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The cellular prion protein (PrPc) and hypoxia appear to be tightly intertwined.
Beneficial effects of PrPc on neuronal survival under hypoxic conditions such as focal
cerebral ischemia are strongly supported. Conversely, increasing evidence indicates
detrimental effects of increased PrPc expression on cancer progression, another
condition accompanied by low oxygen tensions. A switch between anaerobic and
aerobic metabolism characterizes both conditions. A cellular process that might
unite both is glycolysis. Putative role of PrPc in stimulation of glycolysis in times
of need is indeed thought provoking. A significance of astrocytic PrPc expression
for neuronal survival under hypoxic conditions and possible association of PrPc with
the astrocyte-neuron lactate shuttle is considered. We posit PrPc-induced lactate
production via transactivation of lactate dehydrogenase A by hypoxia inducible factor
1α as an important factor for survival of both neurons and tumor cells in hypoxic
microenvironment. Concomitantly, we discuss a cross-talk between Wnt/β-catenin and
PI3K/Akt signaling pathways in executing PrPc-induced activation of glycolysis. Finally,
we would like to emphasize that we see a great potential in joining expertise from
both fields, neuroscience and cancer research in revealing the mechanisms underlying
hypoxia-related pathologies. PrPc may prove focal point for future research.
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ADAPTATION TO HYPOXIA

What appears ordinary today for most of the time of the Earth’s history was not: free oxygen.
Actually, both aquatic and terrestrial environments were widely devoid of free oxygen for
thousands of millions of years. With appearance of photosynthesis about 3.5–3.2 billion years ago
(Blankenship, 2010), oxygen was for the first time produced in considerable amounts. Yet, this
early oxygen was widely consumed for further hundreds of millions of years through precipitation
of Fe2+ ions and the formation of ferrous sulfides. Only after a steady-state between the influx of
Fe2+ from the continents and the precipitation in the oceans was reached, about 2 billion years
ago, free oxygen could be enriched in noteworthy amounts (Martin and Russell, 2003). This short
survey illustrates that early heterotrophs had to sustain eons of oxygen deficiency (anoxia) and
limited oxygen availability (hypoxia).

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 December 2016 | Volume 10 | Article 292

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Frontiers - Publisher Connector

https://core.ac.uk/display/82867798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
https://doi.org/10.3389/fncel.2016.00292
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fncel.2016.00292
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2016.00292&domain=pdf&date_stamp=2016-12-19
http://journal.frontiersin.org/article/10.3389/fncel.2016.00292/abstract
http://loop.frontiersin.org/people/383422/overview
http://loop.frontiersin.org/people/171591/overview
http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


fncel-10-00292 December 15, 2016 Time: 14:58 # 2

Ramljak et al. Cellular Prion Protein (PrPc) in Hypoxia

Glycolytic enzymes that capacitate endurance of low oxygen
tensions most likely arose some 2 billion years before the
emergence of first oxygen-consuming species (Webster, 2003).
Indeed these enzymes are evolutionary highly conserved (Martin
and Russell, 2003; Webster, 2003). Although vertebrates are
generally regarded as highly oxygen-reliant they can efficiently
switch from aerobic (oxidative phosphorylation) to “ancestral”
anaerobic (anaerobic glycolysis) energy production when oxygen
falls under the critical mark (Nilsson and Renshaw, 2004;
Jackson and Ultsch, 2010). An extreme example represents
a freshwater turtle (Trachemys scripta elegans) which can
withstand 24 h of anoxia and subsequent re-oxygenation
without any apparent loss of neurons (Kesaraju et al., 2009).
On the contrary, only short anoxia is sufficient to cause
flat electroencephalogram in the human brain (Rossen et al.,
1943). Hence, the ability to sense oxygen deprivation is vital
to the survival of all aerobic organisms (Lutz and Prentice,
2002).

