second STDP rule uses an exponential weight
dependence (Nessler et al., 2013; Querlioz et al., 2013) to compute
the weight change

1w = ηpost
(

xpre exp(−βw)− xtar exp
(

−β(wmax − w)
))

(4)

where β determines the strength of the weight dependence.
The third rule uses not only a presynaptic trace but also

a postsynaptic trace, which works in the same way as the
presynaptic trace but its increase is triggered by a postsynaptic
spike. Additionally, for this learning rule weight changes occur
for pre- and postsynaptic spikes. The weight change 1w for a
presynaptic spike is

1w = −ηprexpostw
µ (5)

where ηpre is the learning-rate for a presynaptic spike and µ

determines the weight dependence. The weight change for a
postsynaptic spike is

1w = ηpost(xpre − xtar)(wmax − w)µ (6)

where ηpost is the learning rate, wmax is the maximum weight,
and xtar is the target average value of the presynaptic trace at the
moment of a postsynaptic spike.

Additionally, we learned the weights of the network using the
triplet STDP rule (Pfister and Gerstner, 2006). Since this rule
does not use any weight dependence for learning, we either need
to incorporate it in the rule or we need to restrict the weights
in some other form. Here we use divisive weight normalization
(Goodhill and Barrow, 1994), which ensures an equal use of the
neurons.

Note that the power-law and the exponential weight-
dependence STDP rule have the advantage that weight updates
are triggered only when a spike is fired by a postsynaptic
excitatory neuron. Since the firing rate of the postsynaptic
neurons is quite low, a more complex STDP update for
postsynaptic firing doesn’t require many computational
resources. The symmetric learning rule and the triplet rule are
computationally more expensive to simulate using software
simulations (especially for larger networks) since for every
presynaptic event the weight change has to be calculated for
every single postsynaptic neuron.

2.4. Homoeostasis
The inhomogeneity of the input leads to different firing rates of
the excitatory neurons, and lateral inhibition further increases
this difference. However, it is desirable that all neurons have
approximately equal firing rates to prevent single neurons from
dominating the response pattern and to ensure that the receptive
fields of the neurons differentiate. To achieve this, we employ
an adaptive membrane threshold resembling intrinsic plasticity
(Zhang and Linden, 2003). Specifically, each excitatory neuron’s
membrane threshold is not only determined by vthresh but by the
sum vthresh + θ , where θ is increased every time the neuron fires
and is exponentially decaying (Querlioz et al., 2013). Therefore,
the more a neuron fires, the higher will be its membrane
threshold and in turn the neuron requires more input to spike
in the near future. Using this mechanism, the firing rate of
the neurons is limited because the conductance-based synapse
model limits the maximummembrane potential to the excitatory
reversal potential Eexc, i.e., once the neuron membrane threshold
is close to Eexc (or higher) it will fire less often (or even stop firing
completely) until θ decreases sufficiently.

2.5. Input Encoding
The input to the network is based on the MNIST dataset which
contains 60,000 training examples and 10,000 test examples of
28 × 28 pixel images of the digits 0–9 (LeCun et al., 1998). The
input is presented to the network for 350 ms in the form of
Poisson-distributed spike trains, with firing rates proportional to
the intensity of the pixels of the MNIST images. Specifically, the
maximum pixel intensity of 255 is divided by 4, resulting in input
firing rates between 0 and 63.75 Hz. Additionally, if the excitatory
neurons in the second layer fire less than five spikes within 350
ms, the maximum input firing rate is increased by 32 Hz and the
example is presented again for 350 ms. This process is repeated
until at least five spikes have been fired during the entire time the
particular example was presented.

2.6. Training and Classification
To train the network, we present digits from the MNIST training
set (60,000 examples) to the network. Before presenting a new
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image, there is a 150ms phase without any input to allow all
variables of all neurons decay to their resting values (except for
the adaptive threshold). After training is done, we set the learning
rate to zero, fix each neuron’s spiking threshold, and assign a class
to each neuron, based on its highest response to the ten classes of
digits over one presentation of the training set. This is the only
step where labels are used, i.e., for the training of the synaptic
weights we do not use labels.

