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Grafting is a centuries-old technique used in plants to obtain economic benefits.

Grafting increases nutrient uptake and utilization efficiency in a number of plant species,

including fruits, vegetables, and ornamentals. Selected rootstocks of the same species

or close relatives are utilized in grafting. Rootstocks absorb more water and ions

than self-rooted plants and transport these water and ions to the aboveground scion.

Ion uptake is regulated by a complex communication mechanism between the scion

and rootstock. Sugars, hormones, and miRNAs function as long-distance signaling

molecules and regulate ion uptake and ion homeostasis by affecting the activity

of ion transporters. This review summarizes available information on the effect of

rootstock on nutrient uptake and utilization and the mechanisms involved. Information

on specific nutrient-efficient rootstocks for different crops of commercial importance is

also provided. Several other important approaches, such as interstocking (during double

grafting), inarching, use of plant-growth-promoting rhizobacteria, use of arbuscular

mycorrhizal fungi, use of plant growth substances (e.g., auxin and melatonin), and

use of genetically engineered rootstocks and scions (transgrafting), are highlighted;

these approaches can be combined with grafting to enhance nutrient uptake and

utilization in commercially important plant species. Whether the rootstock and scion

affect each other’s soil microbiota and their effect on the nutrient absorption of

rootstocks remain largely unknown. Similarly, the physiological and molecular bases

of grafting, crease formation, and incompatibility are not fully identified and require

investigation. Grafting in horticultural crops can help reveal the basic biology of grafting,

the reasons for incompatibility, sensing, and signaling of nutrients, ion uptake and

transport, and the mechanism of heavy metal accumulation and restriction in rootstocks.

Ion transporter and miRNA-regulated nutrient studies have focused on model and

non-grafted plants, and information on grafted plants is limited. Such information will

improve the development of nutrient-efficient rootstocks.
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INTRODUCTION

Grafting is a special type of plant propagation, in which a part
of a plant (scion) is joined to another plant (rootstock) for the
two parts to grow together and form a new plant. Grafting
commonly occurs in nature, and the occurrence of natural grafts
might have inspired humans to use grafting in the agriculture
sector a thousand years ago (Mudge et al., 2009). The rootstocks
used for a specific crop are the crop’s close relatives or wild
selections (mostly within the genera), but natural grafts between
different families have also been observed (Warschefsky et al.,
2016). Grafting has been practiced in fruit trees for a long time;
however, its application in vegetables is relatively new. Various
fruit grafting references that appear in the Bibble and ancient
Greek and Chinese literature suggest that grafting was utilized
in Asia, Europe, and the Middle East in fifth century BC (Melnyk
and Meyerowitz, 2015). Similarly, a Chinese book written in first
century BC and a Korean book written in seventeenth century
AD indicate that grafting was utilized in these periods to produce
large gourd fruits (Lee and Oda, 2003). Grafting enhances plant
vigor, extends the harvesting period (Lee et al., 2010), improves
yield and fruit quality (Huang et al., 2009; Rouphael et al., 2010;
Tsaballa et al., 2013), prolongs postharvest life (Zhao et al., 2011),
tolerates low and high temperatures (López-Marín et al., 2013; Li
et al., 2016b), deals with salinity and heavy metal stress (Santa-
Cruz et al., 2002; Estañ et al., 2005; Albacete et al., 2009; Schwarz
et al., 2010; Huang et al., 2013a; Wahb-Allah, 2014; Penella et al.,
2015, 2016), increases drought and flooding stress endurance
(Schwarz et al., 2010; Bhatt et al., 2015), improves water use
efficiency (Cantero-Navarro et al., 2016), manages soil-borne and
foliar pathogens (Louws et al., 2010; Arwiyanto et al., 2015; Miles
et al., 2015; Suchoff et al., 2015), manages root knot nematodes
(Lee et al., 2010), controls weeds (Dor et al., 2010; Louws et al.,
2010), and produces new plant species (Fuentes et al., 2014).
Commercial grafting is currently practiced in a number of plant
species, including fruits (citrus, apple, mango, grape, peach,
plum, apricot, almond, and cherry), vegetables (watermelon,
melon, cucumber, tomato, pepper, eggplant, and bitter gourd),
and ornamentals (rose, chrysanthemum, bougainvillea, and
bonsai), to obtain economic benefits.

In addition to these commercially important benefits, grafting
increases nutrient uptake and utilization efficiency in a number of
plant species (Pulgar et al., 2000; Zen et al., 2004; Ahmed et al.,
2006, 2007; Albacete et al., 2009, 2015a,b; Lee et al., 2010; Schwarz
et al., 2013; Huang et al., 2013b; Esmaeili et al., 2015). The world’s
nutrient resources are finite (Venema et al., 2011) and thus
require justified utilization; moreover, inorganic fertilizers are
expensive. Scientists are working to modify the root architecture
of cereal crops (monocots) to enhance nutrient uptake and
utilization efficiency (Meister et al., 2014; Rogers and Benfey,
2015; Wissuwa et al., 2016). Rootstock grafting is used as an
alternative for horticultural crops; appropriate and compatible
rootstocks are utilized to improve water and nutrient acquisition
and nutrient utilization efficiency (Gregory et al., 2013; Albacete
et al., 2015a,b). Nutrient efficiency is a general term that refers
to the capacity of a plant to acquire and use nutrients. It is
measured by plant dry weight produced per unit of nutrient

supplied (g DW/g nutrient supplied). This parameter includes
nutrient uptake efficiency and nutrient use efficiency (Gerendás
et al., 2008). Although other efficiency indicators, such as nutrient
harvest index, nutrient influx rate, and nutrient partitioning, have
been proposed (Rengel and Damon, 2008), measurement of plant
growth and harvestable yield per unit input of applied fertilizer
remains reliable (Venema et al., 2011; Santa-Maria et al., 2015).

Several reviews have been conducted on grafting history,
grafting methods, breeding and selection of rootstocks, biotic
and abiotic stresses, pathogens, amelioration of heavymetals, and
hormonal signaling (Lee, 1994; Lee and Oda, 2003; Davis et al.,
2008; Kubota and McClure, 2008; Aloni et al., 2010; Lee et al.,
2010; Louws et al., 2010; Pérez-Alfocea et al., 2010; Rouphael
et al., 2010; Savvas et al., 2010; Schwarz et al., 2013; Edelstein
et al., 2016), but none of these reviews sufficiently elucidated
the role of grafting in modifying ion uptake and accumulation.
Therefore, the current review summarizes available information
on the effects of rootstocks on enhancing nutrient uptake,
accumulation, and utilization as well as the mechanism involved.
Additionally, other important approaches are presented; these
approaches can be combined with grafting to further enhance
nutrient acquisition and utilization efficiency.

