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Tooth loss is associated with altered sensory, motor, cognitive and emotional functions.

These changes vary highly in the population and are accompanied by structural and

functional changes in brain regions mediating these functions. It is unclear to what

extent this variability in behavior and function is caused by genetic and/or environmental

determinants and which brain regions undergo structural plasticity that mediates these

changes. Thus, the overall goal of our research program is to identify genetic variants

that control structural and functional plasticity following tooth loss. As a step toward

this goal, here our aim was to determine whether structural magnetic resonance

imaging (sMRI) is sensitive to detect quantifiable volumetric differences in the brains

of mice of different genetic background receiving tooth extraction or sham operation.

We used 67 adult female mice of 7 strains, comprising the A/J (A) and C57BL/6J

(B) strains and a randomly selected sample of 5 of the 23 AXB-BXA strains (AXB1,

AXB4, AXB24, BXA14, BXA24) that were produced from the A and B parental mice

by recombinations and inbreeding. This panel of 25 inbred strains of genetically

diverse inbred strains of mice is used for mapping chromosomal intervals throughout

the genome that harbor candidate genes controlling the phenotypic variance of any

trait under study. Under general anesthesia, 39 mice received extraction of 3 right

maxillary molar teeth and 28 mice received sham operation. On post-extraction day

21, post-mortem whole-brain high-resolution sMRI was used to quantify the volume

of 160 brain regions. Compared to sham operation, tooth extraction was associated

with a significantly reduced regional and voxel-wise volumes of cortical brain regions

involved in processing somatosensory, motor, cognitive and emotional functions, and

increased volumes in subcortical sensorimotor and temporal limbic forebrain regions

including the amygdala. Additionally, comparison of the 10 BXA14 and 21 BXA24

mice revealed significant volumetric differences between the two strains in several brain
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regions. These findings highlight the utility of high-resolution sMRI for studying tooth

loss-induced structural brain plasticity in mice, and provide a foundation for further

phenotyping structural brain changes following tooth loss in the full AXB-BXA panel to

facilitate mapping genes that control brain plasticity following orofacial injury.

Keywords: tooth loss, trigeminal nerve, sMRI, brain imaging (MRI), plasticity, neuroplasticity, genetic variation,

animal model

INTRODUCTION

Loss of teeth remains a significant health problem worldwide.
For example, 20% of senior adults in Western countries are
considered “orally disabled,” and tooth loss is associated with
a compromised quality of life, manifesting as difficulties in
chewing and speaking, pain or alterations in other oral sensations
such as stereognosis and proprioception, as well as impaired
memory, cognitive and emotional functions (for reviews see
Feine and Carlsson, 2003; Crocombe et al., 2009; Avivi-Arber
et al., 2011; Trulsson et al., 2012; Sessle et al., 2013; Klineberg
et al., 2014; Cerutti-Kopplin et al., 2016). Since life expectancy
is progressively increasing in most populations, tooth loss and
the associated impairments represent an increasing societal
burden (Avivi-Arber et al., 2011; Trulsson et al., 2012). However,
these effects of tooth loss vary substantially across individuals
(Haraldson et al., 1988; Zarb et al., 2013; Carr and Brown, 2015),
both in terms of the type and severity of the outcomes, and
also in the rate and quality of recovery. This suggests that while
these traits are impacted by variable environmental factors, they
may also be under genetic influences which are still unknown
(Mishra et al., 2007; Seltzer and Mogil, 2008; Katz and Seltzer,
2009; Missitzi et al., 2013). Finding ways to prevent or treat
tooth loss-induced impairments depends on knowledge of the
involved genetic, cellular, molecular, structural, and functional
brain mechanisms, which is currently largely lacking.

Structural magnetic resonance imaging (sMRI) as well as
functional MRI (fMRI) have been used to study how the brain
responds to changes in orofacial functions. For example, human
studies have revealed that altered dentitional states including
tooth loss and their restoration are accompanied by widespread
structural and functional brain changes in regions involved
in processing and controlling sensory, motor, cognitive and
emotional functions (Yan et al., 2008; Ono et al., 2010; Luraschi
et al., 2013; Ohkubo et al., 2013; Shoi et al., 2014). In addition,
such changes also occur following training and learning of oral
motor skills, as well as in chronic orofacial pain conditions
(Momose et al., 1997; Onozuka et al., 2002; Jiang et al., 2010,
2015; Arima et al., 2011; Gerstner et al., 2011; Gustin et al.,
2011; Moayedi et al., 2011; Weissman-Fogel et al., 2011; Desouza
et al., 2013). However, the cellular, molecular, and genetic
mechanisms underlying these structural and functional changes
are unclear but can be elucidated by utilizing brain imaging
techniques in animals along with other invasive techniques such
as electrophysiology and immunohistochemistry.

We and others have already shown that tooth extraction
in rodents can also induce functional and structural changes
in both glial and neuronal cells within brain regions involved

in processing orofacial sensory and motor functions as well
as cognitive and emotional behaviors (Avivi-Arber et al., 2014,
2015; Varathan et al., 2014; Chen et al., 2015; Watase et al.,
2016). High resolution sMRI in rodents can provide an excellent
readout of anatomical brain changes in mice following nerve
injury, housing in an enriched environment, or maze training
and such changes are also associated with cellular and molecular
changes (Seminowicz et al., 2009; Lerch et al., 2011b; Cahill
et al., 2015; Scholz et al., 2015a). However, it is still unclear
whether sMRI can be utilized in mice to reveal volumetric
regional brain changes following tooth extraction, whether it
can detect volumetric regional brain differences in mice of
different genetic background, and whether it can be utilized
as a phenotyping method to identify genetic sources for inter-
individual differences in brain plasticity following tooth loss.

