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Target of rapamycin (TOR) acts as a master regulator to control cell growth by

integrating nutrient, energy, and growth factors in all eukaryotic species. TOR plays

an evolutionarily conserved role in regulating the transcription of genes associated with

anabolic and catabolic processes in Arabidopsis, but little is known about the functions

of TOR in photosynthesis and phytohormone signaling, which are unique features of

plants. In this study, AZD8055 (AZD) was screened as the strongest active-site TOR

inhibitor (asTORi) in Arabidopsis compared with TORIN1 and KU63794 (KU). Gene

expression profiles were evaluated using RNA-seq after treating Arabidopsis seedlings

with AZD. More than three-fold differentially expressed genes (DEGs) were identified in

AZD-treated plants relative to rapamycin-treated plants in previous studies. Most of the

DEGs and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in

cell wall elongation, ribosome biogenesis, and cell autophagy were common to both

AZD- and rapamycin-treated samples, but AZD displayed much broader and more

efficient inhibition of TOR compared with rapamycin. Importantly, the suppression of

TOR by AZD resulted in remodeling of the expression profile of the genes associated

with photosynthesis and various phytohormones, indicating that TOR plays a crucial

role in modulating photosynthesis and phytohormone signaling in Arabidopsis. These

newly identified DEGs expand the understanding of TOR signaling in plants. This study

elucidates the novel functions of TOR in photosynthesis and phytohormone signaling and

provides a platform to study the downstream targets of TOR in Arabidopsis.
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Introduction

Target of rapamycin (TOR) is a Ser/Thr protein kinase that was first isolated in budding yeast
(Saccharomyces cerevisiae) (Heitman et al., 1991), and then identified in animals and plants (Chiu
et al., 1994; Sabatini et al., 1994; Menand et al., 2002). TOR is functionally and structurally
conserved from yeast to plants and animals (Wullschleger et al., 2006). The TOR protein is
comprised of the following five domains, in order from the N terminus to the C terminus: HEAT
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repeats, FAT, FRB, kinase, and FATC domains. In yeast and
animals, the TOR protein resides in two complexes: rapamycin-
sensitive TOR complex 1 (TORC1) and rapamycin-insensitive
TOR complex 2 (TORC2) (Loewith et al., 2002; Wullschleger
et al., 2006). The core members of TORC1 include TOR, lethal
with SEC13 protein 8 (LST8) and regulatory-associated protein
of TOR (RAPTOR). TORC1 controls cell proliferation and
temporal growth by dynamically maintaining the homeostatic
balance between anabolic and catabolic processes (Wang and
Proud, 2009; Xiong and Sheen, 2014). TORC2, which mainly
contains TOR, LST8, stress-activated map kinase-interacting
protein 1 (SIN1) and rapamycin insensitive companion of
TOR (RICTOR), regulates spatial cell growth by modulating
the cytoskeleton structure, cell polarity, glycolysis, glycogenesis,
lipogenesis, and gluconeogenesis (Loewith et al., 2002; Takahara
and Maeda, 2013; Xiong and Sheen, 2014). The core members of
TORC1 are highly conserved from the last eukaryotic common
ancestor to humans, but those of TORC2 are more variable. For
example, the homologs of the core components of TORC2 in
animals, such as SIN1 and RICTOR, are missing in plants (Xiong
and Sheen, 2014).

The disruption of TOR function has been lethal in all
examined eukaryotic organisms, which has prevented definition
of the TOR functions (Barbet et al., 1996; Zhang et al., 2000;
Weisman and Choder, 2001; Menand et al., 2002; Murakami
et al., 2004; Ren et al., 2011). Progress in this respect was
not made until the discovery of rapamycin, which can repress
TORC1 activity in yeast and animals very efficiently (Heitman
et al., 1991; Chiu et al., 1994; Sabatini et al., 1994). However,
rapamycin inhibits the activity of TORC1 only in the presence
of 12-kDa FK506 binding protein (FKBP12) through forming a
ternary complex rapamycin-FKBP12-TOR in yeast and animals
(Benjamin et al., 2011). Many downstream effectors in the
TOR pathway have been identified in yeast and animals, but
little is known about them in plants because of general planta-
wide insensitivity to rapamycin. Although plants do have the
homologs of yeast or mammal FKBP12, they have evolved
to be incompatible with rapamycin and TOR, and thus the
rapamycin/FKBP12/TOR ternary complex cannot form properly
in plants (Xu et al., 1998; Menand et al., 2002; Sormani et al.,
2007). Interestingly, yeast and human FKBP12s could rescue
rapamycin sensitivity in Arabidopsis, indicating that TORC1
is conserved sufficiently across eukaryotic organisms (Mahfouz
et al., 2006; Sormani et al., 2007; Leiber et al., 2010; Ren
et al., 2012; Xiong and Sheen, 2012; Zhang et al., 2013). The
overexpression and RNAi of TOR in Arabidopsis were created to
further decipher the TOR signaling pathway in plants (Deprost
et al., 2007; Caldana et al., 2013). However, all these studies were
dependent on transgenics, which severely limit the investigations
of TOR in less developed plant models.

Ren et al. (2012) performed RNA-seq to examine the
transcriptional changes after TOR repression by rapamycin in
the transgenic Arabidopsis lines overexpressing yeast FKBP12
for 3 days (Ren et al., 2012). Caldana et al. (2013) found
DEGs by silencing TOR expressing in amiR-tor mutants for
3 or 6 days with the method of Microarrays (Caldana et al.,
2013). The huge overlapping DEGs found in the above two

studies drew similar conclusions, such as regulating the cell wall
restruction, while, unexpectedly, their transcription profiles did
not change significantly when TOR expression was suppressed
(Ren et al., 2012; Caldana et al., 2013). In fact, only 271
DEGs were displayed between RNAi plants and their controls
within 3 days of TOR suppression (Caldana et al., 2013). A
possible reason for this was that Ren et al. (2012) and Caldana
et al. (2013) harvested seedlings for transcriptional profiling
after the repression of TOR at 3 or 6 days, and these time
points could be too late to detect the early molecular events
of TOR suppression (Ren et al., 2012; Caldana et al., 2013).
Another possible reason is that the in vivo inhibition spectrum
of rapamycin is narrow and mainly targets the TORC1-S6K
signaling branch (Ren et al., 2012). Xiong et al. (2013) foundmore
than 2000 DEGs at a photoautotrophic transition checkpoint
in 3 days after germination (DAG) WT and RNAi seedlings
with or without 2 h glucose induction (Xiong et al., 2013).
However, in this study, the Arabidopsis seeds were germinated
in liquid medium, which might have caused oxygen stress,
and thus a knockdown of TOR kinase activity. Importantly,
the accumulated evidence showed that auxin and hormone
signaling were closely interconnected with TOR signaling, and
the repressing or silencing of the TOR gene expression resulted
in severe defects in chloroplasts and photosynthesis (Ren et al.,
2011; Caldana et al., 2013; Schepetilnikov et al., 2013). However,
the transcriptional profiling of the phytohormone signaling
pathways and photosynthesis-associated genes did not show
significant changes in these studies (Ren et al., 2012; Caldana
et al., 2013; Xiong et al., 2013).