FRUIT CROPS

The use of rootstocks in fruit plants affects tree vigor and size,
precocity, fruit quality and taste, harvestable yield, resistance
to pests, and tolerance against edaphic and environmental
conditions by invigorating the scions and increasing nutrient
uptake, transport, and utilization efficiency (Albrigo, 1977;
Ahmed et al., 2006, 2007; Castle, 2010; Habran et al., 2016). In a
previous study, the grafting of kinnow (Citrus reticulata Blanco)
onto nine different rootstocks increased the concentration of
nitrogen (4–18%), phosphorous (11–77%), and potassium (3–
43%) in the leaves of the grafted plants; the number of fruits
per plant increased to 0.12–5.63 times that of poorly performing
rootstock (Ahmed et al., 2007). In another study, total nitrogen
accumulation and utilization efficiency differed in various citrus
rootstocks; rough lemon (Citrus jambhiri Lush.) accumulated
a total nitrogen value of 22.1 mg/g DW, whereas Cleopatra
mandarin (Citrus reshni hort. ex Tanaka) accumulated only
6.1mg/g DW (Sorgona et al., 2006). Boron concentration in
the leaves, stems, and roots of different citrus rootstocks is
significantly affected in normal and boron-deficient conditions
(Mei et al., 2011). Citrange rootstock [C. sinensis (L.) Osb. ×
P. trifoliata (L.) Raf.] is superior to trifoliate orange [Poncirus
trifoliata (L.) Raf.] under both low and high levels of boron
supply. Although the level of boron in different plant parts
grafted onto citrange is lower than that grafted onto trifoliate
orange, the ratio of semi-bound boron to free boron is much
higher in citrange grafted plants; this higher ratio increases
boron use efficiency (Liu et al., 2011, 2013). Evidently, uptake
capacity is not the only important factor; the transport and
reallocation of cellular boron to cell walls also affect rootstock
responses to nutrient deficiency. Wang et al. (2016a) recently
applied inarching (a special type of grafting) of Carrizo citrange
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[C. sinensis (L.) Osb. × P. trifoliate (L.) Raf.] to enhance boron
uptake in Newhall navel orange [C. sinensis (L.) Osb. cv. Newhall]
budded onto trifoliate orange [P. trifoliata (L.) Raf.]. Inarching
significantly increased the levels of boron in the new leaves,
new twigs, scion stem, and new rootstock stem under boron-
adequate and boron-deficient conditions. This technique can
improve nutrient supply in already growing grafted or self-rooted
fruit plants under field conditions.

In apples, Cong et al. (2014) found that rootstocks have
different potassium uptakes and accumulation efficiencies; these
differences become increasingly pronounced under potassium-
deficient conditions. Zarrouk et al. (2005) discovered that the
concentrations of macro and micronutrients (N, P, K, Ca,
Mg, Fe, Mn, Zn, Na, and Cu) in the leaves and flowers of
peach are significantly affected by different rootstocks. Similarly,
Amiri et al. (2014) reported that apple rootstocks (M9, MM106,
and MM111) increase the concentration of N (5–34%), Mg
(5–68%), Zn (10–39%), Fe (4–34%), and Mn (11–70%) and
reduce the uptake of K (6–19%), and Ca (10–28%). Trees
grafted onto M9 are efficient in N, Mn, and Fe uptake
but perform poorly in K and Ca uptake. MM106 rootstock
possesses the highest efficiency in P uptake and transport.
In this study, the fruit yield of plants grafted onto MM111
increased by 44% compared with plants grafted onto M9
rootstock. Mestre et al. (2015) observed that the concentrations
of all macro and micronutrients differ significantly in the
leaves of Big Top nectarine (Prunus persica var. nectarina)
grafted onto 12 Prunus rootstocks. The rootstocks demonstrate
a selective behavior for different elements, such as K, Ca, and
Cu.

Rootstocks significantly alter the concentration of nutrients
in sweet cherry leaves. The GiSelA 6 rootstock (Prunus cerasus
× Prunus canescens, Gi 148/1) performs well in N, P, K, Zn,
B, and Mn uptake and transport, but trees grafted onto it tend
to develop Ca, Mg, and Cu deficiencies. Similarly, the Prunus
mahaleb rootstock performs efficiently in N, P, K, Ca, Mg, Fe,
and Cu uptake and transport but performs poorly in Zn, B,
and Mn absorption and translocation in plants. The leaves of
plants grafted onto Prunus fruticosa Prob. show deficiencies in
several nutrients (N, P, Ca, Mg, and Cu) and are thus unfit
for use (Hrotko et al., 2014). Slowik et al. (1979) studied the
avocado (Persea americana Mill.) cultivar Hass by using Duke
and Topa Topa (avocado rootstocks of Mexican origin) and
concluded that only the concentrations of N, P, Mg, Cu, Mn,
and Fe are affected by the rootstocks; no significant differences
were observed for K, Ca, Na, Cl, and Zn. Sherafati et al.
(2011) found that in pistachio (Pistacia vera L.), the K, Zn,
and Fe contents of the leaves are affected by rootstock and
scion combinations. Akbari scion (Pistacia vera L.) budded onto
Badami rootstock (P. vera L.) efficiently absorbed K and Zn
(1.56% and 11.05 ppm, respectively), whereas minimal amounts
of K and Zn (0.80% and 7.33 ppm, respectively) were found
in Akbari scion budded onto Daneshmandi rootstock (P. vera
L.). Barg-seyah scion (P. vera L.) budded onto Kalle-ghouchi
rootstock (P. vera L.) absorbed the largest amount of Fe (241
ppm) and Cu (12.15 ppm) among all rootstock and scion
combinations.

