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Orexin deficiency results in narcolepsy in humans, dogs, and rodents, suggesting that
the orexin system is particularly important for maintenance of wakefulness. However,
orexin neurons are “multi-tasking” neurons that regulate sleep/wake states as well as
feeding behavior, emotion, and reward processes. Orexin deficiency causes abnormalities
in energy homeostasis, stress-related behavior, and reward systems. Orexin excites
waking-active monoaminergic and cholinergic neurons in the hypothalamus and brain
stem regions to maintain a long, consolidated waking period. Orexin neurons also
have reciprocal links with the hypothalamic nuclei, which regulates feeding. Moreover,
the responsiveness of orexin neurons to peripheral metabolic cues suggests that these
neurons have an important role as a link between energy homeostasis and vigilance
states. The link between orexin and the ventral tegmental nucleus serves to motivate an
animal to engage in goal-directed behavior. This review focuses on the interaction of orexin
neurons with emotion, reward, and energy homeostasis systems. These connectivities
are likely to be highly important to maintain proper vigilance states.
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INTRODUCTION
Neuropeptides orexin A and orexin B were originally identi-
fied as endogenous ligands for two orphan G-protein-coupled
receptors (GPCRs) (Sakurai et al., 1998). They were indepen-
dently identified as putative peptides encoded by a hypothalamus-
specific transcript, and named hypocretin-1 and -2 (de Lecea
et al., 1998). They were initially recognized as regulators of
feeding behavior, because of their exclusive production in the
lateral hypothalamic area (LHA), a region known as the feed-
ing center, and owing to their pharmacological activity (Sakurai
et al., 1998; Edwards et al., 1999; Haynes et al., 2000, 2002).
Subsequently, the importance of orexins in the maintenance of
consolidated sleep/wake states has been demonstrated by the
fact that the sleep disorder narcolepsy is caused by orexin defi-
ciency in human and animals (Chemelli et al., 1999; Lin et al.,
1999; Peyron et al., 2000; Thannickal et al., 2000; Hara et al.,
2001).

Recent reports also suggest that orexin is involved in emotion,
stress response, and reward systems. Findings on the input and
output systems of orexin neurons, as well as phenotypic charac-
terization of mice with genetic alterations in the orexin system,
suggest that orexins elicit appropriate levels of arousal to engage
goal-directed behaviors by integrating the body’s external and
internal state, which is beneficial for survival (Yamanaka et al.,
2003a; Akiyama et al., 2004; Mieda et al., 2004; Boutrel et al., 2005;
Harris et al., 2005; Sakurai et al., 2005; Narita et al., 2006; Yoshida
et al., 2006). This review provides an overview of the role of the
orexin system especially in arousal, energy homeostasis, stress,
and motivation.

OREXIN AND OREXIN RECEPTORS
Identification of orexin (hypocretin)
In 1998, orexin A and B were identified from rat brain extracts
as ligands of an orphan GPCR, HFGAN72 (orexin receptor-1;
OX1R) (Sakurai et al., 1998). Orexins constitute a novel peptide
family with no significant structural similarities to known fami-
lies of regulatory peptides. Orexin A is a 33-amino-acid peptide
with two sets of intrachain disulfide bonds. It has an N-terminal
pyroglutamyl residue and C-terminal amidation (Sakurai et al.,
1998). The primary structure of orexin A predicted from the
cDNA sequences is completely conserved among several mam-
malian species (human, rat, mouse, cow, sheep, dog, and pig).
On the other hand, rat orexin B is a 28-amino-acid, C-terminally
amidated linear peptide, which has 46% (13/28) sequence identity
to orexin A. Orexin B also has a high degree of sequence similarity
among species, although substantial species variants were found
(Sakurai et al., 1998; Shibahara et al., 1999; Alvarez and Sutcliffe,
2002) (Figure 1A) (Shibahara et al., 1999; Alvarez and Sutcliffe,
2002; Sakurai, 2005). Orexin A and B are produced from a com-
mon single precursor polypeptide, prepro-orexin, through usual
proteolytic processing presumably by prohormone convertases
(Figure 1B). An mRNA encoding the same precursor peptide
was independently isolated by de Lecea et al. as a hypothalamus-
specific transcript. They predicted that the precursor encoded two
neuropeptides, hypocretin-1 and -2 (de Lecea et al., 1998).