In order to overcome the limitations of previous TOR studies,
the second generation of TOR inhibitors asTORis have been
well-developed in mammalian systems (Apsel et al., 2008; Janes
et al., 2010; Zhang et al., 2011) and were employed in our study.
asTORis can selectively and efficiently suppress both TORC1
and TORC2 by specifically targeting the ATP-binding pocket of
the TOR kinase domain (Feldman et al., 2009; Dowling et al.,
2010). Recently, asTORis were successfully applied to inhibit
TOR activity in flowering plants, including Arabidopsis, Oryza
sativa (rice), Panicum miliaceum (millet), and Lotus japonicus
etc., and micromolar concentrations were sufficient to suppress
TOR activity and obtain a physiological response (Montané
and Menand, 2013; Schepetilnikov et al., 2013; Xiong et al.,
2013). In Arabidopsis, asTORis inhibited the level of root growth
dependent on the number of copies of the AtTOR gene through
a genetic method, and the specificity of TORIN1 for TOR kinase
activity was confirmed by Western blot (Montané and Menand,
2013; Schepetilnikov et al., 2013; Xiong et al., 2013). Although the
previous studies showed that asTORis provide a highly inducible,
selective, and reversible system to characterize TOR signaling in
plants (Montané and Menand, 2013; Xiong et al., 2013), little
information is known about the transcription profile of plants
treated with asTORis. In this study, we performed expression
profiling and used a functional analysis to reveal the functions
of TOR in the post-seedling stage in Arabidopsis. The detected
DEGs support the evolutionarily conserved TOR function of
ribosome biogenesis, autophagy, and cell growth from yeast to
animals and plants (Wullschleger et al., 2006; Xiong and Sheen,

Frontiers in Plant Science | www.frontiersin.org 2 September 2015 | Volume 6 | Article 677

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Dong et al. Expression profiling of AZD-treated Arabidopsis

2014), and reveal some novel and unique functions of TOR in
photosynthesis and phytohormone signaling in plants.

Materials and Methods

Plant Materials and Growth Conditions
Arabidopsis thaliana L. (Columbia ecotype) seeds were sterilized
using a freshly prepared solution containing 10% sodium
hypochlorite and 0.01% Triton X-100 for 5min, and then washed
five or six times with distilled water. The seeds were placed in a
beaker with distilled water and vernalized at 4◦C for 2 days, and
then maintained at 22◦C under white light for 8 h. All the growth
experiments were conducted under the conditions of 22◦C, 16 h
light/day, and 100mmol/m2/s fluorescence bulbs light.

Measurement of the Inhibitory Effects of asTORis
on Arabidopsis
AZD, TORIN1, and KU were selected for the inhibitor screening
experiment, because they were the most selective inhibitors of
TOR and they could represent the strong, moderate, and mild
asTORis according to their 50% growth inhibition doses (GI50).
The GI50 of AZD, TORIN1 and KU is 0.03–0.1 nM, 0.25 nM,
and 2.5–10 nM, respectively. The prepared seeds were incubated
on 0.76% agar plates containing half-strength Murashige-Skoog
(0.5 × MS) nutrient medium, 1% sucrose and different types
of asTORis (AZD, TORIN1, and KU, Bioshop Canada) (all the
asTORis were dissolved inDMSO) at varying concentrations (0.5,
1, 2, 5, and 10µM), with the same amount of DMSO in the
controls (Fisher ChemAlert). On the 10th day after germination,
the seedlings were photographed next to a ruler. The number
of plants with green cotyledons was counted and the cotyledon
greening rates in each plate were calculated (number of plants
with green cotyledons/total number of plants). Their primary
root lengths and shoot fresh weights were measured using ImageJ
software and an electronic balance, respectively. In addition,
plants grown for 10 days without drugs or DMSO in the plates
containing 0.5 × MS and 1% sucrose were transferred to the
same plates with inhibitors (0.5, 1, 2, 5, and 10µM) or DMSO as
controls, for 5 days. Then, the samemeasurements were collected
as described earlier. For the RNA isolations, the Arabidopsis
seedlings (10 DAG) on the 0.5 MS medium with 1% sucrose were
transplanted to the same plate with different concentrations of
AZD (0.5, 1, 2, and 5µM) or DMSO. The shoots were harvested
1 day after transplanting to different AZD concentrations, or at
different time points in the 2µM AZD treatment (0, 24, 48, 72,
96 h) and then frozen in liquid nitrogen for RNA extraction.
Total RNA was extracted with the RNAprep Pure Plant Kit
(TianGen Biotech, Beijing, China) and measured using a DS-
11 spectrophotometer (Denovix). The content of total RNA was
measured by nanodrop through adding 1µL RNA extractive
uniformly.

Sample Preparation and cDNA Library
Construction
Twenty-four hours after transplanting, three seedling plants were
chosen randomly as one replicate and three replicates were used
for each treatment, i.e., 2µM AZD or DMSO. The RNA was

treated with DNase I, and mRNA was enriched by Dynabeads
mRNA Purification Kit (Life Technologies, #61006). The mRNA
was fragmented to about 200 bp and the first strand of cDNA was
synthesized using random hexamers. The buffer, dNTPs, RNase
H, and DNA polymerase I were added to synthesize the second
strand. The double strand cDNA was purified with magnetic
beads followed by end repair and 3′-end single nucleotide
adenine (A) addition. Finally, sequencing adaptors were ligated
to the fragments, which were enriched by PCR amplification. The
quantity and quality of the sample library were assessed using an
Agilent 2100 Bioanaylzer and ABI StepOnePlus Real-Time PCR
System. The libraries were then sequenced using the Illumina
HiSeqTM 2000.

Illumina Sequencing and Data Analysis
High quality reads were obtained by removing the adaptor
sequences, reads with more than 10% unknown bases (N’s),
and low quality reads (50% of bases with a quality value ≤

10). The clean reads were mapped to the reference and/or
reference gene set using SOAP aligner/SOAP2 (Li et al., 2009)
(a max. of two mismatches was allowed in alignments). The
expression was calculated using the Reads Per kb per Million
reads (RPKM) method (Mortazavi et al., 2008). “The absolute
value of log2Ratio ≥ 1 and probability ≥ 0.8” was regarded
as the threshold to determine the significance of differential
gene expression. The clustered genes were assigned to biological
processes based on Gene Ontology (GO) using the web tool
DAVID bioinformatics resources 6.7 (http://david.abcc.ncifcrf.
gov/home.jsp) (Huang et al., 2008, 2009). Significantly enriched
GO terms in DEGs compared with the genomic background
(corrected p < 0.05) were identified based on a hypergeometric
test. KEGG pathway-based analysis was performed using Blastall
software against the KEGG database (http://www.genome.jp/
kegg). The significantly enriched metabolic pathways or signal
transduction pathways in the DEGs were also identified by
pathway enrichment analysis (corrected p < 0.05) (Kanehisa
et al., 2008). Comparisons of the DEGs in the data presented
by three previous studies (Ren et al., 2012; Caldana et al., 2013;
Xiong et al., 2013) and our data were conducted based on the
online Venny analysis (http://bioinfogp.cnb.csic.es/tools/venny_
old/index.html) (Oliveros, 2007). The total DEGs between the
RNAi line and WT included the 3- and 6-day treatments, except
the different tendencies of the DEGs (Caldana et al., 2013).
For consistency, we treated the Glucose-TOR activated genes as
down-regulated DEGs and the Glucose-TOR repressed genes as
up-regulated DEGs (Xiong et al., 2013). This was done because
the DEGs of the three remaining studies were based on the TOR-
inhibition lines compared with WT, while the DEGs of Xiong
et al. (2013) were based on a comparison between the WT and
the TOR-repression lines.