The response of the class-assigned neurons is then used to
measure the classification accuracy of the network on the MNIST
test set (10,000 examples). The predicted digit is determined
by averaging the responses of each neuron per class and then
choosing the class with the highest average firing rate.

3. Results

We trained and tested a network with 100 excitatory neurons
by presenting 40,000 examples of the MNIST training set. The
resulting rearranged input to excitatory neuron weights are
shown in Figure 2A. For each neuron, the 784-dimensional input
vector is rearranged into a 28 × 28 matrix to visualize that the
neurons learn prototypical inputs.

Additionally to the 100 neuron network, we trained and
tested three other networks with 400, 1600, and 6400 excitatory
neurons by presenting 3, 7, and 15 times the entire MNIST
training set; the four networks achieved an average classification
accuracy of 82.9, 87.0, 91.9, and 95.0% for the power-law weight
dependence STDP rule, respectively. For all simulations, we used
the same neuron, synapse, and STDP parameters (except for the
parameters of the adaptive threshold and the inhibition strength
which needed to be adapted to keep a constant response rate).
The accuracies are averaged over ten presentations of the 10,000
examples of theMNIST test set, see Figure 2B. Since the intensity
images of the MNIST test set are converted into Poisson-
distributed spike trains, the accuracy can differ for different spike
timings. However, the standard deviation of the performance

over ten presentations of the entire test set (using the same
trained network) is small (≈0.1%), as shown in the error bars in
Figure 2B.

The performance for the remaining three learning rules
are also depicted in Figure 2B, where the exponential weight
dependence is shown in red, the performance using pre-and-post
STDP is shown in green, and the performance using the triplet
STDP rule is shown in blue. Training accuracy of the 1600 neuron
network with a symmetric rule is shown in Figure 2C. After
approximately 200,000 examples the performance is close to its
convergence and even after one million examples performance
does not go down but stays stable. Note that the periodic
structure is due to the repeated presentation of the MNIST
training set. This trend is the same for all network sizes and
learning rules. However, bigger networks need longer to train
until they reach peak performance.

An error analysis for the 6400 neuron network using the
standard STDP rule is depicted in Figure 3. Figure 3A shows the
average confusion matrix over ten presentations of the MNIST
test set, i.e., every single classification of the test examples belongs
to one of the 10 by 10 tiles and its position is determined by
the actual digit and the inferred digit. Not surprisingly, given
a classification rate of 95%, most examples are on the identity
which corresponds to correct classification; more interesting are
the misclassified examples. The most common confusions are
that 4 is 57 times identified as 9, 7 is identified≈40 times as 9 and
7 is≈26 times identified as 2.While 4 and 9, and 7 and 2 are easily
confused it does not seem immediately obvious that a 7 could be
mistaken as a 9. The likely explanation can be seen in Figure 3B.
Often the only distinguishing feature between the misclassified
7’s and a typical 9 is that the middle horizontal stroke in the
7 is not connected to upper stroke, which means that neurons
which have a receptive field of a 9 are somewhat likely to fire
as well.

Since each neuron only responds to a very small subset of
input digits, the responses are very sparse and only very few

FIGURE 2 | Training results. (A) Rearranged weights (from 784 to

28× 28) of the connections from input to excitatory neurons of for a

network with 100 excitatory neurons in a 10 by 10 grid. (B)