As a first step, here our aim was to determine whether sMRI
is sensitive to detect quantifiable volumetric differences in the
brain of mice of different genetic background that received tooth
extraction or sham operation. We randomly selected 7 strains,
comprising A/J (‘A’) and C57BL/6J (‘B’) and 5 of the 23 AXB-
BXA strains that were produced from the A and B parental
mice by recombinations and inbreeding (Marshall et al., 1992;
Lu et al., 1994; Sampson et al., 1998; Seltzer et al., 2001; Bennett
et al., 2003). This panel of 25 genetically unique inbred strains
has already been genetically mapped and has been widely used
for mapping chromosomal intervals throughout the genome that
harbor candidate genes controlling various phenotypes including
spontaneous and stimulus-evoked neuropathic pain following
orofacial and lumbar nerve injuries (Seltzer et al., 2001; Zhang
S. H. et al., 2006; Nissenbaum et al., 2010; Mashregi et al., 2011;
Soleimannejad et al., 2012).

METHODS

All experimental procedures were approved by the University
of Toronto Animal Care Committee, in accordance with
the Canadian Council on Animal Care Guidelines and the
regulations of The Ontario Animals for Research Act (R.S.O.
1990). All experimental procedures (i.e., tooth extraction and
sham operation, perfusions and preparation for the sMRI)
were completed by the same investigator (LAA), adhering to
the same standard protocols to ensure consistency. The sMRI
data were analyzed in a blinded manner by one investigator
(MF). Although, single housing might induce stress that could
affect treatment outcome, control mice that received the sham
treatment as well as mice receiving tooth extraction were single-
housed to minimize social effects that might mask treatment
effects (Devor et al., 2007; Seminowicz et al., 2009). Mice
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were housed in the same temperature and humidity-controlled
environmental conditions, maintained at a 12-h light/dark cycle
(lights switched on at 07:00 and off at 19:00 h). Starting at 2 weeks
prior to the intraoral manipulation, all mice received a diet of
mashed chow and water ad libitum to avoid discomfort from
biting on a hard chow and to ensure adequate food and drink
intake.

Study Groups
We utilized young adult (11–18 weeks) female mice of the
following 5 recombinant inbred AXB-BXA strains: AXB1-
PgnJ (termed ‘AXB1’; 5 extraction, 3 sham), AXB24-PgnJ
(termed ‘AXB1’; 5 extraction, 3 sham), AXB4-PgnJ (termed
‘AXB4’; 3 extraction, 3 sham), BXA24-PgnJ (termed ‘BXA24’;
12 extraction, 9 sham;), and BXA14-PgnJ (termed ‘BXA14’; 7
extraction, 3 sham). These strains were randomly selected from
the 23 AXB-BXA strain panel. In addition, we used 5 A (3
extraction, 2 sham) and 9 Bmice (5 extraction, 4 sham). Breeding
nuclei of all strains were originally purchased from Jax Labs (Bar
Arbor, MI) and multiplied on demand in our animal facility.
We used in this study female mice because the incidence of
postoperative orofacial neuropathies is higher in women than in
men (Macfarlane, 2014). A recent meta-analysis study suggests
that utilization of female mice in studies such as the present does
not require monitoring of the estrous cycle (Prendergast et al.,
2014).

Mice were randomly allocated into Sham and Extraction
groups and experiments were performed in a random sequence to
reduce potential testing bias. For each strain, mice of the same age
were assigned to undergo extraction or sham operation. Under
general anesthesia, we extracted 3 right maxillary molar teeth in
mice of the Extraction group (n= 39) (see procedure below), and
mice in the Sham group (n = 28) received the same operation
but without actual tooth extraction. Mice were monitored
daily to assess food consumption, general behavior, and any
postoperative complications such as bleeding or inflammation.
Body weight was checked regularly to ensure a continuous gain
of body weight. Mice demonstrated a slower rate of weight gain
per day during the first 3–5 postoperative days but then resumed
normal gain of body weight (0.5–1 g/d).

Consistent with our previously documented electro-
physiological and immunohistochemical findings in rats and
mice, demonstrating that changes in pain behavior and neuronal
responses in the orofacial primary sensorimotor cortex are
apparent on days 7–28 following orofacial injury (Zhang S. H.
et al., 2006; Avivi-Arber et al., 2010a, 2015; Mashregi et al., 2011;
Soleimannejad et al., 2012; Varathan et al., 2014; Hayashi et al.,
2015), mice in the present study were killed humanely 21 days
postoperatively. All mice were fixation-perfused transcardially
and the brains were imaged as described below. Sixteen mice had
to be excluded for technical reasons. The numbers of mice per
strain listed above are the net included in the analysis.

Molar Tooth Extraction and Sham
Operation
Extraction and sham operations were carried out under
general anesthesia (Isoflurane), using standard aseptic surgical

conditions. Pulse oximeter monitoring verified that the heart
rate and oxygen saturation levels were within the physiological
range (i.e., 333–430 beats/min, 90–100% O2). A feedback-
controlled heating pad maintained the mouse core temperature
at 37–37.5◦C. The mouth was kept open by pulling down the
2 mandibular incisors with a rubber band. In the Extraction
group the 3 right maxillary molar teeth were luxated (Avivi-
Arber et al., 2010b, 2015). Sham mice had the same general
anesthesia and mouth opening but no actual tooth extraction.
These procedures took up to 30 min. No analgesics or anti-
inflammatory medications were administered postoperatively
because of their possible confounding effect on the
sMRI data.