Ibacache and Sierra (2009) demonstrated that rootstocks
significantly affect grapevine nutrition. They studied the effect
of 10 rootstocks on grapevines and found significant differences
in nutrient concentration in the petioles of four scion cultivars.
The petiole P levels doubled in all scion cultivars when Salt
Creek rootstock (Vitis vinifera L.) was used. Potassium was also
increased by up to 5–155% by rootstocks in all scion cultivars.
Similarly, N levels increased to 67% in Flame Seedless (V. vinifera
L.), 77% in Red Globe (V. vinifera L.), 33% in Thompson Seedless
(V. vinifera L.), and 8.5% in Superior Seedless (V. vinifera L.)
scions compared with self-rooted vines. Bavaresco et al. (2003)
utilized two rootstocks for grapevines and observed that the
hybrid rootstock 41 B (V. vinifera × V. berlandieri) significantly
increased the nutrient uptake and whole plant dry mass (24%)
compared with 3309 C (V. riparia × V. rupestris). The total N,
P, K, Ca, and Mg contents of the plant increased by 38, 21.5,
18, 35, and 12%, respectively. Additionally, the concentrations
of micronutrients (Zn, Mn, and B) increased by 16, 94, and
18%, respectively, whereas Cu slightly decreased (1%). Lecourt
et al. (2015) observed that rootstocks significantly affect the
plant growth (dry matter) and concentration of macro and
micronutrients in the leaves and root tissues of grapevine (V.
vinifera L.). Cabernet Sauvignon (V. vinifera L.) grafted onto
Riparia Gloire de Montpellier (V. riparia L.) increased the leaf
N (3%), K (44%), S (70%), Ca (27%), Mg (58%), Fe (65%),
Zn (57%), B (93%), Mn (83%), and Al (46%) concentrations
compared with Cabernet Sauvignon grafted onto 1103 Paulsen
(V. rupestris×V. berlandieri) irrigated with 2.45 mmol N supply.
Habran et al. (2016) investigated the effect of N and rootstock
on N uptake and their effect on secondary metabolism in grapes.
Cabernet Sauvignon (V. vinifera L.) grafted onto 110 Richter
increased the leaf and petiole N concentration by up to 14%
and 1%, and 9% and 30% under low and optimum levels of N
supply, respectively, compared with Cabernet Sauvignon grafted
onto Riparia Gloire de Montpellier (V. riparia). Rootstocks also
affected vine growth (14–16%), berry weight, and composition
at the time of harvest. Zamboni et al. (2016) recently declared
M1 rootstock [106-8 (V. riparia × V. cordifolia × V. rupestris)
× Resseguier n.4 (V. berlandieri)] as superior over M3 [R 27
(V. berlandieri × V. riparia) × Teleki 5C (V. berlandieri ×
V. riparia)], 1103P (V. berlandieri × V. rupestris), and 101–14
(V. riparia × V. rupestris) rootstocks because of its balanced
leaf nutrient profile, nitrogen use efficiency, and improved vine
growth (30%). Various rootstocks behave differently in terms
of yield, physiological responses, and severity of Fe deficiency;
proper rootstock selection can mitigate nutrient deficiency
symptoms and responses in grapevines (Covarrubias et al., 2016).

VEGETABLE CROPS

Grafting in vegetable crops is a relatively new procedure that
has gained popularity in the last few decades (Lee et al., 2010).
Similar to fruit crops, melon (Cucumis melo L.) cultivars Yuma
and Gallicum grafted onto three Cucurbita maxima (Shintoza,
RS-841, and Kamel) rootstocks show a significant variation
in macronutrients in leaf tissues. Grafting increases the yield
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(88%–121%) and concentration of P and N in the leaves by up
to 6–58% and 6–81%, respectively, compared with self-rooted
melon plants (Ruiz et al., 1997). Zhang et al. (2012) found
that P uptake and utilization in grafted watermelons are better
than those in self-rooted watermelons under low P supply.
Various rootstocks perform differently; watermelon grafted onto
pumpkin (Cucurbita moschata Duch.) performs better than
watermelon grafted onto bottle gourd (Lagenaria siceraria
Standl.). Huang et al. (2013b) found that grafting of watermelon
onto Hongdun (Citrullus lanatus sp.) and Jingxinzhen No.4 (C.
moschata Duch.) increases K uptake and whole plant dry mass
(1.82 fold) and induces low K tolerance in the watermelon scion.
Uygur and Yetisir (2009) worked on watermelons and concluded
that the watermelon [C. lanatus (Thunb.) Matsum and Nakai]
cultivar Crimson Tide grafted onto gourd rootstock (L. siceraria
Standl.) landraces significantly increases N and K uptake from
the soil, especially under salt stress conditions. The concentration
of P in the shoots of grafted plants is almost twice that in non-
grafted watermelon plants. Therefore, bottle gourds, especially
the Lagenaria type, can be utilized as a rootstock for watermelon
under saline conditions.

Comprehensive mineral nutrient analysis has shown that the
concentration of macro and micronutrients in the leaves, fruit
rind, fruit flesh, and seeds of grafted watermelon is altered
by gourd rootstocks [Ferro and RS841 (C. maxima × C.
moschata) and Argentario and Macis (Lagenaria hybrid)]. In
leaves, rootstocks increase the N, K, Ca, and Mg concentrations
by up to 12–28, 8–36, 13–81, and 12–300%, respectively, and
reduce the concentrations of P, Fe, Zn, Mn, and Cu. In fruit
rind, flesh, and seeds, rootstocks increase the concentration
of all nutrients, thereby proving the superiority of specific
graft combinations over self-rooted plants (Yetisir et al., 2013).
Watermelon cultivar Zaojia 8424 [C. lanatus (Thunb.) Matsum
and Nakai] grafted onto bottle gourd cv. Jingxinzhen No.1
(L. siceraria Standl.) and pumpkin cv. Qingyanzhen No.1 (C.
maxima × C. moschata) increases the total uptake (mg/plant)
and concentration [mg g−1 dry weight (DW)] of N, K, Ca, Fe,
Mg, and Mn in the roots, stems, leaves, fruit rind, and flesh
of grafted plants. The total nutrient uptake of plants grafted
onto bottle gourd and pumpkin increases by 30.41 and 49.14%,
respectively, at the fruit development stage and by 21.33 and
47.46%, respectively, at the fruit maturation stage compared with
non-grafted watermelon plants (Huang et al., 2016a). Another
experiment showed that pumpkin rootstock (C. moschataDuch.)
increases the Mg2+ uptake (39%) and whole plant dry mass
(1.71 fold) of watermelon plants compared with self-grafted
plants under low Mg conditions (Huang et al., 2016b). The C.
maxima variety Dulce Maravilla clearly increases Fe uptake and
translocation to watermelon scions (Rivero et al., 2004).

Grafting is useful in manipulating plant growth and is used in
multiple ways. Zhang et al. (2010) reported that when cucumber
plants (Cucumis sativus L. cv. Xintaimici) are grafted onto
Cucurbita ficifolia, the uptake of Cu from the soil under Cu stress
conditions is significantly reduced. The concentration of Cu in
the stem and leaves of the scion is lower in grafted plants than
in self-rooted plants; moreover, the concentration of Cu in the
roots of grafted plants is higher. This result suggests that the
C. ficifolia rootstock acts as a Cu accumulator and reduces Cu

transport to the scion. However, its sensing, signaling, regulation,
and withholding mechanisms still require further explanation.
Grafting increases the uptake of K and limits the transport of
Na and Cl ions to the scion compared with self-rooted plants
under salt stress conditions in cucumber. Grafting also enhances
nutrient utilization efficiency as manifested by improved shoot
biomass production, yield, and fruit quality (Rouphael et al.,
2008; Zhu et al., 2008; Albacete et al., 2009, 2015a,b; Huang et al.,
2009; Colla et al., 2012, 2013; Farhadi andMalek, 2015; Gao et al.,
2015).