Performance as a function of the number of excitatory neurons. Each

dot shows the performance for a certain network size as an average

over ten presentations of the entire MNIST test set, during which no

learning occurs. Error bars denote the standard deviation between ten

presentations of the test set. Performances of each of the learning rules

are denoted by black (power-law weight dependence STDP), red

(exponential weight dependence STDP), green (pre-and-post STDP), and

blue lines (triplet STDP), respectively. (C) Training accuracy as a function

of presented training examples. The last 10,000 digits are used for

assigning labels to the neurons for the current 10,000 digits, e.g.,

examples 30,001–40,000 are used to assign the labels to classify for

examples 40,001–50,000. Shown is the graph for the 1600 excitatory

neuron network with symmetric learning rule.
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FIGURE 3 | Error analysis. (A) Average confusion matrix of the testing

results over ten presentations of the 10,000 MNIST test set digits. High

values along the identity indicate correct identification whereas high values

anywhere else indicate confusion between two digits, for example the digits

4 and 9. (B) All 495 incorrectly classified digits of one classification run over

all 10,000 MNIST test set digits. The darker a pixel of the digit, the higher is

its intensity value and therefore the frequency of input spikes. Both plots are

based on the 6400 excitatory neuron network with the standard STDP rule.

spikes are fired per example. Even in the biggest network with
6400 excitatory neurons, only ≈17 spikes are fired in response
to one digit presentation. Specifically, for correctly identified
examples,≈16 spikes are fired from neurons from the same class
and ≈1 spike from neurons assigned to a different class, whereas
for incorrectly identified examples ≈3 spikes were fired from
neurons of the correct class and ≈12 spikes from neurons of the
other classes.

4. Discussion

4.1. Comparison
The presented network achieves good classification performance
on the MNIST benchmark using SNNs with unsupervised
learning made of biologically plausible components. A
comparison of spiking neural networks used for MNIST
classification is shown in Table 1. On the 10,000 digit test set,
a difference of 0.1% is statistically significant (Larochelle et al.,
2009). Note that Neftci et al. (2013) and Hussain et al. (2014)
tested their networks only on 1000 and 5000 digits, respectively.
Also, Brader et al. (2007) used 10,000 digits for testing which
were randomly drawn from the MNIST dataset instead of
the dedicated MNIST test set, which tests for memorization
rather than generalization. One common way the weights are
trained is using a rate-based algorithm and then transferring
those trained weights into a SNN (referred to as “Rate-based”
training in Table 1). Typically, the training procedure used
for such rate-based training is based on popular models in
machine learning like the Restricted Boltzman Machine (RBM)
or convolutional neural networks. The best performance on
the MNIST benchmark achieved using this conversion method
is 99.1% (Diehl et al., 2015). Another approach is to train the
weights using spike-based training procedures, typically relying
on STDP in combination with a teaching signal. Using our

unsupervised training method we were able to achieve up to
95% classification accuracy, which is clearly less than than the
best spiking networks with less biologically plausible methods
but given the very simple design of the network there is room
for improvement, for example by localizing receptive fields
and increasing the number of layers to learn more abstract
features.

A network architecture similar to ours is presented in
Querlioz et al. (2011a, 2013) and Bichler et al. (2012), using
the learning rule presented in Querlioz et al. (2011b). The main
differences between their network and ours is that we show
the robustness to different learning rules and we use more
biologically plausible mechanisms, which include exponential
conductance-based synapses instead of a current-based synapses,
exponential shaped STDP time-windows instead of a rectangular
ones, and inhibition is applied using an inhibitory exponential
conductance instead of clamping the postsynaptic membrane
voltage to the reset value for a predefined inhibition time.
Especially the latter modification makes learning more difficult,
i.e., using 400 excitatory neurons for each one of the networks,
the one in Querlioz et al. (2013) outperforms the one presented
here with the same size by about 2%. The likely reason for the
increased difficulty in learning is that in Querlioz et al. (2013)
learning works best when tinh is equal to the refractory period of
the neuron, such that after one neuron fires, all neurons have the
same chance of firing after the refractory period. It is not easily
possible to achieve the same effect using inhibitory exponential
conductances, since it would be necessary to simultaneously
fine tune the time constant of the inhibitory conductance, the
refractory period, and the strength of the connection from
inhibitory to excitatory neurons. Even if such a fine tuning is
achieved, neurons that are not in their refractory period can still
integrate incoming excitatory potentials and thus increase their
chance of firing.
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TABLE 1 | Classification accuracy of spiking neural networks on MNIST test set.