To survive every healthy cell has to maintain abundant
adenosine triphosphate (ATP) levels and regulated metabolic
depression, i.e., hypometabolism seems to be the key to survival
under conditions of low oxygen (Boutilier, 2001). Consequently,
when ATP levels drop reallocation of cell’s energy supplies
between critical and non-critical ATP-consuming processes
becomes pivotal. It seems that ATP-driven processes are ordered
in hierarchy with protein and DNA/RNA synthesis ranked as
low priority processes, therefore inhibited first, and fueling of
ATP-dependent membrane pumps such as Na+/K+ ATPase and
Ca2+ cycling having the highest operating priority (Buttgereit
and Brand, 1995). Keeping the latter processes functional is
fundamental within the central nervous system (CNS), especially
when oxygen supply is sparse.

EFFECTS OF HYPOXIA ON NEURONS
AND ASTROCYTES

Within the CNS, neurons are the most susceptible cell type
in respect to oxygen deprivation. This is an outcome of
their high aerobic metabolism. Approximately 50% of neuronal
energy expenditure is committed to preserving high priority
processes: ionic gradients and fluxes (Hansen, 1985). As a result,
when neuronal ATP production fails to meet energy demands
mandatory for sustaining ionic and osmotic equilibrium
neuronal cell death follows.

In contrast to neurons, astrocytes possess glycogen stores
(Magistretti, 2008) and can increase their glycolytic capacity
when oxygen supply is inadequate (anaerobic glycolysis) and
ATP generation via oxidative phosphorylation flawed. They are
also able to increase glycolysis when oxygen levels are adequate
(aerobic glycolysis).

Hence, astrocytes can withstand hypoxia without major
morphological changes up to 12 h (Yu et al., 1989). An
increase in glycolytic capacity of astrocytes is put into
action via up-regulation of anaerobic isoforms of glycolytic
enzymes such as lactate dehydrogenase A (LDH-A; Marrif
and Juurlink, 1999). In addition, astrocytes are also efficient

in decreasing ATP consumption when oxygen- and glucose-
deprived (Yager et al., 1994). All these traits of astrocytic
adaptation to low oxygen tensions presumably contribute to
their role in safeguarding neurons from detrimental effects
of anoxia and hypoxia (Vibulsreth et al., 1987; Imuta et al.,
2007). Previous studies have demonstrated that after ischemic
insult neurons fail to survive if neighboring astrocytes are
not viable (Takano et al., 2009). Therefore, one can deduce
that oxygen deprivation promotes release of certain astrocytic
metabolic products, which are crucial for preserving neuronal
vitality.

PrPc-MEDIATED NEUROPROTECTION
AGAINST HYPOXIA

Oxidative damage is a common denominator of
neurodegenerative disorders (reviewed in Zhang et al., 2011).
In prion diseases, which are characterized by neuronal loss and
astrogliosis (Belay, 1999), the failure in antioxidant defense seems
to be crucial (Brown, 2005). The PrPc, which plays a central role
in prion diseases, manifests antioxidant properties (Steele et al.,
2007) which are obstructed by its conversion into a misfolded,
disease-specific isoform (PrPsc).

Despite the fact that PrPc is highly conserved across
mammals (Schätzl et al., 1995), PrPc knockout mice (Prnp−/−)
show only subtle phenotypes under physiological conditions.
However, when cellular energy requirements increase, as under
different stress conditions, PrPc presence becomes critical to
the survival (Steele et al., 2007). As PrPc expression level
is the highest within the CNS, its functions at this site are
presumably of uppermost relevance. Actually, one of the best-
supported PrPc functions so far is neuroprotection against
hypoxic damage (McLennan et al., 2004; Weise et al., 2004;
Mitteregger et al., 2007; Doeppner et al., 2015), implying
PrPc capacity for sensing and adequately responding to
oxygen deprivation. Thus, PrPc expression is up-regulated
following cerebral ischemia, and wild-type (WT) mice display
significantly smaller infarct volumes as compared to Prnp−/−

mice (McLennan et al., 2004; Weise et al., 2004; Mitteregger
et al., 2007). Moreover, considerably increased long-term
neuroprotection, neurogenesis and angiogenesis was reported
in the ischemic brains of PrPc-overexpressing (Prnp+/+)
vs. WT and Prnp−/−mice, accenting the importance of
elevated PrPc levels in preventing hypoxia-induced neuronal
damage (Doeppner et al., 2015). In other words, it appears
that a metabolic switch between oxidative-independent and
oxidative-dependent metabolism during hypoxia and subsequent
re-oxygenation cannot be efficiently executed when PrPc is
absent.