Grafting of tomato (Solanum lycopersicum L.) onto Maxifort
rootstock (S. lycopersicum L. × Solanum habrochaites)
improves scion growth (11%) and concentration of macro and
micronutrients (Table 1). However, different forms of nitrogen
(NO−

3 , NH
+

4 ) exert a significant effect on the uptake of other
elements; for example, increased availability of NH+

4 reduces the
uptake of Ca and Mg in plant tissues (Borgognone et al., 2013).
Savvas et al. (2009) reported that grafting tomato onto He-Man
rootstock (S. lycopersicum × S. habrochaites; Syngenta Seeds,
Basel, Switzerland) improves fruit yield (11.5%) and increases the
concentrations of Ca, K, and Zn by 18, 8, and 11%, respectively,
in tomato leaves and reduces the uptake of Mg (27%) and Fe
(27%), especially under low levels of Mn. In pepper and eggplant,
rootstocks also show a positive response by modifying ion uptake
and acquisition of macro and micronutrients and by providing
protection from heavy metals (Leonardi and Giuffrida, 2006;
Arao et al., 2008; Penella et al., 2015).

Rootstocks play a pivotal role in fertilizer management
because they can ensure the justified utilization of available or
applied fertilizers in the soil. Harvestable yield is an important
criterion of nutrient utilization efficiency. An overview of
reported percentage growth and yield increments obtained
through grafting among various vegetables is presented in
Table 1.

ORNAMENTAL CROPS

Previous studies on ornamental crops have elucidated the effects
of rootstock on the nutrient uptake of such crops. Gammon and
McFadden (1979) grafted rose onto seven different rootstocks
and determined that rootstock combinations significantly
increase nutrient uptake and accumulation. Rosa fortuniana
Lindl. triggered Mn accumulation five times more than Rosa
odorata; however, R. odorata was superior to R. fortuniana in
terms of K accumulation. Niu and Rodriguez (2008) evaluated
the performance of four rose rootstocks [Dr. Huey (Rosa hybrida
L.), R. fortuniana Lindl., Rosa multiflora Thunb., and R. odorata
(Andr.) Sweet] under chloride-or sulfate-dominated salinity and
observed that rootstocks behave differentially in terms of Ca,
Mg, K, Na, and Cl uptake. R. multiflora accumulates more
Na than R. odorata, and R. fortuniana accumulates the least
amount. However, R. multiflora retains most of Na in the roots,
whereas R. odorata transports 57% of the absorbed Na to the
shoots. According to another study, commercial rose varieties
grafted onto different rootstocks significantly differ in macro (P,
K, and Mg) and micro (Cl, Mn, Fe, B, Zn, and Na) nutrient
concentrations (Cabrera, 2002). The N use efficiency (NUE) in
tobacco can be improved by grafting it onto Nicotiana tabacum
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TABLE 1 | Effects of rootstocks on the nutrient concentration and growth/yield of grafted plants.

Name of crop Name of rootstock Plant part

used for

determination

Increase in nutrients

concentration (%)*

Reduction in

nutrients

concentration (%)*

Yield

improvement

(%)*

References

Kinnow (Citrus

reticulata Blanco.)

Nine different citrus

rootstocks were used

Leaves N (4–18), P (11–77), K

(3–43)

– 12.5–563a Ahmed et al.,

2007

Newhall navel

orange (Citrus

sinensis Osb.)

Citrange [C. sinensis (L.) Osb.

× P. trifoliata (L.) Raf.] and

trifoliate orange [Poncirus

trifoliata (L.) Raf.]

Mature leaves B (55) – 3b Liu et al., 2011

New leaves B (51)

Roots B (63)

Apple (Pyrus Malus) Six different Malus rootstocks Leaves K (25) – 60c Cong et al., 2014

M9, MM106, MM111 Apple,

and Malus domestica cv.

Local

Leaves N (5–34), Mg (5–68), Zn

(10–39), Fe (4–34) Mn

(11–70)

K (6–19), Ca (10–28) 44d Amiri et al., 2014

Grapes (Vitis vinifera

L.)

Different grape rootstocks Petioles N (8.5–77), P (5–186), K

(5–155)

– – Ibacache and

Sierra, 2009

41 B (V. vinifera ×

V. berlandieri) and 3309 C

(V. riparia × V. rupestris)

Whole plant N (38), P (21.5), K (18),

Ca (35), Mg (12), Zn

(16), Mn (94), B (18)

Cu (1) 24b Bavaresco et al.,

2003

Different grape rootstocks Leaves N (10–31), P (5–41), K

(19–23), Ca (3–20), Mg

(26–34), Fe (1–20), B

(6–70)

– 30e Zamboni et al.,

2016

Riparia Gloire de Montpellier

(RGM) and 110 Richter

(V. vinifera L.)

Leaves N (1–14) – 14–16e Habran et al.,

2016

Petioles N (9–30)

Riparia Gloire de Montpellier

(RGM) and 1103 Paulsen

(V. vinifera L.)

Leaves N (3), K (44), S (70), Ca

(27), Mg (58), Fe (65), Al

(46), Mn (83), Cu (43),

Zn (57), B (93)

P (33) 152–205e Lecourt et al.,

2015

Avocado (Persea

americana)

Duke and Topa Topa Avocado

(Persea americana)

Whole plant N (10), P (5.72), K

(2.44), Fe (19), Cu

(12.5), Mn (15)

– 5d Slowik et al.,

1979

Pistachio (Pistacia

vera L.)

Badami Pistachio (Pistacia

vera L.)

Leaves K (95), Zn (51) – – Sherafati et al.,

2011

Melon (Cucumis

melo)

C. maxima × C. moschata

(Shintoza, RS-841, and

Kamel)

Leaves N (6–81), P (6–58), S

(1–4), Mg (1–3), Ca (0–5)

K (4–38) 88–121d Ruiz et al., 1997

Shintoza (C. maxima × C.

moschata) and Sienne**

(Cantaloupe type melon)

Leaves N (27), P (36), K (28), Ca

(39), Mg (16), Mn (35),

Zn (31), S (5)

Na (232), Cu (566), B

(240), Fe (320)

1–26a, 11–24d Bautista et al.,

2011

Cucurbita maxima Duchesne

× Cucurbita moschata

(pumpkin, squash)

Leaves Ca (6), Mg (5) Na (255), K (9) 11.5d Edelstein et al.,

2005

Shintoza (C. maxima ×

C. moschata)

Leaves N (21), P (17), K (19) – 255d Salehi et al., 2014

Watermelon

(Citrullus lanatus)

Hongdun (C. lanatus sp.) Xylem sap K (246) – 182b Huang et al.,

2013b

Jingxinzhen No.4 (Cucurbita

moschata Duch.)