Architecture Preprocessing Training-type (Un-)supervised Learning-rule Performance

Dendritic neurons (Hussain et al.,

2014)

Thresholding Rate-based Supervised Morphology learning 90.3%

Spiking RBM (Merolla et al., 2011) None Rate-based Supervised Contrastive divergence,

linear classifier

89.0%

Spiking RBM (O’Connor et al., 2013) Enhanced training set to 120,000

examples

Rate-based Supervised Contrastive divergence 94.1%

Spiking convolutional neural network

(Diehl et al., 2015)

None Rate-based Supervised Backpropagation 99.1%

Spiking RBM (Neftci et al., 2013) Thresholding Rate-based Supervised Contrastive divergence 92.6%

Spiking RBM (Neftci et al., 2013) Thresholding Spike-based Supervised Contrastive divergence 91.9%

Spiking convolutional neural network

(Zhao et al., 2014)

Scaling, orientation detection, thresholding Spike-based Supervised Tempotron rule 91.3%

Two layer network (Brader et al.,

2007)

Edge-detection Spike-based Supervised STDP with calcium

variable

96.5%

Multi-layer hierarchical network

(Beyeler et al., 2013)

Orientation-detection Spike-based Supervised STDP with calcium

variable

91.6%

Two layer network (Querlioz et al.,

2013)

None Spike-based Unsupervised Rectangular STDP 93.5%

Two layer network (this paper) None Spike-based Unsupervised Exponential STDP 95.0%

Another approach to unsupervised learning with spiking
neural networks is presented in Masquelier and Thorpe (2007)
and Kheradpisheh et al. (2015), where they use temporal
spike-coding in combination with a feature hierarchy to
achieve impressive results on different vision tasks and even
outperforming deep convolutional networks in 3D object
recognition.

4.2. Inhibition
In the current implementation we used as many inhibitory
neurons as excitatory neurons, such that every spike of an
excitatory neuron (indirectly) leads to an inhibition of all other
excitatory neurons. We chose this more direct implementation
of a soft winner-take-all mechanism to reduce computational
complexity. This can be changed to a more biologically plausible
architecture by substituting the big pool of inhibitory neurons
with a smaller one to match the biologically observed 4:1 ratio
of excitatory to inhibitory neurons, and by using a one-to-many
connectivity from excitatory to inhibitory neurons. This would
result in a network where a spike of an excitatory neuron leads
to inhomogeneous inhibitory inputs to other excitatory neurons
and thus might favor the activation of some neurons over others.
Nonetheless, the adaptive threshold might counterbalance some
of the effect and also in a big network those effects should be
averaged out, which means that the performance of the network
should stay approximately the same.

4.3. Spike-based Learning for Machine Learning
Since energy consumption is a major cost factor for companies
with lots of data (Barroso, 2005), there is a strong motivation to
decrease power consumption of chips. Current implementations
of spiking neural networks (SNN) on neuromorphic hardware
(Indiveri et al., 2006; Khan et al., 2008; Benjamin et al., 2014;

Merolla et al., 2014) use only a few nJ or even pJ for transmitting
a spike (Merolla et al., 2011; Park et al., 2014; Mayr et al., 2015)
(for some setups as little energy as 0.02 pJ per spike, Azghadi
et al., 2014) and consume only few pW of power per synapse
(Rahimi Azghadi et al., 2014); some of those neuromorphic
systems also offer on-chip learning mechanisms (Indiveri et al.,
2006; Diehl and Cook, 2014; Galluppi et al., 2014).