Prior study employing astrocyte-neuron co-cultures showed
that PrPc expression in astrocytes is fundamental for neuronal
differentiation and survival (Lima et al., 2007). Moreover,
astrocytic PrPc expression appears to be important for reduction
of hydrogen peroxide toxicity (Bertuchi et al., 2012), a reactive
oxygen species whose production in mammalian cells is
stimulated by hypoxia (Moller, 2001).
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Considering that:

(i) astrocytes predominantly rely on glycolytic metabolism and
can successfully endure hypoxic episodes;

(ii) astrocytes protect neuronal integrity from different insults;
(iii) astrocytic PrPc expression is pertinent to neuronal survival

and
(iv) PrPc confers neuroprotection in a model of focal cerebral

ischemia,

it is conceivable that astrocytic PrPc expression may have a
considerable influence on a favorable neurologic outcome under
hypoxic conditions. Yet, which molecular scenario could support
this concept?

PrPc, GLYCOLYSIS, AND THE
ASTROCYTE-NEURON LACTATE
SHUTTLE

Pellerin and Magistretti (1994) proposed a so-called astrocyte-
neuron lactate shuttle (ANLS) model postulating that neuronal
activity increases extracellular levels of glutamate, which is
readily absorbed by astrocytes resulting in stimulation of
astrocytic glycolysis and lactate production. Subsequently, lactate
is shuttled from astrocytes to neurons via monocarboxylate
transporters (MCTs) and further utilized by neurons for
oxidative-and non-oxidative-derived ATP production (Bélanger
et al., 2011).

Lactate is produced in the last step of the glycolytic
pathway by reduction of pyruvate and concomitant oxidation
of nicotinamide adenine dinucleotide (NADH) to NAD+ in
a reaction catalyzed by the LDH-A isoform, when oxygen
supply is low. In the opposite direction, lactate is converted
to pyruvate by the LDH-B isoform (Le et al., 2010). Favorable
effects of lactate on neuronal survival following hypoxia/ischemia
are meanwhile widely recognized (Schurr et al., 1988, 1997,
2001; Berthet et al., 2009). Recently, we demonstrated that
PrPc markedly enhances expression of both LDH-A and
LDH-B isoenzymes after hypoxia/ischemia in WT primary
cortical neurons and in WT ischemic brains as compared to
PrPc knockout counterparts (Ramljak et al., 2015). Besides,
expression of the LDH-A was significantly elevated upon
transfection of Prnp0/0 cells with the vector bearing a cDNA
encoding human PRNP (Ramljak et al., 2008). Additionally,
LDH-A was not only identified as a PrPc interactor protein,
but also as an interactor of Doppel and Shadoo, two
mammalian PrPc paralogs (Watts et al., 2009). Earlier study
investigating cellular distribution of the LDH isoenzymes in
the hippocampus and occipital cortex of the human brain
demonstrated a marked enrichment of LDH-A in astrocytes as
compared to neurons (Bittar et al., 1996). Therefore, in view
of ANLS it would be interesting to elucidate the role that
presence/absence of PrPc in astrocytes might have on LDH-A
expression level/activity, lactate trafficking from astrocytes to
neurons and ultimately on neuronal survival under hypoxic
conditions.

DUAL ROLES OF PrPc IN HYPOXIA:
NEUROPROTECTION vs. TUMOR
PROGRESSION

Promoter region of the LDH-A possesses hypoxia-responsive
element (HRE) which is trans-activated under hypoxic
conditions by the transcription factor hypoxia-inducible
factor 1 alpha (HIF-1α; Semenza et al., 1996). HIF-1 α is one
of the two subunits of hypoxia-inducible factor 1 (HIF-1)
transcription complex which assimilates information on oxygen
availability and cellular redox homeostasis. Stabilization of
HIF-1α enables adaptive response to hypoxia and other stress
conditions (Semenza, 2000; Dery et al., 2005). Thus, stabilization
of HIF-1α protects astrocytes from glutamate-induced damage
during severe hypoxia (Badawi et al., 2012). On the contrary,
in oxygenated cells, HIF-1α is rapidly degraded via ubiquitin-
proteasome pathway (Huang et al., 1998). Expression of HIF-1
target genes, such as for instance LDH-A, correlate with the levels
of HIF-1 α (Ke and Costa, 2006). Strikingly, HIF-1α expression
is significantly decreased in Prnp−/− and increased in Prnp+/+