Leaves Mg (39) – 171b Huang et al.,

2016b

Ferro, RS841 (Cucurbita

maxima × C. moschata), and

Argentario and Macis

(Lagenaria hybrid)

Leaves N (12–28), K (8–36), Ca

(13–81), Mg (12–300)

– – Yetisir et al., 2013

(Continued)
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TABLE 1 | Continued

Name of crop Name of rootstock Plant part

used for

determination

Increase in nutrients

concentration (%)*

Reduction in

nutrients

concentration (%)*

Yield

improvement

(%)*

References

Cucubirta maxima var. Dulce

maravilla

Leaves Fe (193) – – Rivero et al., 2004

Roots Fe (143)

Tomato (Solanum

lycopersicum)

AR-9704 Tomato (Solanum

lycopersicum L.)

Leaves P (68), S (15) Na (62), Cl (28) – Fernández-García

et al., 2002

Maxifort (S. lycopersicum L. ×

S. habrochaites S. Knapp and

D. M. Spooner)

Leaves N (0.5), P (13), Ca (10),

Fe (9), Mn (3), Cu (18),

Zn (17), B (3)

Mg (10) 2d, 11b Borgognone

et al., 2013

He-Man (Solanum

lycopersicum × Solanum

habrochaites)

Leaves Ca (18), K (8), Ca (11) Mg (27), Fe (27) 11.5d Savvas et al.,

2009

Solanum lycopersicum cv.

Tmknvf2

Leaves Fe (11.18) – – Rivero et al., 2004

Roots Fe (185)

Solanum lycopersicum Mill.

cv. Radja

Leaves K (13) – 20–30d Estañ et al., 2005

Root localized IPT-expressing

tomato rootstock (35S::IPT)

(Solanum lycopersicum Mill.)

Leaves K (20) Na (30) 30d Ghanem et al.,

2011

Rose (Rosa

centifolia)

Seven Rosa rootstocks Leaves N (3–12), P (3–23), K

(13–31), Ca (7–25), Mg

(8–30), Zn (2–18), Mn

(141–410), Fe (3–15),

Cu (5–36)

– 223f Gammon and

McFadden, 1979

*Compared with self-rooted, self-grafted, or poorly performing rootstock.

**Intermediate scion in the process of double grafting.
aTotal number of fruits per plant.
bWhole plant dry mass.
cShoot dry mass.
dFruit yield per plant on weight basis.
ePruning weights of grapevines.
fFlower value index.

H-20 rootstock (Ruiz et al., 2006). Several details on increased
nutrient uptake through grafting are summarized in Table 1.
These pieces of evidence demand the careful selection of the
rootstock to enhance nutrient use efficiency in ornamental crops.
Grafting is also utilized to produce bonsai plants (an important
category of ornamentals); in bougainvillea and several other
ornamentals, it is also used to produce plants bearing flowers
of different colors or multicolored flowers on the same plant
to enhance anesthetics (Relf, 2015). In a recent report, Zhang
et al. (2013) observed increased productivity and rooting ability
of cuttings obtained from grafted chrysanthemum. In the near
future, an increase in the use of grafting is expected in ornamental
crops. However, serious efforts are required for the selection of
compatible rootstocks in ornamental plants.

MECHANISM

Rootstocks modify the ion uptake in grafted plants. The final
concentration of nutrients is a result of uptake, transport,
recirculation, and growth. The absorption of nutrients from the

soil is affected by numerous factors, including soil properties (pH,
cation exchange capacity, and concentration of the nutrients)
and root characteristics (root architecture, organic acids and
metabolites exudation capacity, and transport ability). This
article focuses on root-related mechanisms.

Root System Architecture and Ion Uptake
In cereal crops, modification of the root architecture is a popular
means to enhance ion uptake, accumulation, and utilization
efficiency, and this means has been discussed in several reviews
(Meister et al., 2014; Rogers and Benfey, 2015; Wissuwa et al.,
2016). Nutrient uptake and utilization in horticultural crops are
enhanced by selecting appropriate rootstocks. Rootstocks play
a vital role in manipulating the nutrient status of the scions
by directly affecting ion uptake and transport (Amiri et al.,
2014). The ion concentration in the roots and shoots of grafted
grapevines depends on rootstock genotype (Lecourt et al., 2015).
The selected rootstocks have a vigorous root system, i.e., large
main roots, many lateral roots and root hair, large total root
length, and root surface area. These roots absorb a large amount
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of water and nutrients by exploring wide and deep soil volumes
(Pérez-Alfocea, 2015). According to a report, the root dry weight
of watermelon grafted onto Jingxinzhen No. 4 pumpkin (C.
moschata Duch.) is 2.24 times that of self-rooted plants (Huang
et al., 2013b), and the K uptake efficiency of grafted plants is 2.02
times that of self-rooted plants. Similarly, the root dry weight of a
rose cultivar (Rosa “BAIore”) is thrice that of a poorly performing
cultivar Rosa “Frontenac” under stress conditions (Harp et al.,
2015). Therefore, this vigorous root system of rootstock can
capture and transport a large amount of nutrients to the above
ground scion. Vigorous rootstocks have high levels of sugars,
amino acids, and enzymes and secrete organic acids in the soil,
which are important in nutrient mobilization and affect nutrient
availability and uptake (Jaitz et al., 2011; Khorassani et al., 2011;
Dam and Bouwmeester, 2016). Jiménez et al. (2011) reported
that high concentrations of root sucrose, total organic and amino
acids, and phosphoenolpyruvate carboxylase activity in the roots
of Prunus rootstocks subjected to iron deficiency promote root
growth and trigger iron uptake. Similarly, under iron-deficient
conditions, the roots of Malus species secrete acids, reduce the
pH of rhizosphere, and significantly increase the activities of
root ferric chelate reductase (FCR), thereby leading to increased
ferrous uptake (Zha et al., 2014).