Real-time Quantitative RT-PCR (qRT-PCR)
Plant samples for qRT-PCR were grown under the same
conditions as the Illumina samples. One day after transferring
10-d-old plants to 2µM AZD, shoots were harvested and frozen
in liquid nitrogen. Total RNA was isolated using the RNAprep
Pure Plant Kit (TianGen Biotech). Reverse transcription was
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performed with 1µg of total RNA using the PrimeScript RT Kit
(TAKARA Biotech). The qRT-PCR assays using the TransStart
Top Green qPCR SuperMix (TransGen Biotech) were conducted
on a Bio-Rad CFX96 System. Primer sequences for qRT-PCR
were designed using Primer premier five software and were listed
in Supplementary Table 1.

Results

AZD8055 is the Strongest Inhibitor of TOR in
Arabidopsis
The inhibitory effects of AZD, TORIN1, and KU on plant growth
were evaluated by germinating WT Arabidopsis seeds on plates
with TOR inhibitors for 10 days. The growth of Arabidopsis
was gradually retarded with the increasing concentrations of
asTORis (Figure 1A). A dosage of 0.5µM AZD was sufficient
to inhibit seedling growth, followed by TORIN1 (1µM) and KU
(2µM). The cotyledon greening rate and rosette leaf expansion
was significantly inhibited by asTORis in a dose-dependent
manner (Figures 1A–C). Severe defects in cotyledon greening
occurred at 2µM AZD, 5µM TORIN1, and 10µM KU. AZD
was able to completely block the process of de-etiolation at 5µM.
Consistent with previous observations (Montané and Menand,
2013), the fresh weight and root length decreased with increasing
doses of AZD, TORIN1 and KU, and AZD expressed the
strongest inhibitory effects compared with TORIN1 and KU at
the early stages of Arabidopsis (Supplementary Figures 1A–H),
reflecting that TOR is instrumental to the early stages of
plant growth, as has been observed in yeast and animals
(Wullschleger et al., 2006). These results indicate that plants
fail to establish photoautotrophic growth during the seed-to-
seedling transition stage when TOR is inhibited. To further
assess the functions of TOR in the post-seedling stage, 10
DAG seedlings were transferred from 0.5× MS medium to
0.5× MS medium supplemented with an asTORi and grown
for 5 days. Consistent with the seed-to-seedling stage, the
shoot fresh weight and primary root length of 10 DAG plants
decreased gradually with increasing concentrations of AZD,
TORIN1, and KU. It should be noted that AZD also displayed
the strongest inhibitory effects at the post-seedling stage in
Arabidopsis (Supplementary Figures 2A,B). AZD was therefore
selected for the downstream expression analysis, but the optimal
concentration and time of AZD treatment need to be determined.
Since a previous study showed that TOR is a key player in
regulating the content of total RNA in Arabidopsis (Ren et al.,
2012), wemeasured the changes of total RNA content in response
to different concentration and time of AZD treatment. Higher
AZD concentrations resulted in a lower total RNA content in
10 DAG plants after growing on the medium with AZD for 1
day (Supplementary Figure 2C). Importantly, a 50% reduction
of total RNA was apparent at 2µM AZD. Furthermore, in
Arabidopsis treated with 2µM AZD, the turning point between
the green and yellow cotyledon was observed, indicating that
this concentration could maintain AZD specificity to TOR while
maximizing DEGs for the RNA-seq experiments (Figure 1).
Likewise, Longer treatment time lead to a lower total RNA
when the 10 DAG plants were treated with 2µM AZD, and

FIGURE 1 | asTORis efficiently inhibited cotyledon greening in

Arabidopsis. Plants were grown on plates with different types of asTORis at

different concentrations. (A) Cotyledons after 10 days growth with different

inhibitors (AZD, TORIN1, and KU) at different concentrations. Bars = 1 cm. (B)

Cotyledons after 10 days growth with 10µM AZD and control DMSO. Bars =

2mm. (C) Dose-dependent effect of AZD, TORIN1, and KU on the cotyledon

greening rate after 10 days growth.

the total RNA content also decreased 50% in 10 DAG seedlings
treated with 2µM AZD for 24 h (Supplementary Figure 2D),
indicating that these parameters are the optimal time and dosage
of AZD in Arabidopsis seedling treatment to minimize the
secondary/indirect effects of the drug. We therefore used the
samples of 10 DAG seedlings treated with 2µM AZD for 24 h
to perform RNA-seq experiments.

Analysis of the Transcriptional Effects of TOR
Inhibition
After trimming for quality and adapter sequences, 12.21 and
12.04 million RNA-seq reads were obtained under the treatment
of AZD and DMSO as control, respectively (Figure 2A),
of which 85.10, 83.01, and 78.35% reads could be mapped
to the annotated Arabidopsis genome, genes, and unigenes,
respectively (Figure 2B). Between the AZD and DMSO control
treatments, 2780 DEGs were found out of 24,347 genes
detected (Supplementary Table 2A); 1583 were up-regulated
and 1197 were down-regulated (Figure 2C). All of the DEGs
were annotated in the NCBI NR database (http://blast.ncbi.
nlm.nih.gov/Blast.cgi), the Arabidopsis information resource

Frontiers in Plant Science | www.frontiersin.org 4 September 2015 | Volume 6 | Article 677

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Dong et al. Expression profiling of AZD-treated Arabidopsis

FIGURE 2 | The summary of basic information for the RNA-seq data.

(A) High-quality clean reads from high-throughput sequencing. (B) Proportions

of high-quality clean reads of unmapped and/or mapped to unique genes,

multiple genes, and the genome. (C) The number of differentially expressed

genes.

(TAIR) website (https://www.arabidopsis.org/), the DAVID
bioinformatics resources 6.7 (http://david.abcc.ncifcrf.gov/home.
jsp) or in other research results (Ren et al., 2012; Caldana
et al., 2013; Xiong et al., 2013) (Supplementary Table 2B).
The most up-regulated gene was the tumor necrosis factor
receptor-associated factor (TRAF)-like family protein (396.18-
fold), followed by a gene encoding “Major facilitator superfamily
protein” (50.56-fold). Among the 15 most down-regulated
genes, there were three genes encoding the SAUR-like auxin-
responsive protein family (451.94-, 45.89-, and 37.53-fold) and
two genes encoding an expansin family protein (35.75- and
34.76-fold), which play a critical role in cell wall modifications
(Supplementary Figure 3).

One thousand and three hundred thirty three DEGs (47.95%)
were assigned to one or more of three categories: biological
process (BP), cellular component (CC), and molecular function
(MF) base on the GO assignments (Huang et al., 2008,
2009). Further categorization resulted in the identification
of 404 different GO terms and their enrichment (corrected
P < 0.05) (Supplementary Table 3). The top three enriched
GO terms were “cytosolic ribosome,” “structural constituent
of ribosome,” and “ribosome,” supporting the conserved
function of TOR in ribosome biogenesis (Martin et al.,
2004; Ren et al., 2011). A total of 96 KEGG pathways
were detected and 19 were enriched (corrected P < 0.05)
(Supplementary Table 4 and Supplementary Figure 4). The top
six enriched KEGG pathways, i.e., “ribosome,” “biosynthesis
of secondary metabolites,” “biosynthesis of unsaturated fatty
acid,” “alanine, aspartate, and glutamate metabolism,” “nitrogen
metabolism,” and “regulation of autophagy,” were significantly
affected by TOR inhibition.