mice at 24 h post-stroke (Doeppner et al., 2015) suggesting that
PrPc might exert its neuroprotective effects against hypoxic
damage in vivo via direct or indirect regulation of HIF-1α and
hence LDH-A/lactate.

Kleene et al. (2007) demonstrated that PrPc is involved
in regulation of lactate transport of astrocytes via MCT1 in
conjunction with Na+/K+ ATP-ase and basigin. Astrocytes
generally express MCT1 and MCT4 isoforms, engaged in
lactate release, whereas neurons predominantly express MCT2
isoform, which facilitates lactate uptake (Dimmer et al.,
2000; Pellerin et al., 2005; Rosafio and Pellerin, 2014).
Interestingly, transient overexpression of PrPc in HEK293
cells enhanced MCT1 expression under normoxic conditions
(Ramljak et al., 2015). Accordingly, in vivo neurochemical
profiling in 12 month old WT and Prnp−/− mice under
normoxic conditions revealed 100% increase in lactate content
in the hippocampus and cerebellum of Prnp−/− mice (Cudalbu
et al., 2015) indicating impaired regulation of lactate in Prnp−/−

mice.
To the best of our knowledge so far no report considered

the presence of two highly conserved early growth response
−1 (EGR-1) consensus binding motifs (5′-GCG(T/G)GGGCG-
3′) separated by only 15 bases between introns 1 and 2 of the
human PRNP gene. These emerged at least 29.1 million years ago
in the common stem lineage of extant Catherrini, as determined
by own sequence screening (see Table 1 for accession numbers).
Binding of Egr-1 to a conserved intron sequence and consecutive
regulation of gene expression has been demonstrated in mouse
motor spiny neurons (Keilani et al., 2012). Egr-1 is a transcription
factor that is rapidly induced by hypoxia, can directly bind to
HIF-1α promoter region and trans-activate it (Sperandio et al.,
2009), but it can also function independently of HIF-1 α (Yan
et al., 1999).

Notably, studies performed on mouse brains suggest that
prion diseases deregulate several microRNAs (miRNAs) and one
of the gene promotors that were cognate to these miRNAs is
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TABLE 1 | EGR-1 motif in intron 1/2 of the PRNP gene.

5′-GCG(T/G)GGGCG-3′

Species abbreviation Number of motifs Accession numbers

Homo sapiens 2 ENST00000379440

Pan troglodytes 2 ENSPTRT00000024563

Gorilla gorilla 2 ENSGGOT00000008115

Pongo abelii 0 ENSPPYT00000012541

Nomascus leucogenys 2 ENSNLET00000009813

Macaca mulatta 2 ENSMMUT00000028037

Papio anubis 2 ENSPANT00000012376

Chlorocebus sabaeus 2 ENSCSAT00000018848

Callithrix jacchus 0 ENSCJAT00000041793

Tarsius syrichta 0 ENSTSYT00000012169

Mus musculus 0 ENSMUST00000091288

Accession numbers obtained from ENSEMBL.

Egr-1 (Shapshak, 2013). A so-called neurotoxic peptide PrP(106-
126), broadly used as a model of neurotoxicity in prion
diseases, induced Egr-1 synthesis in primary cortical neurons
just 30 min after the treatment (Gavín et al., 2005) suggesting
a hypoxic cellular environment. Furthermore, Seo et al. (2010)
showed that low oxygen conditions protect neuroblastoma
cells from neurotoxicity of PrP(106-126) by activating Akt
signaling pathway and connote an involvement of hypoxia in
prion-induced neuronal damage/disease. PrP(106-126) propels
aggregation of endogenous PrPc to an amyloidogenic form and
shares several properties with the disease-causing PrPsc isoform
(Singh et al., 2002).