Transporters and Ion Uptake
Rootstocks modify ion uptake and transport to the scion
by affecting the activities of ion transporters. Transporters
are involved in ion uptake, root compartmentation, and
translocation of these absorbed ions to aboveground plant parts.
Transporters are highly specific under different environmental
conditions and in the concentrations of specific nutrients present
in the soil. For example, in two citrus rootstocks [Carrizo
citrange (C. sinensis [L.] Osb. × P. trifoliata [L.] Raf.) and
Cleopatra mandarin (C. reshni Hort. ex Tanaka)], eight different
K transporters have been identified (Caballero et al., 2013).
Grafting affects the activity of ion transporters. The expression
levels of Mg transporter genes MGT1, MGT3, MGT4, MGT5,
and MGT7 are much higher in the roots of Jingxinzhen No.4
pumpkin (C. moschata Duch.) used as rootstock compared with
the roots of self-rooted watermelon cultivar Zaojia 8424 [C.
lanatus (Thunb.) Matsum and Nakai], especially under low
Mg conditions. These higher expression levels enhance the
Mg2+ uptake of watermelon grafted onto Jingxinzhen No.4
pumpkin rootstock (Huang et al., 2016b). However, the signaling
mechanism in the activation of these genes still requires further
investigation. Similarly, the activities of ferric-related uptake and
transport genes (NAS1, FRD3, and NRMAP3) are significantly
increased under iron-deficient conditions in apple rootstock
Malus xiaojinensis, thereby increasing the ferrous uptake (Zha
et al., 2014). Han et al. (2009) reported that a genetically
engineered bottle gourd (L. siceraria Standl.) rootstock having a
modified Arabidopsis Ca2+/H+ exchanger sCAX2B improves the
biomass and quality of watermelon fruits by enhancing nutrient
transport to the scion. This transporter provides enhanced Ca2+

transporter substrate specificity and decreases Mn transport
capability. Gonzalo et al. (2011) studied the response mechanism
of two Prunus rootstocks [Myrobalan plum (P 2175) and

peach–almond hybrid (Felinem)]. Felinem showed an activated
expression of FCR and the iron transporter gene. The local signal
induced a quick response of the transporter, whereas the FCR
gene was expressed later. By contrast, in P 2175, the response
appeared later, and long-distance signals appeared to be involved.
However, in both situations, signaling molecules were not
identified; this mechanism thus requires further investigation.

Grape rootstocks [SO4 and K5BB (VITIS Rauscedo,
Società Cooperativa Agricola, Rauscedo, Italy) favor nitrate
uptake by affecting the activities of low-affinity nitrate
transporter (VvNRT1.3like) and high-affinity nitrate transporter
(VvNRT2.4like) genes in grapevines (Tomasi et al., 2015). In
pear rootstock (Pyrus betulaefolia), six NH+

4 transporter genes
(LjAMT;1, LjAMT;2, LjAMT;3, LeAMT;3, PbAMT1;3, and
PbAMT1;5) have been reported (Mota et al., 2008; Li et al.,
2016d); however, the roles of these and other transporters
in grafted plants remain unclear. In two citrus rootstocks
[Cleopatra mandarin (C. reshni hort. ex Tanaka) and Troyer
citrange (C sinensis × P trifoliata)], low-and high-affinity
transport systems work depending on the availability of nitrate
ions in the external medium (Cerezo et al., 2007). However, the
sensing and signaling mechanisms (how plants sense the internal
and external concentrations of nitrate and respond accordingly)
have not been explained in grafted plants. Non-grafted plants
utilize a dual-affinity nitrate transporter (CHL1) and protein
kinases (CIPK28 and CIPK8) to sense a wide range of nitrate
concentration changes in the soil and to alter their own transport
properties (Ho et al., 2009). Another recent study revealed that
small peptides are produced in nitrogen-starved roots and then
transported to the shoot; this root-to-shoot signaling helps plants
adopt under prevailing conditions (Tabata et al., 2014). These
pieces of evidence are missing in grafted plants and need further
study.

Hormones, miRNAs, and Ion Uptake
Hormones and miRNAs are the key players that affect nutrient
absorption and transport by affecting the root growth and activity
of ion transporters. Grafting onto rootstocks changes hormonal
levels (cytokinin and auxin) in roots and shoots, triggers growth,
delays leaf senescence, and helps tolerate environmental stress
(Albacete et al., 2009; Van-Hooijdonk et al., 2010; Ghanem
et al., 2011). In a previous study, grafting a transient root
IPT induction (HSP70::IPT) and wild type (WT) tomato (S.
lycopersicum L. cv. UC82-B) scions onto root localized IPT-
expressing tomato rootstock (35S::IPT) grown under salt stress
conditions (75, 100mMNaCl) increased root, xylem sap, and leaf
bioactive cytokinin by 2–3 times, increased leaf K concentration
(20%), and reduced Na concentration (30%) in the transient root
IPT induction scion compared with plants grafted onto non-
transformed plants. Similarly, IPT-expressing tomato rootstock
(35S::IPT) increased fruit trans-zeatin concentrations 1.5–2 fold
and fruit yield (30%) in WT tomato scion compared with
WT tomato plants grafted onto non-transformed rootstock
(Ghanem et al., 2011). Roots of rootstock-grafted apple with
more branching (MB) mutant scion show elevated cytokinin
and auxin contents and reduced expressions ofMrPIN1, MrARF,
MrAHP, most MrCRE1 genes, and cell growth-related genes
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MrGH3, MrSAUR, and MrTCH4. Auxin accumulation and
transcription of MrPIN3, MrALF1, and MrALF4 induce lateral
root formation in MB-grafted rootstock, and these new roots
contribute to nutrient absorption (Li et al., 2016a). miRNAs
regulate the expression of transporters involved in nutrient
uptake and mobilization (Fujii et al., 2005; Chiou et al., 2006;
Sunkar et al., 2007; Valdés-Lopez et al., 2010; Paul et al., 2015).
A recent report (Li et al., 2016c) showed that under N or P
deficiency, the expression levels of 19 miRNA target genes in
the roots of pumpkin (C. moschata Duch.)-grafted cucumber
(C. sativus L.) are higher than those in self-grafted cucumber.
Many studies have revealed the role of miRNA 399 in P
absorption, transport, metabolism, and homeostasis in plants. P
deprivation is rapidly transmitted to the shoots where miRNA
399 is produced, conjugates, changes the activity of PHO2 (an
essential transporter of phosphate mobilization), and regulates
phosphate homeostasis (Pant et al., 2008). The expressions of
miRNA 399 and csa-miR-n08 are higher in pumpkin (Cucurbita
moschata Duch.)-grafted plants. These affect the expressions of
PHR1 and E3 (ubiquitin–protein ligase), which are essential
for P absorption and metabolism. The PHR1 transcription
factor binds to the promoter region of many phosphorous-
deficient responsive genes, including those encoding phosphate
transporters and protein kinases (Rubio et al., 2001; Todd et al.,
2004). Under phosphorous starvation, the activity of miR2111
doubles within 3 h, whereas under N deficiency, the opposite
occurs (Pant et al., 2008; Xu et al., 2013). Therefore, the
relationship among the expression levels of different miRNAs
still requires explanation. Several recently published articles have
summarized the role ofmiRNAs (Liu andVance, 2010; Zeng et al.,
2014; Kulcheski et al., 2015; Paul et al., 2015) and ion transporters
(Conte and Walker, 2011; Finazzi et al., 2015; Pinto and Ferreira,
2015; Gu et al., 2016) in nutrient acquisition, transport, and
homeostasis. However, information on grafted plants is limited
and requires the attention of plant biologists because grafted
plants are complex in nature, and their responses are influenced
by the genetic makeup of the scion and the rootstock and their
interaction.