DEGs Related to Cell Growth
Plant cell growth is tightly linked to ribosome biogenesis, cell
wall expansin, and photosynthesis. The ribosome, composed
of rRNAs and ribosomal proteins (RPs), is responsible for the
synthesis of proteins in all cellular organisms (Ben-Shem et al.,
2011). A differentially expressed rRNA gene was not detected in
this study, likely due to the lack of a polyA tail. However, many
DEGs associated with RP genes, including 114 down-regulated
genes and 1 up-regulated gene, were assigned to the “ribosome
pathway” (Figure 3 and Supplementary Table 5A), which was
the most enriched pathway among the 96 KEGG pathways
detected. Additionally, the regulation of ribosome biogenesis is
a key component of cell growth control, and was also enriched in
the GO biological processes (Supplementary Table 5B). Within
this GO term, the genes encoding nucleolar proteins 1, 56, and
58 (NOP1, 56 and 58), U4/U6 small nuclear ribonucleoprotein
(SNU13), and H/ACA ribonucleoprotein complex subunit four
(DKC1) were down-regulated 3.03-, 2.14-, 2.00-, 3.03-, and 2.64-
fold, respectively. These ribosomal core proteins combine with
small nucleolar RNAs (snoRNAs, also downregulated) to form
small nucleolar ribonucleoprotein particles (snoRAPs) that play
a crucial role in ribosome biogenesis by guiding the processing
and modification of pre-ribosomal RNA.

Cell wall elongation and expansin is another limiting
factor for cell growth (Martin et al., 2001). In the classic
model of cell wall elongation, expansin proteins loosen the
cell wall by permitting the microfibril matrix network to
slide. Then, the xyloglucan (XG) backbone is cut by the
xyloglucan endotransglycosylase/hydrolase (XTE/XTH) and the
fragments are transferred either to another XG or to water.
Consequentially, the monosaccharides are connected to the end
of the polysaccharides to synthesize the cellulose chains by
cellulose synthase (CESA). In this study, a total of 46 DEGs
were categorized in the GO-BP “cell wall organization” term
(Supplementary Table 6A). For example, nine alpha-expansin
genes and one beta-expansin gene were uniformly down-
regulated by a 10.41- to 39.12-fold change, respectively, and
11 XTH and 3 CSL (CESA like) genes were differentially
regulated. It is noteworthy that 9 DEGs were observed in cell
wall thickening and 12 DEGs were detected in cell wall loosening
(Supplementary Tables 6B,C).

Photosynthesis functions as one of the most important
anabolic processes in plants, and total of 79 photosynthesis-
associated DEGs were detected in this study (Table 1). Thirty
DEGs were enriched in the KEGG “carbon fixation in
photosynthetic organisms” pathway (Supplementary Figure 5).
Of these 30 genes, two thirds of the DEGs were down-regulated.
For example, four genes encoding the rate-limiting enzyme
Rubisco small subunit (RBCS) family protein were uniformly
down-regulated from a 3.14- to a 4.47-fold change. With regard
to the light signaling pathway, there were 32 down-regulated
marker genes with fold changes ranging from 2.10 to 5.43.
One of the three up-regulated genes (AT5G13800) is involved
in chlorophyll breakdown. In addition, 13 down-regulated
genes and 1 up-regulated gene were assigned to chlorophyll
biosynthesis. Consistently, the leaf etiolating occurred when 10
DAG seedlings were subjected to 2µM AZD treatment for
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FIGURE 3 | TOR remodeled the gene expression profile of ribosome biosynthesis. The schematic diagram of ribosome structure and its components are

shown. Red boxes, up-regulated genes; green boxes, down-regulated genes.

3 days and the entire seedlings were bleached after 5 days
AZD treatment (Figure 4A), indicating that the DEGs related
to the photosynthesis and chloroplast were coupled with leaf
color. To further confirm these observations, 10 key marker
genes for chloroplast biogenesis and photosynthesis were selected
for real-time PCR. Seven positive regulators of the chloroplast
were significantly down-regulated while three negative regulators
of photosynthesis were up-regulated (Figure 4B) after 24 h
treatment with 2µM AZD. These observations demonstrated
that TOR plays a crucial role in chloroplast formation and
photosynthesis in the post-seedling stage of Arabidopsis and
provided insight into TOR signaling during plant development.

DEGs Involved in the Regulation of Autophagy
and Ubiquitination
Autophagy is a lysosome-dependent pathway for the turnover
and recycling of intracellular large macromolecules and whole
organelles. In this study, the “regulation of autophagy” KEGG
pathway was one of the most enriched pathways in the RNA-
seq data (Figure 5A and Supplementary Table 4). A total of

21 differentially expressed autophagy-associated genes were
observed under TOR inhibition and most were significantly
up-regulated (Figure 5B). For example, the genes encoding
vacuolar protein sorting 15 and 34 (VPS15 and 34) were
markedly up-regulated; these are protein kinases essential
for autophagosome formation. Our results strongly support
the previous observations in which TOR negatively regulated
autophagy in yeast and animals (Liu and Bassham, 2010; Perez-
Perez et al., 2010), suggesting that the interconnections between
TOR signaling and autophagy are evolutionarily conserved
across eukaryotic species.

The ubiquitin (Ub)/26S proteasome system (UPS) is
involved in protein recycling in the cell. In the UPS, specific
protein substrates are ubiquitinated and then degraded by
the proteasome. Ub is covalently attached to target proteins
through the sequential action of three enzymes: ubiquitin-
activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and
ubiquitin-protein ligase (E3). The KEGG pathway “ubiquitin
mediated proteolysis” was affected by the treatment of AZD
(Supplementary Figure 6 and Supplementary Table 7). A total
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TABLE 1 | The DEGs related to photosynthesis in Arabidopsis under the condition of TOR inhibition with AZD.

GeneID Putative function log2FC Probability

LIGHT REACTION

AT3G21055 Photosystem II subunit T (PSBTN) −1.63 0.83

AT4G21280 Photosystem II subunit QA (PSBQA) −1.61 0.82

AT1G44575 Photosystem II subunit S (PSBS) −1.59 0.81

AT1G06680 Photosystem II subunit P-1 (PSBP-1) −1.07 0.85

AT4G28660 Photosystem II reaction center PSB28 −1.59 0.89

AT1G67740 Photosystem II core complex PSBY −1.08 0.85

AT1G05385 Low PSII accumulation 19, LPA19, PSB27-H1 −1.16 0.81

AT1G71500 Photosystem B protein 33, PSB33 −1.03 0.84

AT1G15820 Light harvesting complex photosystem II subunit 6 (LHCB6) −1.53 0.81

AT5G54270 Light-harvesting chlorophyll B-binding protein 3 (LHCB3) −1.07 0.85

AT5G11450 Mog1/PsbP/DUF1795-like photosystem II reaction center PsbP family −1.56 0.81

AT5G27390 Mog1/PsbP/DUF1795-like photosystem II reaction center PsbP family protein −1.64 0.81

ATCG00210 Electron transporter, transferring electrons within cytochrome b6/f complex of photosystem II activity (YCF6) −2.44 0.83

AT5G44650 YCF3-interacting protein 1, Y3IP1 −1.25 0.85

AT1G52230 Photosystem I subunit H-2 (PSAH-2) −1.32 0.87

AT3G16250 Photosynthetic NDH subcomplex B3 (PNSB3) −1.10 0.84

AT1G19150 Photosystem I light harvesting complex gene 6 (LHCA6) −1.68 0.83

AT1G49975 Involved in photosynthesis −1.25 0.85

AT1G55370 NDH-dependent cyclic electron flow 5 (NDF5) −1.07 0.81

AT1G29930 Chlorophyll A/B binding protein 1 (CAB1) −1.98 0.84

AT1G29920 Chlorophyll A/B binding protein 2 (CAB2) −1.40 0.86

AT1G29910 Chlorophyll A/B binding protein 3 (CAB3) −2.34 0.86

AT4G17600 Light-harvesting chlorophyll a/b-binding (LHC) proteins (LIL3:1) −1.50 0.81