Structural Magnetic Resonance Imaging
sMRI scanning and data analysis followed previously published
standard protocols (Lerch et al., 2011a,b; Cahill et al., 2012) and
are described below only briefly.

Sample Preparation
Under general anesthesia (Ketamine HCl, 150 mg/kg and
Xylazine, 10 mg/kg; i.p.) mice were perfused on postoperative
day 21 with 30 ml mixture of 0.1 M phosphate-buffered saline
(PBS), 10 U/mL Heparin and 2 mM ProHance R© (an sMRI
contrast enhancing agent), followed by perfusion of 30 ml 4%
paraformaldehyde (PFA) in PBS and 2 mM ProHance R©. The
maxilla and skull containing the brain were post-fixed in 4% PFA
and 2 mM ProHance R© at 4◦C for 12 h, then transferred to 4%
PBS, 0.02% sodium azide and 2 mM ProHance R© and stored at
4◦C until scanned.

sMRI Acquisition
A multi-channel 7.0 Tesla, 40 cm diameter bore magnet MRI
scanner (Varian Inc. Palo Alto, CA) was used to acquire images
of mouse brains. Brains were intact in their skulls and placed in
Fluorinert, and 16 samples were scanned at one time in a 16-
coil solenoid array. Parameters used were: a T2-weighted 3D fast
spin-echo sequence, with TR = 2000 ms, echo train length = 6,
TEeff = 42 ms, field-of-view = 25 × 28 × 14 mm, matrix size =
450× 504× 250, and voxel size= 56× 56× 56µm (Lerch et al.,
2011b; Cahill et al., 2012).

sMRI Analysis
In order to visualize and compare changes across mice, an
automated image registration-based approach was used to align
all brains and create a consensus average (i.e., “atlas”). Image
registration involved linear alignment of all images through a
series of rotations, translations, scales, and shears. This was
followed by locally deforming each scan through an iterative
non-linear alignment procedure, bringing all scans into exact
correspondence in an unbiased fashion. This registration was
assumed to bring all homologous anatomical points into
alignment. Next, the total brain volume was calculated for every
mouse.

Our analytic approach to assess the volume of discrete brain
regions between tooth extraction and sham operation was the
following: First, we calculated the group mean volume of known
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neuroanatomical brain regions. For this purpose, a segmented
atlas dividing the brain into 160 separate regions was aligned
onto the study-population-specific atlas (Dorr et al., 2008;
Ullmann et al., 2013; Steadman et al., 2014). Then, a deformation
field was calculated for each mouse that determined how much
the individual mouse’s anatomy had to be transformed to fit the
final atlas space, also facilitating the assessment of the degree to
which this deformation field differed across mice in the study
(Nieman et al., 2006; Lerch et al., 2011b). The determinant of
each deformation field, known as Jacobian Coefficient (JC),
was calculated for each voxel in the brain of every mouse. This
coefficient is a measure of the deformation of each voxel with
respect to the atlas image. It can be thought of as the amount
by which the volume of that voxel had to be multiplied to reach
the consensus average. Thus, a JC = 1 indicates no change,
while JC > 1 signifies expansion and <1 denotes shrinkage
of that voxel volume with respect to the volume of the same
voxel in the atlas image. The resulting atlas was then used in
conjunction with the JCs (multiplied by an appropriate scaling
factor) to calculate volumes for each region in the brain and
for the brains of all mice in the study. The regional volumetric
values of the right and left sides of the brains were averaged.
Since we used a genetically heterogeneous population of mice
from 7 strains that significantly differed in their mean total
brain volumes (A: 391 ± 2; B: 472 ± 3; AXB1: 417 ± 8; AXB24:
398 ± 5; AXB4: 384 ± 8; BXA14: 397 ± 8; BXA24: 461 ± 4
mm3; p < 0.0005), the JC values used in this analysis were
normalized for every mouse with respect to its overall brain
volume. This approach allowed for examination of normalized
regional brain volumes and comparison of anatomical
differences across mice receiving tooth extraction or sham
operation.

To test whether sMRI can detect significant differences
between mice of different genetic background we utilized two
strains, the BXA14 (N = 7 Extraction, 3 Sham) and BXA24 (N =

12 Extraction, 9 Sham) strains since they had the largest numbers
of mice per group, they significantly differed in their total brain
volume (P < 0.0001), and previous studies have shown they
have contrasting tactile hypersensitivity following orofacial and
lumbar nerve injuries (Seltzer et al., 2001; Zhang S. H. et al., 2006;
Nissenbaum et al., 2010; Mashregi et al., 2011; Soleimannejad
et al., 2012).

Statistical Analysis
Significance of the treatment effect in the regional brain
volume analysis was carried out by analysis of variance
(ANOVA). Resulting probabilities were adjusted for multiple
comparisons with the False Discovery Rate (FDR) set at 1%.
For the voxel-wise analysis, we performed a two-sample t-test
to compare significant voxel-wise differences between tooth
extraction and sham operation. The p-values were adjusted
by FDR at 1, 5, and 10%. Thereafter, these voxels were
annotated by their neuroanatomical region (Genovese et al.,
2002). The t-statistic values of the voxel-wise analysis were
then used for graphically displaying brain statistical maps
of treatment effects in all mice (i.e., regardless of their
genetic differences) and separately again when treatment effect

was compared between mice of the BXA14 and BXA24
strains.