In conclusion, rootstocks modify nutrient availability to
the scion. A vigorous root system, increased secretion of
root exudates (organic acids and primary and secondary
metabolites), enhanced expression of transport-related genes,
increased absorption and transport, improved ion homeostasis,
and remobilization capacity of the rootstocks ensure improved
nutrient supply to the scion. These nutrients enable scions to
increase light energy transformation, CO2 conductivity, dark
reaction activity, and rate of photosynthesis, thereby improving
nutrient utilization (Weng, 2000; Sun et al., 2002; Qi et al., 2006;
Wei et al., 2006; Huang et al., 2011).

ROOTSTOCK LIMITS THE UPTAKE AND
TRANSPORT OF SALTS AND HEAVY
METALS

Rootstocks improve the acquisition of essential elements and
reduce the uptake and transport of salts (e.g., Na and Cl) and

heavy metals (e.g., Cr, Ni, Cd, Sr, and Ti) through ion exclusion
or retention. Reciprocal grafting experiments on cucumber (C.
sativus L.), pumpkin (C. moschata Duch.), and melon (C. melo
L.) rootstocks revealed that pumpkin is salt tolerant. Pumpkin
excludes 74% of the available Na, whereas no Na is excluded
by melon. Similarly, Na retention in pumpkin rootstock reduces
the level of Na in leaves by 46.9%, whereas no decrease is
observed in melon rootstock (Edelstein et al., 2011). Estañ
et al. (2005) found that grafting a commercial tomato cultivar
Jaguar (S. lycopersicum L.) onto tomato rootstocks (Radja, Pera,
and the hybrid Volgogradskij × Pera) increases fruit yield by
up to 80% by regulating saline ions (Na and Cl). Pumpkin-
grafted cucumber shows an increased expression of plasma
membrane H+-ATPases (PMA) and plasma membrane Na+/H+

antiporter (SOS1) under NaCl stress conditions compared with
self-grafted cucumber. The increased activities of PMA and
SOS1 enable the root to pump Na+ from the cytosol of root
cells to the external medium (Lei et al., 2014). Citrus rootstock
responds differently to Cl stress, and a number of uncharacterized
membrane transporter genes, such as NRT1-2, are differentially
expressed in poor Cl excluder Carrizo citrange (C. sinensis × P.
trifoliata) and efficient Cl excluder Cleopatra mandarin (C. reshni
hort. ex Tanaka) rootstocks (Brumós et al., 2009). The strong
repression of the IClngene in Cleopatra mandarin regulates
Cl uptake and transport to the shoot. It reduces the net Cl
loading to the root xylem and thus enhances the Cl tolerance
of Cleopatra mandarin (C. reshni hort. ex Tanaka) (Brumós
et al., 2010). Transporters also help enhance salt stress tolerance.
Overexpression of a Malus Na+/H+ anti-porter gene improves
the salt tolerance of M26 dwarfed apple rootstock (Li et al.,
2013). Rootstocks reduce Na and Cl loading and transport to
the scion while increasing the uptake of K, Ca, and Mg ions and
allow small osmotic potentials with a low energy cost. Therefore,
rootstocks increase the tolerance of scion species to salt and toxic
elements.

Grafting cucumber (C. sativus L.) onto C. maxima × C.
moschata rootstocks reduces the absorption and transport of
Cd and Ni to the scion. The absorption of Cd depends
on rootstock genotype (Savvas et al., 2013). Heavy metals
also affect the availability of essential nutrients; however, the
negative effect can be minimized by grafting onto appropriate
rootstocks. Root structure (genotype) and transporter activities
appear to be involved in the reduction of hazardous ion
absorption and transport. In a reciprocal grafting experiment,
Xin et al. (2013) found that spinach shoot Cd concentration is
unrelated to root Cd absorption; it depends on Cd transport
from the root to the shoot. The thick phellem (outer zone
of periderm) and outer cortex cell walls of the water spinach
(Ipomoea aquatic Forsk.) rootstock QLQ retain more Cd in
the root compared with water spinach rootstock T308. Apple
rootstock (Malus Baccata Borkh.) reduces the influx of Cd and
shows the least amount of Cd in leaf petioles compared with
other apple rootstocks (Malus hupehensis Rehd., M. micromalus
“qingzhoulinqin,” and M. robusta Rehd.). M. Baccata has a
low transcript level for Cd uptake and transport genes (HA7,
FRO2-like, NRAMP1, and NRAMP3) and a strong transcript
level for detoxification genes (NAS1 and MT2). The reduced
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expression of Cd transport genes results in reduced uptake
and transport of Cd (Zhou et al., 2016). Repression of Cd
uptake and transport genes occurs through a local signal
or as a result of long-distance signaling, although this issue
remains unclear. Thus, investigations about the sensing and
signaling mechanisms of heavy metals in grafted plants are
required.