AT5G13800 Pheophytinase (PPH) involved in chlorophyll breakdown 2.14 0.91

AT5G35220 Ethylene-dependent gravitropism-deficient and yellow-green 1 (EGY1) −1.12 0.83

AT1G02280 Translocon at the outer envelope membrane of chloroplasts 33 (TOC33) −1.37 0.86

AT3G46740 Translocon at the outer envelope membrane of chloroplasts 75-III (TOC75-III) −1.55 0.81

AT4G03320 Translocon at the inner envelope membrane of chloroplasts 20-IV (TIC20-IV) 2.88 0.87

AT5G16620 Translocon at the inner envelope membrane of chloroplasts 40 (TIC40) −1.15 0.83

AT3G52380 Chloroplast RNA-binding protein 33 (CP33) −1.83 0.84

AT1G09340 Chloroplast RNA binding (CRB) −1.65 0.83

AT5G49910 Chloroplast heat shock protein 70-2 (CPHSC 70-2) −1.17 0.86

AT1G32080 LrgAB/CidAB protein involved in chloroplast development −1.20 0.85

AT3G51890 Clathrin light chain 3 (CLC3) 1.73 0.83

AT1G79850 Pigment defective 347 (PDE347) −1.49 0.81

CARBON FIXATION

AT2G01290 Ribose-5-phosphate isomerase 2 (RPI2) −1.01 0.82

AT1G71100 Ribose 5-phosphate isomerase 1.13 0.84

AT3G04790 Ribose 5-phosphate isomerase, type A protein −1.50 0.88

AT2G01290 Ribose 5-phosphate isomerase −1.01 0.82

AT3G55800 Sedoheptulose-1,7-bisphosphatase (SBPase) −1.31 0.87

AT4G11280 1-Aminocyclopropane-1-carboxylate (ACC) synthase 6 (ACS6) 2.04 0.90

AT2G21330 Fructose-bisphosphate aldolase 1 (FBA1); −1.74 0.90

AT4G38970 Fructose-bisphosphate aldolase 2 (FBA2) −1.15 0.86

AT4G26530 Fructose-bisphosphate aldolase 5 (FBA5) −2.11 0.91

AT4G26520 Fructose-bisphosphate aldolase 7 (FBA7) −1.35 0.84

AT3G54050 Fructose 1,6-bisphosphate phosphatase −1.14 0.86

AT1G53240 Mitochondrial malate dehydrogenase 1 (MMDH1) −1.80 0.89

AT3G12780 Phosphoglycerate kinase 1 (PGK1) −1.14 0.86

(Continued)
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TABLE 1 | Continued

GeneID Putative function log2FC Probability

AT5G11520 Aspartate aminotransferase 3 (ASP3) 1.02 0.83

AT5G11670 NADP-malic enzyme 2 (NADP-ME2) 1.53 0.88

AT5G56350 Pyruvate kinase family protein 1.31 0.85

AT1G06570 4-hydroxyphenylpyruvate dioxygenase 2.14 0.91

AT4G15530 Pyruvate orthophosphate diskinase (PPDK) 2.69 0.93

AT4G21210 Pyruvate orthophosphate diskinase (PPDK) −1.25 0.86

AT1G21440 Phosphoenolpyruvate carboxylase family protein −2.18 0.90

AT5G17380 Thiamine pyrophosphate dependent pyruvate decarboxylase family protein 1.47 0.88

AT5G54960 Pyruvate decarboxylase-2 (PDC2) 1.62 0.89

AT3G60750 Transketolase 1 (TKL1) −1.13 0.86

AT1G67090 Rubisco small subunit 1A (RBCS1A) −1.65 0.83

AT5G38430 Rubisco small subunit 1B (RBCS1B) −2.16 0.85

AT5G38420 Rubisco small subunit 2B (RBCS2B) −1.84 0.84

AT5G38410 Rubisco small subunit 3B (RBCS3B) −1.67 0.83

AT2G39730 Rubisco activase (RCA) −1.75 0.90

ATCG00490 Rubisco large subunit (RBCL) −1.27 0.82

AT3G62090 Phytochrome interacting factor 6 ( PIF6) 1.70 0.82

CHLOROPHYLL BIOSYNTHESIS

AT4G27440 Protochlorophyllide oxidoreductase B (PORB) −2.11 0.91

AT5G08280 Porphobilinogen deaminase (PBGD) −1.54 0.88

AT3G59400 Genomes uncoupled (GUN4) −1.40 0.86

AT3G48730 Glutamate-1-semialdehyde 2,1-aminomutase 2 (GSA2) −1.76 0.88

AT2G40490 Uroporphyrinogen decarboxylase (HEME2) −1.62 0.88

AT3G14930 Uroporphyrinogen decarboxylase (HEME1) −1.38 0.85

AT5G45930 Second Chl I gene (CHLI2) −1.37 0.85

AT5G63570 Homology to glutamate-1-semialdehyde 2,1-aminomutase (GSA1) −1.32 0.86

AT3G56940 Copper response deffect 1(CRD1) −1.11 0.85

AT3G51820 Chlorophyll synthase (CHLG) −1.44 0.86

AT1G03475 Oproporphyrinogen III oxidase (HEMF1) −1.31 0.86

AT5G13630 Genomes uncoupled (GUN5) −1.28 0.86

AT4G25080 Magnesium-protoporphyrin IX methyltransferase (CHLM) −1.15 0.85

AT5G26030 Ferrochelatase I (FC1) 1.12 0.83

of 58 DEGs related to ubiquitination were detected, including
48 up-regulated and 10 down-regulated genes. Nine DEGs
encoding E2 conjugating enzymes were up-regulated from fold
changes of 2.15–3.48. Fourty-two DEGs (35 up-regulated and
7 down-regulated genes) have relationships with E3 ubiquitin-
protein ligase. The DEGs related to the UPS showed that this
process was activated under TOR inhibition, which opened the
door to investigate the genetic links between TOR signaling and
ubiquitination in future research.

DEGs Participated in Phytohormone Signaling
Pathways
Plant hormones are small molecular products that regulate
many plant developmental processes at low concentrations
(Rubio et al., 2009). We mainly focused on eight types of
phytohormones, including auxin, gibberellin (GA), cytokinin
(CK), brassinosteroid (BR), salicylic acid (SA), abscisic acid
(ABA), ethylene (ET), and jasmonic acid (JA). Although the
detailed mechanisms of how hormones modulate plant growth

and development are far from being completely understood,
the key components of all classic plant hormone pathways
have been well characterized. We therefore sorted the DEGs
for the phytohormone-related genes according to gene function,
such as upstream signaling effectors, downstream responsive
genes, or hormone transporters (Table 2). A total of 94 DEGs
(59 up-regulated and 35 down-regulated genes) were identified
to be involved in all eight phytohormone signal transduction
pathways. The number of DEGs in the auxin signal transduction
pathway was the highest (36 DEGs), followed by the ABA
signal transduction pathway (19 DEGs), and the BR signal
transduction pathway was the fewest (2 DEGs). Of the 59 up-
regulated genes, the fold changes varied from 2.00 (BZIP25,
AT3G54620) to 19.43 (JAZ7, AT2G34600). Most of the up-
regulated genes were involved in the ABA, ET, JA, and SA signal
pathways. For example, in the ET signaling pathway, the genes
encoding the ethylene response factor, the ethylene responsive
element-binding factor, and the ethylene-forming enzyme were
all up-regulated from 3.56- to 13.74-fold. Similarly, in the ABA
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FIGURE 4 | AZD induced photosynthesis-related phenotypic and

molecular changes in Arabidopsis. Plants were grown for 10 days without

TOR inhibitors or DMSO, and then transferred to plates with TOR inhibitors and

DMSO as the control. (A) Seedlings treated with AZD (2µM) on 0, 3, and 5

days after transplanting. (B) Gene expression levels of photosynthesis-related

genes in the 2-µM AZD treatment for 1 day growth after transplanting

compared with the DMSO treatment both in the real time PCR and RNA-seq

data. The genes associated with the Chlorophyll A/B binding proteins (CAB),

Rubisco small subunit (RBCS), Rubisco large subunit (RBCL), Photosystem II

subunit S (PSBS), Pheophytinase (PPH), Ferrochelatase I (FC1), and

Phytochrome interacting factor 6 (PIF6) were examined.