RESULTS

Anatomical Differences between Mice
Receiving Tooth Extraction vs. Sham
Operation
Regional Volumetric Analysis
Normalized volumetric sMRI data analysis of 160 brain regions
revealed 34 brain regions that showed significant bilateral
volumetric differences (FDR correction at 5 and 10%; none at
1%) between mice receiving tooth extraction and those receiving
sham operation (Table 1). We found significantly decreased
gray matter volumes in several forebrain regions, including
the primary somatosensory (S1), primary motor (M1), and
the cingulate cortices in mice receiving tooth extraction as
compared with sham-operated mice. Decreased volume was also
observed in components of the basal ganglia (striatum, globus
pallidus, and nucleus accumbens). Also notably, several temporal
limbic forebrain regions, including the amygdala, and subcortical
sensory and motor nuclei showed significantly increased gray
matter volumes following tooth extraction as compared with
sham operation.

Voxel-Wise Analysis
Results of the voxel-wise comparison between mice receiving
tooth extraction and those receiving sham operation are shown
in Figure 1. Compared to sham operation, tooth extraction
was associated with significantly decreased volume in many
brain regions, including orofacial sensorimotor processing
regions such as the S1, M1, and insular cortices, the basal
ganglia (i.e., caudate, globus pallidus, and nucleus accumbens),
paraventricular nucleus of the thalamus and trigeminal motor
nucleus. Regions that showed significantly increased volume
following tooth extraction included the entorhinal cortex, facial
nerve and nucleus, cuneate nucleus, hypothalamus, inferior
olivary complex, periaqueductal gray, pons, solitary tract nucleus,
and trigeminal spinal tract nucleus. Notably, in no brain region
were the observed effects of regional-based and voxel-wise
analyses contradictory.

Anatomical Differences between Mice of
Different Genetic Backgrounds
Voxel-Wise Analysis
When only mice of the BXA14 and BXA24 were included
in the data analysis, we found that the normalized voxel-wise
volumetric differences between mice receiving tooth extraction
and those receiving sham operation (Figure 2) were similar but
more significant than those obtained when all seven strains
were included in the data analysis (Figure 1). In addition, voxel-
wise comparison between the BXA14 mice and BXA24 mice
(Figure 3) showed that irrespective of the dental manipulation,
many normalized brain regions, including the periaqueductal
gray and thalamus, were significantly larger (FDR = 1%) in
BXA24 mice than in BXA14 mice. Other brain regions such as
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TABLE 1 | Regional volumes (mm3) (Mean ± SEM) and % difference in the means of the normalized volumes between mice receiving tooth extraction and

those receiving sham operation.

Brain region Volume (mm3) (Mean + SEM) Effect of extraction vs. sham % difference from sham (normalized) q-values

Extract Sham

FOREBRAIN CORTEX

Lateral orbital cortex 2.86 ± 0.04 3.00 ± 0.05 Shrank −2.86 0.083

Frontal association cortex 6.37 ± 0.11 6.71 ± 0.11 Shrank −3.48 0.079

Primary motor cortex 6.50 ± 0.09 6.69 ± 0.09 Shrank −2.12 0.076

Primary somatosensory cortex 4.58 ± 0.06 4.76 ± 0.06 Shrank −2.22 0.057

Cingulate cortex (area 24a) 1.67 ± 0.02 1.74 ± 0.02 Shrank −2.90 0.075

Cingulate cortex (area 25) 0.42 ± 0.01 0.45 ± 0.01 Shrank −3.24 0.031

Cingulate cortex (area 32) 2.22 ± 0.04 2.34 ± 0.03 Shrank −3.86 0.081

Medial entorhinal cortex 0.69 ± 0.01 0.68 ± 0.01 Expanded 2.91 0.037

Posteromedial cortical amygdalar area 1.18 ± 0.02 1.15 ± 0.02 Expanded 3.74 0.031

Amygdalopiriform transition area 23.00 ± 0.26 22.30 ± 0.27 Expanded 3.16 0.079

Posterolateral cortical amygdalar area 1.18 ± 0.02 1.15 ± 0.02 Expanded 2.24 0.086

Caudomedial entorhinal cortex 4.85 ± 0.09 4.77 ± 0.09 Expanded 3.20 0.030

Ventral intermediate entorhinal cortex 0.99 ± 0.02 0.98 ± 0.02 Expanded 3.03 0.065