Intriguingly, distinct protein modifications and formation of
detergent-insoluble protein aggregates experimentally induced
by proteasome inhibition are oxygen-requiring processes that
may be prevented when cells are incubated at 3% instead
of 21% oxygen (Demasi and Davies, 2003). Many lines of
evidence point to the deficits in cellular protein quality
control and hence ubiquitin-proteasome system as central
to the pathogenesis of neurodegenerative diseases (Takalo
et al., 2013). Therefore, one can conclude that normoxic
conditions would favor further formation of aggregates in the
brains of individuals affected by neurodegenerative disorders.
Contrariwise this finding suggests that hypoxia might be as
well regarded as a “survival process” during which cellular
machinery maintains only functions of the highest priority
(protein synthesis is a low priority process!) in order to
survive and concurrently prevent further formation of protein
aggregates.

Both Egr-1 and HIF-1α have been associated with
neurodegenerative diseases:

(i) Egr-1 is up-regulated in brains of Alzheimer disease
patients and regulates transcription of genes involved in
synaptic plasticity processes, in particular maintenance of
long-term potentiation (Jones et al., 2001; Gómez Ravetti
et al., 2010; Lu et al., 2011).

(ii) Increasing HIF-1 activity has been put forward as
a potential strategy to alleviate the pathogenesis of

Alzheimer’s and other neurodegenerative disorders (Zhang
et al., 2011).

A recent study demonstrated that neuronal cells exposed
to a highly neurotoxic monomeric misfolded prion protein
(TPrP) exhibited profound decline of NAD+ levels followed by
diminished ATP production. Neuronal death induced by TPrP
could be completely rescued in vitro and in vivo by supplying
NAD+ (Zhou et al., 2015). Primary astrocytes subjected to
TPrP were not prone to TPrP-mediated toxicity and exhibited
even increased NAD+ levels (Zhou et al., 2015). As cytosolic
regeneration of NAD+ by LDH-A is necessary for glycolysis to
carry on it would be highly interesting to verify if the treatment
with TPrP renders the cellular environment hypoxic. It is
recognized that diminishing NAD+ levels induce pseudohypoxia
by disturbing nuclear-mitochondrial communication during
aging (Gomes et al., 2013).

In any case, considering a role of putative synergistic
networking between EGR-1-PrPc-HIF-1α-LDH-A under
conditions of low oxygen tensions definitely deserves further
attention.

Intriguingly, all four members of the above-suggested
networking are in one way or another tied to another hypoxia-
related disorder: cancer.

(i) EGR-1 directly targets HIF-1 α in hypoxic prostate cancer
cells (Sperandio et al., 2009);

(ii) elevated HIF-1 α expression levels are linked to increased
risk of mortality in different types of human cancers such
as colon, breast, stomach, and other cancer types (Semenza,
2010);

(iii) HIF-1 α activates expression of LDH-A (Semenza et al.,
1996);

(iv) inhibition of LDH-A inhibits tumor progression (Le et al.,
2010);

(v) PRNP was proved as a prognostic indicator in patients with
recurrent colorectal cancers (Antonacopoulou et al., 2010);

(vi) PrPc has a potential as a biomarker of poor prognosis in
pancreas ductal adenocarcinoma patients (Sy et al., 2011–
2012);

(vii) PrPc-overexpression advances invasive and metastatic
features of gastric cancer cell lines (Pan et al., 2006; Liang
et al., 2007; Wang et al., 2011) and

(viii) PrPc-overexpression was detected in 90% of prostate tumor
biopsies (Yang et al., 2014).