signaling pathway, there were 18 DEGs that were up-regulated
from 2.03- to 14.22-fold. Of the 35 down-regulated expressed
genes, the gene (AT3G03820) encoding small auxin upregulated
RNA 29 (SAUR29) had the highest fold change (630.35, Log2ratio
= –9.30), while the gene (AT2G46690) encoding SAUR32
exhibited the lowest absolute fold change (2.22, Log2ratio =

–1.15). Most of the down-regulated genes were involved in
the auxin, CK, BR, and GA signal pathways. For example,
in the auxin signal pathway, there were 22 down-regulated
DEGs encoding SAUR gene families, auxin influx and efflux
carriers, and auxin responsive transcription factors. To further
confirm these observations, 21 key marker genes involved in
the phytohormone signaling pathway were selected for real-time
PCR, and the expression level were nearly the same as that in
the RNA-seq data (Supplementary Figure 7). It is well known
that TOR acts as the major sensor of growth factors in yeast and
animals (Wullschleger et al., 2006), and here we provide some
important initial clues in plants.

Discussion

In Arabidopsis, the direct effects of rapamycin, KU, TORIN1,
and AZD against TOR kinase activity were recently verified by

independent groups (Ren et al., 2012; Montané and Menand,
2013; Schepetilnikov et al., 2013; Xiong et al., 2013). Montané
and Menand (2013) clearly demonstrated that AZD acted
in a TOR gene dose-dependent manner in Arabidopsis by
combining pharmacological and genetic approaches. In addition,
the GI50 of AZD (0.6µM) was much lower than that of KU
(3µM) and WYE-354 (10µM) (Montané and Menand, 2013).
Furthermore, AZD was screened as the strongest asTORis in
Arabidopsis compared with TORIN1 and KU (Figure 1 and
Supplementary Figures 1, 2). Altogether, these results suggest
that AZD is a more selective and potent TOR inhibitor than
other asTORis. A total of 2780 DEGs were identified; 47.95%
of the DEGs had at least one GO category, and 19 of the
96 KEGG pathways were enriched (Supplementary Tables 2–
4 and Supplementary Figure 4). Compared with the previous
three independent studies (Ren et al., 2012; Caldana et al., 2013;
Xiong et al., 2013), the highest number of DEGs (2760) was
identified in this study, followed by Xiong et al. (2362), Ren
et al. (915), and Caldana et al. (725) (Figure 6A). This study
shared the most overlapping DEGs (694) with those of Xiong
et al. (2013), and 91% DEGs showed a similar tendency of
expression changes (Figures 6B–D and Supplementary Table 8).
A total of 346 overlapping DEGs were found between this study
and those presented by Ren et al. (2012). 92.7% of these DEGs
showed the identical tendency of expression changes, including
236 up-regulated and 85 down-regulated genes (Figures 6B–D
and Supplementary Table 8). Two hundred and ninety-six DEGs
were consistent with Caldana et al. (2013) and 276 out of
296 DEGs (93.2%) displayed the identical trend of expression
changes (Figures 6B–D and Supplementary Table 8). The DEGs
associated with the cell wall, ribosomes, and cell growth in
this study was highly consistent with previous observations
(Supplementary Table 9) (Ren et al., 2012; Caldana et al.,
2013; Xiong et al., 2013). These results suggest that different
approaches, conditions, materials, and treatments can result in
similar expression (Moreau et al., 2012; Ren et al., 2012; Caldana
et al., 2013; Xiong et al., 2013), indicating that TOR signaling
is an evolutionarily conserved regulator of plant growth and
development.

The activity of TOR is tightly regulated by growth factors
in yeast and animals (Hsu et al., 2011; Xiong et al., 2013).
Phytohormones are regarded as major plant growth factors.
During the last decade, the metabolism, transport, perception,
and signaling pathways of phytohormones and their regulation
of plant growth, development, senescence and immune signaling
network have been extensively studied (Rubio et al., 2009;
Oliva et al., 2013; Vleesschauwer et al., 2014; Wang et al.,
2015). However, the crosstalk between TOR signaling and
phytohormones is largely unknown in plants. A recent study
reported that TOR integrates auxin and nutrient signaling to
regulate translation reinitiation and the selective translation
of key transcriptional regulators (Schepetilnikov et al., 2013).
TOR interacts with auxin and could thus interact with other
phytohormones, such as CK, GA, BR, Eth, JA, ABA, and SA.
Interestingly, upstream effectors and downstream response genes
for all eight phytohormones were differentially expressed after
24 h of AZD treatment (Table 2). Most of the up-regulated
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FIGURE 5 | Relationship between TOR and the autophagy pathway. (A) Expression changes of genes in the autophagy pathway. Red boxes, up-regulated

genes; green boxes, down-regulated genes. (B) The DEGs involved in the autophagy pathway. The genes encoding CBL-interacting protein kinase (CIPK), SNF1

kinase homolog (KIN), Plant u-box (PUB), Vacuolar protein sorting (VPS), and Autophagy (ATG) were detected.

genes were involved in the ABA, Eth, JA, and SA signal
pathways, while most down-regulated genes were involved
in the auxin, CK, BR, and GA signal pathways. This is in
agreement with a common opinion that auxin, GA, CK, and
BR are accelerators and the others are decelerators of shoot
growth.

Taken together, the results from this study reveal that
plants fail to establish photoautotrophic growth during the
seed-to-seedling transition stage when TOR is inhibited by
asTORis. TOR plays a crucial role in chloroplast formation
and photosynthesis in the post-seedling stage in Arabidopsis.
The expression analysis supports a conserved function of TOR

in ribosome biogenesis, cell wall elongation, and autophagy,
and provides new insights of the involvement of TOR in
photosynthesis and phytohormone signaling. Thus, this study
provides a platform to further study the downstream targets of
TOR in Arabidopsis.
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TABLE 2 | Differentially expressed genes related to plant hormone signal transduction pathways.