CEREBELLUM

Cerebellar lobule10 white matter 0.09 ± 0.00 0.08 ± 0.00 Expanded 7.08 0.031

Cerebellar lobule10 nodulus 1.50 ± 0.03 1.44 ± 0.03 Expanded 5.76 0.054

Cerebellar peduncle inferior 0.86 ± 0.01 0.84 ± 0.01 Expanded 3.75 0.054

Cerebellar peduncle (middle) 1.25 ± 0.02 1.23 ± 0.02 Expanded 3.22 0.085

FOREBRAIN SUBCORTEX

Mammillary bodies 0.51 ± 0.01 0.49 ± 0.01 Expanded 5.82 0.031

Claustrum 0.30 ± 0.01 0.32 ± 0.01 Shrank −5.32 0.020

Claustrum ventral part 0.51 ± 0.01 0.54 ± 0.01 Shrank −2.48 0.044

Dorsal nucleus of the endopiriform 1.37 ± 0.02 1.43 ± 0.03 Shrank −2.72 0.030

Striatum 19.94 ± 0.33 20.80 ± 0.43 Shrank −2.35 0.076

Globus Pallidus 2.65 ± 0.05 2.75 ± 0.06 Shrank −2.14 0.065

Nucleus accumbens 3.87 ± 0.06 4.03 ± 0.06 Shrank −2.24 0.054

Fimbria 3.14 ± 0.06 3.28 ± 0.07 Shrank −2.46 0.061

Bed nucleus of stria terminalis 1.12 ± 0.02 1.18 ± 0.03 Shrank −3.18 0.036

TRACTS

Mammilothalamic tract 0.24 ± 0.00 0.25 ± 0.00 Shrank −2.18 0.077

Anterior commissure pars posterior 0.40 ± 0.01 0.42 ± 0.01 Shrank −2.38 0.057

BRAINSTEM

Periaqueductal gray 3.55 ± 0.07 3.67 ± 0.07 Shrank −1.85 0.100

Pons 15.94 ± 0.28 15.87 ± 0.30 Expanded 2.08 0.061

Pontine nucleus 0.72 ± 0.01 0.69 ± 0.02 Expanded 5.65 0.061

Cuneate nucleus 0.25 ± 0.00 0.23 ± 0.00 Expanded 8.91 0.030

Superior olivary complex 0.79 ± 0.01 0.78 ± 0.01 Expanded 3.80 0.031

Medulla 26.25 ± 0.42 25.68 ± 0.42 Expanded 4.00 0.030

Negative values denote regions where volumes were smaller in mice receiving tooth extraction (“Shrank”). Positive values denote regions where volumes were larger in mice receiving

tooth extraction (“Expanded”). q-values (<0.1) represent FDR-adjusted p-values.

the M1, S1, nucleus accumbens, arbor vita of the cerebellum, and
corpus callosum, were significantly larger (FDR= 1%) in BXA14
than in BXA24 mice.

DISCUSSION

This is the first study to show that post-mortem sMRI is a
sensitive method capable of detecting significant differences in
the volume of brain regions between mice of different genetic

background and between mice that had tooth extraction vs.
sham operation. The study provides novel findings that tooth
loss in a genetically heterogeneous population of mice leads
to widespread bilateral gray matter changes. Specifically, we
found that tooth extraction leads to: (1) reduced gray matter
volume in several forebrain regions including the sensorimotor
cortex, insula, cingulate cortex, and basal ganglia; (2) increased
gray matter volume in several brainstem sensory and motor
nuclei, and in the cerebellum; (3) increased gray matter
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FIGURE 1 | Representative color-coded t-statistic maps (when all mouse strains were included) superimposed on high-resolution sMRI coronal slices

of the mouse brain. Images of coronal slices in the 1st and 4th columns show anatomical annotations. The coronal slices in the 2nd and 3rd columns are presented

in a rostrocaudal order from top-left to bottom-right. Maps show normalized voxel-wise volumetric differences between mice receiving tooth extraction and those

receiving sham operation. Red indicate regions that have larger voxel volumes in mice receiving tooth extraction than in mice receiving sham operation, whereas those

in blue indicate regions that have smaller voxel volumes in mice receiving tooth extraction. All t-statistics shown are significant at a 10% FDR. Peaks associated with

t-statistic values < −3.53 or >3.53 are significant at FDR = 5% (t = 3.53 and t = −3.53 are marked as white arrows on the color palettes). No voxel differences were

significant at a 1% FDR. BF, barrel field; CC, corpus callosum; CB, cerebellum; CG, cingulate cortex; CLA, claustrum; CP, caudate putamen; cpd, cerebral peduncle;

ENT, entorhinal cortex; fi, fimbria; FL, forelimb; GP, globus pallidus; HY, hypothalamus; Ins, insular cortex; IO, inferior olivary complex; ISN, inferior salivary nucleus; M1,

primary motor cortex; M2, secondary motor cortex; MED, medulla; MM, mammillary nucleus; OLF, olfactory area; oM1, orofacial primary motor cortex; oS1, orofacial

primary somatosensory cortex; PAG, periaqueductal gray; PCG, pontine central gray; PIR, piriform area; PN, pontine nuclei; RN, reticular nuclei; S1, primary

somatosensory cortex; SO, superior olivary complex; ST, solitary tract nucleus; STR, striatum; TH, thalamus; VCx, visual cortex; VIIm, facial cranial nerve motor; VP,

trigeminal principal nucleus; VSN, trigeminal spinal tract nucleus.

volume in several cognitive and limbic brain regions, including
the anterior association cortex, nucleus accumbens, entorhinal
cortex, mammillary bodies, and the amygdala. Together, these
findings highlight the tremendous impact of tooth loss on brain
structures across sensory, motor, and limbic systems.

Effects of Tooth Loss on Brain Anatomy
Tooth Loss Related Plasticity in Sensory and Motor

Brain Regions
One of the main findings of this study was that tooth loss
leads to gray matter decreases in the basal ganglia, and in the
S1 and M1 cortices. The shrinkage of M1 and S1 is consistent

with previous findings of decreased jaw and tongue motor
representations and decreased excitability of orofacial M1 and
S1 following molar tooth extraction in rodents (Avivi-Arber
et al., 2015; Hayashi et al., 2015). Such changes may reflect
the documented adaptive or maladaptative processes induced
by the altered somatosensory inputs as a result of the missing
teeth, injury to gingival, periodontal and pulpal nerves, and/or by
compensatory sensorimotor functions caused by the loss of three
major food-grinding dental elements (for review see Avivi-Arber
et al., 2011; Sessle et al., 2013).