Lately, tumor necrosis factor (TNF)-related apoptosis-
inducing ligand (TRAIL) has been identified as relevant for
PrPc-mediated survival of cancer cells. Thus, increase in
PrPc expression under hypoxic conditions in human colon
carcinoma HCT116 cell line was accompanied with concurrent
downregulation of TRAIL (Park et al., 2015). Conversely, down-
regulation of PrPc increased TRAIL-induced apoptosis under
same experimental conditions (Park et al., 2015). Remarkably,
an up-regulation of EGR-1 has also been shown to act as a
brake on TRAIL expression (Balzarolo et al., 2013). TRAIL’s
ability to selectively induce apoptosis in cancer but not in normal
cells is well recognized (Wu, 2009). Considering their effect
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FIGURE 1 | A simplified schematic depiction of a hypothetic PrPc-induced signaling cross-talk between PI3K/Akt and Wnt/β-catenin pathway under
hypoxic conditions. The major players are depicted in green. For clarification, please see the Section “Cross-Talk between Wnt/β-Catenin and PI3K/Akt Signaling
Pathways under Low Oxygen Tensions.”

on TRAIL expression, blocking PrPc, and/or EGR-1 should be
further investigated as potentially useful anticancer treatment.
Moreover, activation of phosphatidylinositol 3 kinase (PI3K)/Akt
survival pathway seems to be critical to TRAIL resistance in
human cancer cells whereas its inhibition sensitizes resistant
cancer cells to TRAIL (Xu et al., 2010). PrPc is known to modulate
PI3K/Akt pathway (Vassallo et al., 2005; Weise et al., 2006).

CROSS-TALK BETWEEN Wnt/β-CATENIN
AND PI3K/AKT SIGNALING PATHWAYS
UNDER LOW OXYGEN TENSIONS

We propose a cross-talk between Wnt/β-catenin and PI3K/Akt
pathways as underlying PrPc-mediated survival under low
oxygen tensions (Figure 1).

Cellular prion protein can activate anti-apoptotic PI3K/Akt
pathway (Vassallo et al., 2005). Conversely, its deletion impairs
the PI3K/Akt pathway by reducing phospho-Akt expression
(Weise et al., 2006). Activation of PI3K/Akt pathway seems
necessary for HIF-1α stabilization early during hypoxia (Mottet
et al., 2003). Besides, inhibition of glycogen synthase kinase-3β

(GSK-3β) activity by phospho-Akt leads to stabilization of HIF-
1α and increased HIF-1 transcriptional activity (Mottet et al.,
2003) (Figure 1).

GSK-3βis a component of the multiprotein destruction
complex, a part of the Wnt/β-catenin signaling pathway
(MacDonald et al., 2009) which seems pertinent for a cross-
talk between the both pathways. Inhibition of GSK-3β activity
by phospho-Akt stabilizes β-catenin which in turn together
with TCF/LEF transcription factor promotes transcription of
Wnt target genes such as: pyruvate dehydrogenase kinase 1
(PDK-1) and LDH. Recently, Wnt/β-catenin signaling was

linked to activation of glycolysis in colon cancer via targeting
of PDK-1 (Pate et al., 2014). Furthermore, direct targeting
of PDK-1 by HIF-1 results in suppression of mitochondrial
function by limiting pyruvate entry into the tricarboxylic acid
(TCA) cycle (Kim et al., 2006; Papandreou et al., 2006). This
kinase phosphorylates and switches off mitochondrial pyruvate
dehydrogenase (PDH) complex (Roche et al., 2001) so that the
conversion of pyruvate to acetyl-CoA is inhibited and conversion
of pyruvate to lactate favored. Intriguingly, Wnt is also capable
of enhancing LDH activity thus additionally fostering glycolysis
(Chafey et al., 2009).

Cellular prion protein appears to interact with β-catenin
and up-regulate transcriptional activity of the β-catenin/TCF
complex (Besnier et al., 2015). Moreover, Wnt/β-catenin
signaling is impaired in mice infected with scrapie agents with
markedly reduced levels of phospho-GSK-3β leading to its
enhanced activity (Sun et al., 2015) and degradation of β-catenin.
In addition, dysfunctional PI3K-Akt-GSK-3 pathway is common
in models of prion diseases (Simon et al., 2014).

If the hypothetic cross-talk between Wnt/β-catenin and
PI3K/Akt pathway holds true then the interesting question would
be: can PrPsc mice develop cancer?

In summary, it only seems like PrPc has two sides: a “good”
one – if not pivotal – for neuroprotection against oxidative stress
such as hypoxia and a “bad” one promoting invasiveness of
different cancer types. However, these are only two sides of the
same medal called: SURVIVAL.
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