Gene ID Putative function log2FC P-value

AUXIN SIGNAL TRANSDUCTION

AT4G34770 Small auxin upregulated RNA 1 (SAUR1) −2.14 0.81

AT4G34790 Small auxin upregulated RNA 3 (SAUR3) −2.34 0.82

AT2G21210 Small auxin upregulated RNA 6 (SAUR6) −3.43 0.90

AT4G38840 Small auxin upregulated RNA 14 (SAUR14) −3.67 0.90

AT4G38860 Small auxin upregulated RNA 16 (SAUR16) −3.70 0.91

AT5G18020 Small auxin upregulated RNA 20 (SAUR20) −5.23 0.91

AT5G18030 Small auxin upregulated RNA 21 (SAUR21) −5.49 0.92

AT5G18080 Small auxin upregulated RNA 24 (SAUR24) −3.43 0.85

AT3G03820 Small auxin upregulated RNA 29 (SAUR29) −9.30 0.90

AT4G00880 Small auxin upregulated RNA 31 (SAUR31) −1.42 0.85

AT2G46690 Small auxin upregulated RNA 32 (SAUR32) −1.15 0.84

AT2G45210 Small auxin upregulated RNA 36 (SAUR36) 1.98 0.83

AT1G16510 Small auxin upregulated RNA 41 (SAUR41) 2.20 0.82

AT4G34760 Small auxin upregulated RNA 50 (SAUR50) −2.51 0.85

AT1G75580 Small auxin upregulated RNA 51 (SAUR51) −2.19 0.82

AT5G50760 Small auxin upregulated RNA 55 (SAUR55) 3.41 0.89

AT3G53250 Small auxin upregulated RNA 57 (SAUR57) −1.61 0.81

AT1G20470 Small auxin upregulated RNA 60 (SAUR60) −2.03 0.81

AT1G29450 Small auxin upregulated RNA 64 (SAUR64) −2.89 0.82

AT1G56150 Small auxin upregulated RNA 71 (SAUR71) 1.89 0.82

AT3G12830 Small auxin upregulated RNA 72 (SAUR72) 1.58 0.85

AT5G20820 Small auxin upregulated RNA 76 (SAUR76) −4.48 0.82

AT4G37390 Auxin-responsive GH3 family protein (GH3.2) 2.44 0.81

AT4G27260 Auxin-responsive GH3 family protein (GH3.5) 2.66 0.87

AT3G59900 Auxin-regulated gene involved in organ size (ARGOS) 1.42 0.84

AT5G35735 Auxin-responsive family protein 1.10 0.85

AT2G33860 Auxin response transcription factor 3 (ARF3) −1.41 0.80

AT2G21050 Like auxin resistant 2 (LAX2), auxin influx carrier −2.66 0.83

AT2G38120 Auxin resistant 1 (AUX1), auxin influx transporter −1.25 0.83

AT3G02875 IAA-leucine resistant 1 (ILR1) 1.36 0.81

AT1G51760 IAA-alanine resistant 3 (IAR3) 1.76 0.89

AT1G70940 PIN-formed 3 (PIN3), auxin efflux carrier family protein −1.12 0.83

AT1G76520 PIN-likes 3 (PILS3), auxin efflux carrier family protein 1.60 0.89

AT2G17500 PIN-likes 5 (PILS5), auxin efflux carrier family protein 1.91 0.89

AT3G10870 Methyl esterase 17 (MES 17), Methyl IAA esterase −1.78 0.80

AT5G54490 PINOID-binding protein 1 (PBP1) 1.29 0.81

CYTOKININ (CK) SIGNAL TRANSDUCTION

AT3G16857 Response regulator 1 (ARR1) 1.16 0.84

AT4G16110 Response regulator 2 (ARR2) 2.13 0.83

AT1G10470 Response regulator 4 (ARR4) −1.72 0.82

AT5G62920 Response regulator 6 (ARR6) −4.34 0.88

AT1G19050 Response regulator 7 (ARR7) −2.07 0.82

AT3G57040 Response regulator 9 (ARR9) −2.28 0.82

AT3G61630 Cytokinin response factor 6 (CRF6) 1.21 0.83

GIBBERELLIN (GA) SIGNAL TRANSDUCTION

AT1G75750 GAST1 protein homolog 1 (GASA1) 1.58 0.81

AT5G15230 GAST1 protein homolog 4 (GASA4) −2.86 0.87

AT1G74670 GA-stimulated Arabidopsis 6 (GASA6) −3.64 0.91

AT3G10185 Gibberellin-regulated GASA/GAST/Snakin family protein −4.04 0.89

AT3G63010 GA insensitive dwarf 1B (GID1B), Probable gibberellin receptor GID1L2 1.67 0.81

(Continued)
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TABLE 2 | Continued

Gene ID Putative function log2FC P-value

AT1G02400 Gibberellin 2-oxidase 6 (GA2OX6) 2.38 0.80

BRASSINOSTERIOD (BR) SIGNAL TRANSDUCTION

AT1G70210 CYCLIN D1 (CYCD1) −3.27 0.87

AT4G34160 CYCLIN D3 (CYCD3) −1.73 0.81

ABSCISIC ACID (ABA) SIGNAL TRANSDUCTION

AT2G30020 Protein phosphatase 2C 25 (PP2C25) 1.02 0.82

AT4G33920 Protein phosphatase 2C family protein (PP2C) 2.00 0.84

AT1G07630 Protein phosphatase 2C like gene 1.15 0.80

AT4G28400 Protein phosphatase 2C family protein (PP2C) 1.25 0.82

AT4G31860 Protein phosphatase 2C family protein (PP2C) 1.42 0.86

AT5G59220 Protein phosphatase 2C family protein (PP2C) 1.62 0.85

AT5G59220 Highly ABA-induced PP2C gene 1 (HAI1) 1.66 0.80

AT5G08350 ABA-responsive protein-related 2.69 0.86

AT3G02140 ABI five-binding protein 2 family protein (AFP2) 2.16 0.84

AT5G13630 ABA-binding protein (ABAR) −1.28 0.86

AT5G05440 Regulatory component of ABA receptor 8 (RCAR8) 1.65 0.82

AT3G45640 Mitogen-activated protein (MAP) kinase 3 (MPK3) 2.66 0.87

AT4G11330 Mitogen-activated protein (MAP) kinase 5 (MPK5) 1.86 0.81

AT1G01560 Mitogen-activated protein (MAP) kinase 11 (MPK11) 2.26 0.85

AT2G01450 Mitogen-activated protein (MAP) kinase 17 (MPK17) 1.25 0.85

AT1G73500 Mitogen-activated protein (MAP) kinase kinase 9 (MKK9) 1.66 0.82

AT4G08500 Mitogen-activated protein (MAP) kinase kinase kinase 1 (MAPKKK1) 1.43 0.84

AT5G67080 Mitogen-activated protein (MAP) kinase kinase kinase 19 (MAPKKK19) 3.83 0.88