We also found that tooth extraction induced volumetric
expansion in several brainstem regions involved in sensory and
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FIGURE 2 | Representative color-coded t-statistic maps (when only the BXA14 and BXA24 strains were included) superimposed on high-resolution

sMRI coronal slices of the mouse brain. Images of coronal slices in the 1st and 4th rows show anatomical annotations. The coronal slices in the 2nd and 3rd rows

are presented in a rostrocaudal order from top-left to bottom-right. Maps show normalized voxel-wise volumetric differences between mice receiving tooth extraction

and those receiving sham operation. Red indicate regions that have larger voxel volumes in mice receiving tooth extraction than in mice receiving sham operation,

whereas blue indicate regions that have smaller voxel volumes in mice receiving tooth extraction. All t-statistics shown are significant at a 10% FDR. White contour

lines delineate regions where the statistical maps are significant at 5% FDR. No voxel differences were significant at a 1% FDR. AG, amygdalar cortex; BF, barrel field;

BFB, basal forebrain; CC, corpus callosum; CB, cerebellum; cpd, cerebral peduncle; DG, dentate gyrus; ENT, entorhinal cortex; FCx, frontal cortex; GP, globus

pallidus; HIP, hippocampus; HP, hypothalamic nucleus; HY, hypothalamus; ic, internal capsule; IC, inferior colliculus; Ins, insular cortex; LOCx, lateral orbital cortex;

M1, primary motor cortex; M2, secondary motor cortex; MED, medulla; oM1, orofacial primary motor cortex; oS1, orofacial primary somatosensory cortex; PAG,

periaqueductal gray; PCx, Parietal cortex; PC, Piriform cortex; PHY, perihypoglossal nuclei; RF, reticular formation; RN, reticular nucleus; RS, retrosplenial; SC,

superior colliculus motor related; SN, substantia nigra; SO, superior olivary complex; ST, solitary tract nucleus; STR, striatum; TH, thalamus; VSN, trigeminal spinal

nucleus; VTA, ventral tegmental area.

motor functions. These include the trigeminal motor nucleus,
facial nucleus and nerve, the trigeminal sensory and solitary
tract nuclei, pons, superior and inferior olivary complexes,
and the cuneate nucleus. These novel findings, of changes
in brainstem sensory and motor nuclei that are related to
orofacial sensory and motor functions, are consistent with
electrophysiological studies in rats. In these studies we and
others have shown that acute or chronic dental pulpitis or
trigeminal nerve damage induced functional neuroplasticity
reflecting an increased glutamate-mediated excitability (“central
sensitization”) of nociceptive neurons within the brainstem
trigeminal subnucleus caudalis that process orofacial nociceptive
afferent inputs (for review see Sessle, 2011), and increased
neuronal activity in the trigeminal motor nucleus (Sunakawa
et al., 1999; Mostafeezur et al., 2014). Central sensitization
following dental manipulations has also been documented in
the rodent somatosensory thalamus (Park et al., 2006; Zhang S.
et al., 2006; Kaneko et al., 2011). Central sensitization contributes
to increased pain sensitivity (allodynia and hyperalgesia) and
extraterritorial spread or referral of pain hypersensitivity that
characterize many acute and chronic pain conditions (for review,
see Sessle, 2011).

In addition, we showed here that tooth extraction was also
associated with reduced gray matter volume in the frontal

association cortex, an area that is mainly responsible for
complex processes involving inputs to the cerebral cortex and
the generation of behaviors including motor planning, working
memory, and problem solving (Purves et al., 2012).

Compared to sham-operated mice, mice that underwent
tooth extraction also had less gray matter volume in the basal
ganglia, including the striatum, globus pallidus, and nucleus
accumbens—regions related tomotor processing andmotivation.
Specifically, nucleus accumbens is involved in reward processing
and motor recovery after injury, and also shows abnormal
response to noxious stimuli in subjects suffering from various
chronic pain conditions (Pliakas et al., 2001; Perrotti et al., 2008;
Baliki et al., 2010; Gustin et al., 2011; Desouza et al., 2013; Ikeda
et al., 2015; Sawada et al., 2015; Elman and Borsook, 2016).

We are unaware of comparable MRI studies in humans
following tooth loss, however, decreased gray matter volume
in the premotor cortex has been associated with decreased
masticatory performance (Lin et al., 2016). Functional brain
imaging studies have revealed that dental stimulation, chewing,
and tooth clenching are associated with activation of several
nodes of the sensorimotor network, including the S1, M1,
premotor and supplementary motor cortices, insula, cerebellum,
striatum, and thalamus (Momose et al., 1997; Onozuka et al.,
2002; Ettlin et al., 2004; Miyamoto et al., 2006; Luraschi et al.,
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FIGURE 3 | Representative color-coded t-statistic maps superimposed on high-resolution sMRI coronal slices of the mouse brain. Images of coronal

slices in the 1st and 4th columns show anatomical annotations. The coronal slices in the 2nd and 3rd columns are presented in a rostrocaudal order from bottom-right

to top-left. Maps show normalized voxel-wise volumetric differences between BXA14 and BXA24 mice. Red indicate regions that have larger voxel volumes in BXA24

mice than in BXA14 mice, whereas those in blue indicate regions that have larger voxel volumes in BXA14 mice. All t-statistic values shown are significant at 1% FDR.