FUTURE PERSPECTIVES

Although grafting is a centuries-old phenomenon currently
practiced at the commercial scale, the physiological and
molecular bases of grafting remain unclear. With Arabidopsis
as a model plant, the basic scientific mechanism of grafting is
being investigated. Rootstocks and scions affect each other; their
interaction mechanism also requires further attention. Grafting
compatibility between the rootstock and scion is important
for uninterrupted flow of water, nutrients, and carbohydrates.
Grafting incompatibility occurs when either of the plant parts
(rootstock or scion) completely or partially fails to grow
after successful grafting and in several latter stages of plant
growth. Overgrowth of the scion over the rootstock, overgrowth
of the rootstock over the scion, and bud union crease are
common symptoms of incompatibility. Double grafting can
resolve compatibility issues, but it complicates the process of
grafted seedling production and increases the production cost.
Grafting incompatibility may be related to defense responses.
Cookson et al. (2014) observed a coordinated upregulation of
stress response-related genes in hetero-grafts compared with
self-grafted grapevines (Vitis spp.). In a recent study, Melnyk
et al. (2015) revealed that auxin response genes IAA18, IAA28,
and ALF4 are responsible for vascular reconnection at the
graft junction. Although authors have not linked these genes
with incompatibility, the roles of these genes in incompatibility
cannot be overlooked and require further investigation. Crease
formation affects water and nutrient transport; however, to what
extent this effect impairs the availability of nutrients to the scion
remains unclear. Similarly, different methods of grafting are
utilized for fruits and vegetables, but their effects on the quality
of the vascular connection, crease development, and nutrient
supply have not been considered to date. Detailed histochemical
investigations are required to study the cell and vascular tissue
structures at graft junctions and their relationship with water
and nutrient transport. The rootstock and scion are important,
but the rootstock is considered critical. No failure caused by
scion variety has been reported in the fruit industry in any
country, but a number of examples show failure caused by
inappropriate rootstock (Castle, 2010). Therefore, in perennial
fruit plants, the choice of proper/compatible rootstock is highly
significant because once an orchard is established; it remains
productive for a long time. Similarly, selecting compatible and
appropriate rootstocks for important vegetables and ornamental
crops need consideration. Although large numbers of rootstocks
are available and used for different crops, improved rootstocks
with improved characteristics, such as multi-disease resistance

and enhanced nutrient absorption and utilization efficiencies, are
still lacking.

Rootstocks enable increased water and nutrient absorption
through efficient uptake systems and/or their capacity to explore
wide and deep soil volumes. However, these properties should be
transferred to increase yield or improve efficiency. This transfer
requires well-designed studies on yield responses vs. a gradient
of nutrient/water application to the plant. The accumulation of
a given nutrient in the leaves during vegetative growth is not
an indicator of nutrient use efficiency and should be considered
in relation to the total nutrients absorbed by the plant and
the harvestable yield produced (Pérez-Alfocea, 2015). Moreover,
the response of rootstocks under different growing conditions
changes considerably (Cong et al., 2014). Rootstocks are also
inherently selective in the absorption of different nutrients.
Fernández-García et al. (2002) observed an increase in the
uptake of P and Ca and a decrease in the uptake of N, K, S,
and Mg by grafting Fanny and Goldmar (S. lycopersicum L.)
onto AR-9704 (S. lycopersicum L.). Nutrient-specific rootstock
breeding is currently eliciting the attention of scientists (Venema
et al., 2011). Macronutrients, such as P and K, are finite in
nature and costly, so they are of particular interest. With the
passage of time, linkage map locations for quantitative trait loci
(QTLs) have become available for nutrient uptake and transport.
For example, several QTLs controlling the concentration of
nutrients in the leaves of tomato and apple rootstocks have been
found (Fazio et al., 2013; Asins et al., 2015). These QTLs allow
scientists to alter the root architecture of plants as needed. Several
transgenic rootstocks have been reported to control fan leaf
virus in grapes (Gambino et al., 2010), fungal diseases in citrus
(Mitani et al., 2006), pathogen damage in tomato (Haroldsen
et al., 2012), and nutrient absorption in tomato and watermelon
(Han et al., 2009; Ghanem et al., 2011). Thus, nutrient-efficient
transgenic rootstocks are expected to become commercially
available for different horticultural crops in the near future.
The use of genetically engineered nutrient-efficient rootstocks
(transgrafting) and scions will extend the utility of grafting by
combining an ancient technique with molecular strategies of the
modern era (Goldschmidt, 2014), leading to improved nutrient
use efficiency. However, the acceptability of genetically modified
crops by the public is a question that needs to be addressed.

Remarkable achievements have been made in the field of
ion transporter in Arabidopsis, rice, wheat, and other crops.
However, a limited number of studies related to the uptake and
transport of essential nutrients have been performed on grafted
plants. Thus, further study is needed to thoroughly understand
the sensing, signaling, uptake, and transport mechanisms in
grafted plants. This information will be helpful for breeding
programs to develop nutrient-efficient rootstocks. Grafting in
horticultural crops can also help understand the basic biology
of the grafting mechanism, the reasons for incompatibility,
sensing and signaling of nutrients, ion uptake and transport, the
mechanism involved in the accumulation of heavy metals in the
rootstock, and the restriction of heavy metal transport to the
scions. Moreover, vegetable grafting studies can be performed
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quickly, and the results can be compared with those on self-
rooted or self-grafted plants. Imperative conclusions can be
obtained for commercial adoption.

Several approaches, such as the use of plant-growth-
promoting rhizobacteria (PGPR), can be combined with grafting
to further enhance nutrient uptake and utilization efficiency.
These PGPR act in diverse ways, including the production
or degradation of important plant growth hormones, which
in turn controls root growth and affects nutrient absorption
(Dodd et al., 2010; Wang et al., 2016b). The use of arbuscular
mycorrhizal fungi enhances the acquisition of P, N, Mg, and
Ca, maintains the K:Na ratio, affects nodulation and nitrogen
fixation, and alters gene expression (PIP, Na/H antiporters,
Lsnced, Lslea, and LsP5CS), thereby improving plant growth
(Parniske, 2008; Evelin et al., 2009; Kumar et al., 2015; Miceli
et al., 2016; Wang et al., 2016b). Single- and double-root grafting
of cucumber increase the population of soil actinomycetes
(bacteria) and reduce the population of fungi (Fusarium
oxysporum) (Xie et al., 2012). However, for other crops, whether
the rootstock and scion affect each other’s soil microbiota and
their effect on the nutrient absorption of rootstocks remain
largely unknown and thus need further study. The use of
natural (humic acid, root exudates, phytosiderophores) and
synthetic chelators [ethylenediaminetetraacetic acid (EDTA),
[(ethylenediamine-N, N’-bis (2-hydroxyphenylacetic acid)
(EDDHA)], diethylenetriamine pentaacetic acid (DTPA)] is
reported to enhance nutrient (Fe, Zn, Cu, Mn, etc.) mobilization

and phyto-availability; however, the suitability and efficacy of
these chelators in grafted plants need investigation (Treeby et al.,
1989; Bocanegra et al., 2006). Exogenous application of plant
growth regulators (e.g., auxin) and several other novel substances
(e.g., melatonin) is currently being considered by scientists to
alter root architecture and enhance nutrient uptake (Nawaz et al.,
2016). However, further studies are required to standardize the
concentration and method of application of these substances for
grafted plants.
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