Given that power consumption is most likely going to be
one of the main reasons to use neuromorphic hardware in
combination with spike-based machine learning architectures, it
may be preferable to use spike-based learning instead of rate-
based learning since the learning procedure itself has a high
power consumption (note however that both methods are spike-
based during test time). Specifically, spike-based learning is
important when the learning procedure takes up a significant
part of time the network will be used. Another application
where spike-based learning is needed is for systems which have
to adapt dynamically to their environment, i.e., when it’s not
enough to train the system once and run it with the pre-trained
weights. Possible examples include speech recognition systems
that are pre-trained but adaptable to the user’s accent, or vision
processors that have to be tuned to the specific vision sensor.
Such an adaptive vision processing system is especially interesting
in conjunction with a spiking vision sensor like the ATIS or
the DVS (Lichtsteiner et al., 2008; Leñero-Bardallo et al., 2010;
Posch et al., 2010) as it provides an end-to-end low-power spike-
based vision system. If our network were implemented on a
low-power neuromorphic chip (Indiveri et al., 2006; Khan et al.,
2008; Benjamin et al., 2014; Merolla et al., 2014), it could be
run on a very low power budget; for example, using IBM’s
TrueNorth chip (Merolla et al., 2014) which consumes about
72 mW for 1 million neurons, the network would consume less
than 1 mW.
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4.4. Competitive Learning
Intuitively, the function of the network is similar to competitive
learning procedures (McClelland et al., 1986) like self-organizing
maps (Kohonen, 1990) or neural-gas (Fritzke, 1995), which
share aspects with k-means. This analogy to k-means-like
learning algorithms is especially interesting since recently such
approaches have been shown to be very successful in complex
machine learning tasks (Coates and Ng, 2012). An in-depth
analysis of expectation-maximization in a spiking network can
be found in Habenschuss et al. (2012). The main idea is that
each neuron learns and represents one prototypical input or an
average of some similar inputs. Every time an input is presented,
the network determines the prototypes that are most similar
to the particular input. Those winner prototypes are then used
to predict the class of the input and their weights are adapted
such that they become more similar to the current input. In our
network this means that every time a neuron spikes, because an
example is similar enough to its receptive field, it will make its
receptive field more similar to the example. The lateral inhibition
prevents the prototypes from becoming too similar to each other
(which means that they spread out in the input space), since only
a few different neurons will be able to respond to each example
and in turn only a few neurons can adapt their receptive fields
toward it. Homoeostasis can be thought of as a tool to keep
an approximately constant number of examples within range of
the prototype. In the extreme of presenting as many different
input examples as neurons learning them, the network is more
similar to k-nearest-neighbors (kNN). This hints that the peak
performance of the architecture presented here by just increasing
the number of neurons is probably around 95–97% as it is
for kNN methods without preprocessing (LeCun et al., 1998).
However, it is probably possible to increase the performance
further by using more layers of the same architecture as was done
in Coates and Ng (2012).

4.5. Robustness of Learning
We showed that using four different STDP rules together
with lateral inhibition and homoeostasis, the resulting networks
have a similar performance and show very stable learning
over time. Especially the latter property is commonly hard
to achieve since many networks tend to overfit the data,
or lack mechanisms to prevent weights from growing too
much. Figure 2C shows that the network already performs
well after presenting 60,000 examples but also that it does
not show a decrease in performance even after one million
examples. The reason why the performance of the network
is so stable over time is most likely the competition between
neurons, which forces the neurons to learn as different
input patterns as possible, and the weight dependence of the
learning, which prevents weights from growing big if the
input patterns do not reflect it. This flexibility in regards to
number of learning examples and changes of the implementation
is crucial in real biological systems, where we find very
heterogeneous cells for different animals of the same species
and even different properties in the same animal for different
cells.

The other advantages of our system are its scalability,
enabling a trade-off between computational cost and
performance, and its flexibility in spike-based unsupervised
learning rules, allowing training the network without
labels and using only a few labels to assign neurons to
classes.
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