Abbreviations: aco, anterior commissure; AG, amygdalar cortex; arb, arbor vitae; BF, barrel field; BST, bed nucleus of stria terminalis; CB, cerebellum; CC, corpus

callosum; CG, cingulate cortex; CP, caudate putamen; cpd, cerebral peduncle; DG, dentate gyrus; ec, external capsule; ENT, entorhinal cortex; fi, fimbria; FL,

forelimb; HIP, hippocampus; HL, hindlimb; HY, hypothalamus; ic, internal capsule; icp, inferior cerebellar peduncle; Ins, insular cortex; LSX, lateral septal complex; M1,

primary motor cortex; M2, secondary motor cortex; MBmot, midbrain, motor related; MED, medulla; MM, mammillary nucleus; MRN, midbrain reticular nucleus; NA,

nucleus accumbens; oS1, orofacial primary somatosensory cortex; PAG, periaqueductal gray; PAL, pallidum; PCx, posterior parietal association area; PIR, piriform

area; PRT, pretectal region; PSV, principal sensory nucleus of the trigeminal; PVR, periventricular area; RS, retrosplenial; S1, primary somatosensory cortex; S2,

secondary somatosensory cortex; SC, superior colliculus; SN, substantia nigra; Sp, septal nuclei; sptV, spinal tract of the trigeminal nerve; STR, striatum; TH,

thalamus; VL, lateral ventricle; VTA, ventral tegmental area.

2013; Shoi et al., 2014; Jiang et al., 2015). Moreover, several of
these studies have shown that the level of brain activity is related
to the degree of biting force or dentitional state (i.e., whether it
was fully dentate, partially- or completely edentate, or restored
with dental implants). In addition, although tooth extraction
is usually associated with a transient postoperative pain lasting
up to 7 days, 0–3% of the patients undergoing tooth extraction
develop chronic pain (Marbach and Raphael, 2000), and several
fMRI studies have documented functional and structural changes
in the brain of humans suffering from various chronic orofacial
pain conditions. These studies identified structural abnormalities
in brain regions such as the S1, M1, insular, and cingulate
cortices (e.g., Nash et al., 2010; Gerstner et al., 2011; Gustin et al.,
2011; Moayedi et al., 2011; Weissman-Fogel et al., 2011; Desouza
et al., 2013; Youssef et al., 2014). Thus, the pattern of structural
changes observed in the present study in mice, and those of other
oral manipulations in humans, support the view that sMRI in

mice can adequately detect quantitative brain volumetric changes
following tooth loss, and that this method can serve as a research
platform to better understand these changes so that treatments
can be developed to maximize adaptation and minimize possible
concomitant maladaptation following tooth loss.

Tooth Loss-Related Changes in Cognitive and

Emotional Functions
Emerging evidence from human and animal studies have
reported that tooth loss may be a contributing factor to cognitive
and memory decline (for review see Klineberg et al., 2014; Palla,
2015; Cerutti-Kopplin et al., 2016). It is commonly known that
tooth loss can induce intense emotional distress (Okoro et al.,
2012; Wiener et al., 2015). In the present study, tooth loss was
associated with volume loss in the frontal association cortex and
nucleus accumbens. The frontal association cortex is involved in
motor planning, workingmemory, and problem solving; whereas
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the nucleus accumbens has been implicated in the formation
of emotional memories (e.g., pain, stress; Pliakas et al., 2001;
Perrotti et al., 2008; Elman and Borsook, 2016). Volume loss
in the frontal association cortex and nucleus accumbens in
humans has been correlated with cognitive decline (de Jong et al.,
2012). Moreover, the present study revealed that the mammillary
bodies, which play a crucial role in memory consolidation (Vann
and Aggleton, 2004), underwent significant expansion following
tooth extraction. Tooth extraction was also associated with
expansion of the amygdala and entorhinal cortex. These brain
regions are part of the limbic system and were found to be
enlarged in humans and animals subjected to fearful conditions
(De Bellis et al., 2000; Lupien et al., 2009; van der Plas et al., 2010;
Scholz et al., 2015b). Thus, the increased volume of these regions
in the present study may be related to excessive fear or anxiety in
response to the tooth loss.

Effects of Genetic Differences on Brain
Anatomy
We report here significant volumetric differences between the
BXA14 and BXA24 strains for which we had sufficient numbers
of mice per group to determine a statistically significant genetic
effect. The total brain volume of the BXA14 mice was strikingly
smaller than that of BXA24. This is consistent with a previous
histological report of significant differences in total brain size
across all 25 strains of the AXB-BXA strain panel (including
BXA14 and BXA24) (Cutler Strom, 2002). Since in the present
study regional volumes were normalized by total brain volume,
the differences between BXA14 vs. BXA24 reflect true strain-
dependent volumetric plasticity following tooth extraction.

Using histological preparations to measure the size of the
cerebral ventricles it was reported that there are significant
differences across strains of the AXB-BXA panel (Zygourakis and
Rosen, 2003). But the present study is the first to use sMRI to
compare 160 different regions of known structural and functional
importance in the whole brain of two of the strains of this
panel. We have shown that the two strains significantly differ
in the normalized voxel-wise volumes of many gray and white
matter regions. For example, the M1 and S1 cortices, nucleus
accumbens, arbor vita of the cerebellum and corpus callosum
were significantly larger in BXA14 than in BXA24 mice whereas
the periaqueductal gray and thalamus showed the opposite effect.
Since the non-genetic, environmental parameters of this study
were identical for all mice, the strain-dependent differences in
brain regional volume indicate a difference in the genetic control
of this trait. As these mice were derived from the A and B strains
by recombinations, these parental strains must also differ in the
genetic control of regional brain volumes. This feature can be
used to study the genetic underpinning controlling this trait
by capitalizing on the availability of the genetic map of all 25
strains of this panel (Sampson et al., 1998). Knowing the regional
volumes of all 25 strains for intact mice and those receiving
the sham-operation or tooth extraction will enable mapping the
chromosomal regions that harbor the genes controlling the brain
regional volumes of naïve female mice and those controlling
the volumetric changes caused by tooth extraction (http://www.

genenetwork.org/home.html). The present findings are the first
step in this direction by demonstrating that sMRI is sensitive
enough to quantify differences in regional brain volumes of
strains in the AXB-BXA panel.