AT3G55270 Mitogen-activated protein (MAP) kinase phosphatase 1 (MKP1) 1.17 0.84

ETHYLENE (ET) SIGNAL TRANSDUCTION

AT1G05010 Ethylene-forming enzyme (EFE) 2.12 0.85

AT1G28370 ERF domain protein 11 (ERF11) 2.60 0.91

AT3G50260 Cooperatively regulated by ethylene and jasmonate 1 CEJ1) 3.48 0.90

AT3G23240 Ethylene response factor 1 (ERF1) 3.78 0.91

AT3G23150 Ethylene response factor 2 (ETR2) 3.84 0.94

AT5G61600 Ethylene response factor 104 (ERF104) 2.55 0.87

AT4G17500 Ethylene responsive element binding factor 1 (ERF-1) 2.74 0.87

AT5G47220 Ethylene responsive element binding factor 2 (ERF-2) 1.97 0.84

AT5G47230 Ethylene responsive element binding factor 5 (ERF-5) 1.83 0.83

AT4G17490 Ethylene responsive element binding factor 6 (ERF-6) 3.03 0.88

SALICYLIC ACID (SA) SIGNAL TRANSDUCTION

AT1G22070 TGA1A-related gene 3 (TGA3) 1.42 0.85

AT1G77920 TGACG sequence-specific binding protein 7 (TGA7) 2.04 0.84

AT3G54620 BZIP transcription factor family protein 25 (BZIP25) 1.00 0.82

AT2G42380 BZIP transcription factor family protein 34 (BZIP34) −2.51 0.84

AT1G42990 BZIP transcription factor family protein 60 (BZIP60) 1.87 0.83

AT3G58120 BZIP transcription factor family protein 61 (BZIP61) −1.65 0.81

AT5G28770 BZIP transcription factor family protein 63 (BZIP63) 1.48 0.85

JASMONIC ACID (JA) SIGNAL TRANSDUCTION

AT2G34600 Jasmonate-zim-domain protein 7 (JAZ7), TIFY5B 4.28 0.91

AT4G32570 TIFY domain protein 8 (TIFY8) −1.21 0.82

AT1G19180 Jasmonate-zim-domain protein 1 (JAZ1), TIFY10A 1.74 0.89

AT3G50260 Cooperatively regulated by ethylene and jasmonate 1(CEJ1) 3.48 0.90

AT1G51760 Jasmonic acid responsive 3 (JR3) 1.76 0.89

AT3G55970 Jasmonate-regulated gene 21 (JRG21) 2.55 0.85

AT5G27280 Zim17-type zinc finger protein 1.80 0.89
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FIGURE 6 | Comparisons to other studies, i.e., (Ren et al., 2012; Caldana et al., 2013; Xiong et al., 2013). (A) The number of DEGs. (B) The

number of total DEGs shared among the four studies is represented by overlapping circles. (C) The number of up-regulated genes shared among the

four studies is represented by overlapping circles. (D) The number of down-regulated genes shared among the four studies is represented by overlapping

circles.
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Supplementary Figure 1 | asTORis efficiently inhibited Arabidopsis shoot

and root growth. Plants were grown directly on plates with different types of

asTORis at different concentrations. (A–F) Whole plants after 10 days growth on

different concentrations of AZD. Bars = 1 cm. (G) Dose-response curves of AZD,

TORIN1, and KU for shoot fresh weight after 10 days growth with inhibitors. (H)

Dose-response curves of AZD, TORIN1, and KU for primary root length after

growing for 10 days with inhibitors.

Supplementary Figure 2 | asTORis efficiently inhibited the seedling growth

of Arabidopsis. Plants were grown for 10 days without TOR inhibitors or DMSO,

and then transferred to plates with TOR inhibitors and DMSO as the control.

(A) Dose-response curves of AZD, TORIN1, and KU for shoot fresh weight for 5

days growth after transplanting. (B) Dose-dependent effect of AZD, TORIN1, and

KU on primary root length for 5 days growth after transplanting. (C) The RNA

content of Arabidopsis seedlings treated with AZD at different concentrations for 1

day growth after transplanting. (D) The RNA content of Arabidopsis seedlings at

different time points after transferring to the plates with AZD (2µM).

Supplementary Figure 3 | The top 15 up- and down-regulated genes. 1,

TRAF-like family protein; 2, Major facilitator superfamily protein; 3, Peroxidase

superfamily protein; 4, Integrase-type DNA-binding superfamily protein; 5,

PEBP-like protein; 6, Proline-rich extensin-like family protein; 7, Peroxidase

superfamily protein; 8, PLC-like phosphodiesterases superfamily protein; 9,

Unknown protein; 10, Sugar transporter ERD6-like 16; 11, Cytochrome P450,

family 81; 12, Senescence-associated gene 12; 13, Myb domain protein 90; 14,

Myo-inositol oxygenase; 15, Proline dehydrogenase; 16, Expansin A15; 17,

Expansin B3; 18, SAUR-like auxin-responsive protein family; 19, SAUR-like

auxin-responsive protein family; 20, Alkeny hydroxalkyl producing 2; 21, Lipid

transfer protein 4; 22, Anter-specific proline-rich protein APG; 23, Late

embryogenesis abundant protein family protein; 24, Unknown protein; 25,

EamA-like transporter family protein; 26, Myb domain protein 76; 27, Zinc-binding

dehydrogenase family protein; 28, Myb domain protein 29; 29, Mto 1 responding

down 1; 30, SAUR-like auxin-responsive protein family.

Supplementary Figure 4 | Scatter plot of KEGG pathway enrichment

statistics from the Arabidopsis seedlings treated with AZD and DMSO.

Rich Factor, the ratio of the number of DEGs to the number of background genes

in a KEGG pathway; corrected Q < 0.05 as the condition of enrichment.

Supplementary Figure 5 | The expression changes of the genes in the

carbon fixation pathway in photosynthetic organisms. Red boxes indicate

up-regulated genes and green boxes represent down-regulated genes.

Supplementary Figure 6 | The expression changes of the genes in the

ubiquitin mediated proteolysis pathway. Red boxes indicate up-regulated

genes and green boxes represent down-regulated genes.

Frontiers in Plant Science | www.frontiersin.org 13 September 2015 | Volume 6 | Article 677

http://www.letpub.com
http://journal.frontiersin.org/article/10.3389/fpls.2015.00677
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Dong et al. Expression profiling of AZD-treated Arabidopsis

Supplementary Figure 7 | Expression levels of phytohormone associated

genes in the 2-µM AZD treatment for 24h compared with the DMSO

treatment. Small auxin up-regulated RNA (SAUR), Response regulator (ARR),

GA-stimulated Arabidopsis (GASA), CYCLIN D1 (CYCD1), ABA-responsive

protein-related (ABR), ABI five-binding protein 4 family protein (AFP4), Protein

phosphatase 2C family protein (PP2C), Mitogen-activated protein (MAP) kinase

kinase kinase 19 (MAPKKK19), Ethylene response factor 1 (ERF1), Ethylene

response factor 2 (ETR2), Cooperatively regulated by ethylene and jasmonate 1

(CEJ1).

Supplementary Table 1 | Primers used for real-time PCR.

Supplementary Table 2 | (A) The total detected genes in the RNA-seq data. (B)

The total differentially expressed genes (DEGs) and their functions. The criteria of

DEGs: the /log2 ratio/≥1 and the Probability value (P-value for hypothesis testing)

of 0.8 or more.

Supplementary Table 3 | (A) The Gene Ontology (GO)-cellular component

assignments and their enrichment. (B) The Gene Ontology (GO)-molecular

function assignments and their enrichment. (C) The Gene Ontology

(GO)-biological process assignments and their enrichment.

Supplementary Table 4 | Summary of KEGG pathway in Arabidopsis

seedling with AZD treatment.

Supplementary Table 5 | (A) The DEGs involved in the ribosome pathway

(KEGG pathway). (B) The DEGs involved in the GO biological process term

“ribosome biogenesis.”

Supplementary Table 6 | (A) The DEGs involved in the GO biological process

term “cell wall organization.” (B) The DEGs involved in the GO biological process

term “cell wall thicking.” (C) The DEGs involved in the GO biological process term

“cell wall loosing.”

Supplementary Table 7 | The DEGs involved in the KEGG Pathway

“ubiquin mediated proteolysis.”

Supplementary Table 8 | The number of the same genes with

similar regulation tendency among our data and previous

researches (Ren et al., 2012; Caldana et al., 2013 and Xiong

et al., 2013).

Supplementary Table 9 | (A) The same DEGs detected both in our data and

Caldana et al. (2013). (B) The same DEGs detected both in our data and Ren

et al. (2012). (C) The same DEGs detected both in our data and Xiong et al.

(2013). (D) The same DEGs detected both in Caldana et al. (2013) and Xiong

et al. (2013). (E) The same DEGs detected both in Ren et al. (2012) and Xiong

et al. (2013). (F) The same DEGs detected both in Ren et al. (2012) and

Caldana et al. (2013).
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