Possible Mechanisms Underlying Tooth
Loss-Induced Volumetric Brain Changes
The mechanisms involved in changes in regional brain volume
following intraoral injuries such as tooth extraction are not
well known. Such volumetric alterations may reflect structural
changes in glia, neurons, and blood vessels that result from
changes in their number, function and/or volume (Zatorre et al.,
2012), as well as volumetric changes caused by changes in the
extracellular space. While there are many neurophysiological
consequences of tooth loss, none of these can explain how they
cause or relate to the different volumetric changes that we report
here. The most obvious neurophysiological consequences of
tooth loss are alterations in somatosensory (including nociceptive
and proprioceptive) inputs from the lost teeth, injured gums
and periodontal ligaments that are relayed via injured primary
afferents, ascending tracts, and relay nuclei to multiple brain
regions (Sessle, 2009; Avivi-Arber et al., 2011; Sessle et al.,
2013). Somatosensory inputs from the tongue, jaw muscles,
and temporomandibular joints may also be altered since tooth
loss is associated with changes in masticatory patterns (Miehe
et al., 1999; Klineberg and Jagger, 2004). Changes in the
trigeminal brainstem sensory nuclei, thalamus, S1, M1 as well
as in other higher order brain regions were documented
by us previously (for review see Avivi-Arber et al., 2011;
Sessle et al., 2013). For example, we have shown in rodents
and humans that changes in somatosensory inputs or altered
motor functions induced by intraoral manipulations, including
tooth extraction, can result in short-term (days) and long-
term (months) functional neuroplasticity in the orofacial S1
and M1 (Adachi et al., 2007; Avivi-Arber et al., 2010a, 2015;
Awamleh et al., 2015; Pun et al., 2016). Tooth loss results in
decreased motor representation of jaw and tongue muscles and
decreased orofacial M1 excitability (Avivi-Arber et al., 2015).
Moreover, acute dental stimulation, pulpectomy, or trigeminal
nerve injury produces increased excitability of neurons within
the ascending trigeminal somatosensory pathways including the
trigeminal brainstem sensory nuclei, and decreased excitability
in the orofacial sensorimotor cortex (e.g., Hu et al., 1986; Kwan
et al., 1993; Adachi et al., 2007; Okada-Ogawa et al., 2009; Tsuboi
et al., 2011; Chiang et al., 2012; Cao et al., 2013; Awamleh et al.,
2015; Pun et al., 2016). We have also shown that these functional
neuroplastic changes are dependent on the functional integrity of
glial cells (Okada-Ogawa et al., 2009; Chiang et al., 2011, 2012;
Tsuboi et al., 2011; Awamleh et al., 2015; Pun et al., 2016), and
are associated with changes in the number and cytoarchitectural
features of neurons and glia within the trigeminal brainstem
sensory nuclei as well as the orofacial S1 and M1 (Okada-Ogawa
et al., 2009; Tsuboi et al., 2011; Varathan et al., 2014; Avivi-Arber
et al., 2015; Watase et al., 2016). However, as discussed above,
none of these functional changes has ever been shown to causally
drive the structural changes or vice versa. More research is
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needed to unravel themechanisms underlying the sMRI plasticity
observed in the current study and to link them to the documented
neuronal and glial changes following intra-oral injuries.

CONCLUSIONS AND IMPLICATIONS FOR
FUTURE STUDIES

The current study has demonstrated, for the first time, that high-
resolution sMRI can be used for quantifying small volumetric
brain differences between mice of different genetic background
and between mice receiving tooth extraction vs. sham operation.
The novel findings show that tooth loss is associated with
widespread sMRI-defined structural changes in somatosensory,
motor, cognitive, and limbic regions of the brain. The robust
findings reported here were obtained from a genetically diverse
population of mice of 7 different strains, thereby modeling
the effect of tooth loss in heterogeneous cohorts of humans.
The findings also show significant sMRI-defined structural
differences between two strains (BXA14 and BXA24) of the
AXB-BXA panel. Future studies using sMRI are warranted to
phenotype brain structural plasticity in all 23 recombinant inbred
strains of the AXB-BXA panel and their A and B parental strains,
to map the murine genome for chromosomal regions harboring
candidate genes controlling the volumetric brain changes
induced by tooth loss, implementing the already documented
high-resolution genetic map of this panel (Seltzer et al., 2001;
Zhang S. H. et al., 2006; Zhang et al., 2014; Nissenbaum et al.,

2010; Mashregi et al., 2011; Meloto et al., 2011; Soleimannejad
et al., 2012; Seltzer, 2014). Additionally, the volumetric brain
changes can be correlated with behavioral changes caused by
tooth loss (e.g., altered cognitive behavior, orofacial mechanical
sensitivity, patterns of mastication) as well as changes in
gene expression and cellular, molecular, micro-functional, and
micro-structural changes. Such studies can provide a powerful
multidisciplinary approach to elucidate mechanisms underlying
sMRI-defined macrostructural brain changes produced by tooth
loss and other orofacial manipulations of clinical relevance in
humans (Clarke et al., 2015). The findings of these studies have
the potential to identify new targets for the prevention and
treatment of maladaptive behaviors after tooth loss and other
orofacial manipulations.
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