Orexin receptors
HFGAN72, now called OX1R, was initially identified as an expres-
sed sequence tag (EST) from human brain (Sakurai et al., 1998).
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FIGURE 1 | Orexin and orexin receptors. (A) Structure of mature orexin A
and orexin B peptides. The topology of the two intrachain-bonds in orexin A is
indicated above the sequence. Amino acid identities are indicated by shading.
Mammalian orexin A sequences thus far identified (human, rat, mouse, pig,
dog, sheep, and cow) are all identical, while the sequences of orexin B show
some differences among species. (B) Schematic representation of orexin

system. Orexin A and orexin B are derived from a common precursor peptide,
prepro-orexin. The actions of orexins are mediated via two G protein-coupled
receptors named orexin-1 (OX1R) and orexin-2 (OX2R) receptors. OX1R is
selective for orexin A, whereas OX2R is a non-selective receptor for both
orexin A and orexin B. OX1R is coupled exclusively to the Gq subclass of
heterotrimeric G proteins, whereas OX2R couples to Gi/o and/or Gq.

Subsequently, orexin receptor-2 (OX2R) was identified by search-
ing EST databases (Sakurai et al., 1998). Both receptor genes are
highly conserved among species (Sakurai et al., 1998). OX1R has
one order of magnitude greater affinity for orexin A than for
orexin B. In contrast, OX2R has similar affinity for both orexin A
and orexin B (Sakurai et al., 1998) (Figure 1B). OX1R is coupled
to the Gq/11 class of G proteins, which results in activation of
phospholipase C (PLC) with subsequent triggering of the phos-
phatidylinositol cascade. OX1R also stimulates cAMP synthesis
in primary rat astrocyte culture (Woldan-Tambor et al., 2011).
OX2R is shown to be coupled to both Gq/11 and inhibitory Gi pro-
teins when expressed in cell lines (Zhu et al., 2003) (Figure 1B).
Food deprivation was reported to exert a differential effect on
coupling between orexin receptors and G proteins (Karteris et al.,
2005).

Orexin-producing neurons
Orexin-producing neurons (orexin neurons) are exclusively local-
ized to the perifornical area and lateral and posterior hypothala-
mic area in the rat brain (Peyron et al., 1998; Date et al., 1999;

Nambu et al., 1999) (Figure 2A). This distribution has been con-
firmed in human (Elias et al., 1998). The number of orexin
neurons is assumed to be around 3000 in the rat brain, and 70,000
in the human brain (Peyron et al., 1998; Thannickal et al., 2000),
and these cells diffusely project to the entire neuroaxis (Peyron
et al., 1998; Date et al., 1999; Nambu et al., 1999) (Figure 2B).
This anatomical structure suggests that the activity of orexin neu-
rons influences multiple brain areas. The strongest staining of
orexin-immunoreactive nerve endings in the brain was found
in the tuberomammillary nucleus (TMN), paraventricular thala-
mic nucleus (PVT), arcuate nucleus (Arc) of the hypothalamus,
and most notably, monoaminergic nuclei in the brain stem, such
as the locus ceruleus (LC) which receives the densest oreinergic
fibers in the brain stem, and raphe nuclei.

Orexin colocalizes with dynorphin (Chou et al., 2001), galanin
(Hakansson et al., 1999), prolactin (Risold et al., 1999), neu-
ronal activity-regulated pentraxin (NARP) (Reti et al., 2002),
glutamate (Abrahamson et al., 2001), and neurotensin (unpub-
lished data). Many orexin neurons are glutamatergic (Rosin et al.,
2003; Torrealba et al., 2003) but are not GABAergic (Rosin et al.,
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FIGURE 2 | Schematic drawing of coronal section and sagittal section

through rat brain, summarizing the orexin neuronal system.

(A) Prepro-orexin mRNA-containing neurons are shown in black
superimposed upon anatomical structures of the hypo- and subthalamic
areas. The rectangle designates the area schematized in the figure.
Abbreviations: LH, lateral hypothalamic area; PeF, perifornical nucleus; PH,
posterior hypothalamic area; Sth, subthalamic nucleus; SubI, subincertal
nucleus; ZIV, ventral zona incerta. Additional landmarks include: THAL,
thalamus; HAB, habenular complex; ic, internal capsule; opt, optic tract;

mt, mammillothalamic tract; f, fornix; mfb, medial forebrain bundle;
3V, third ventricle; Arc, arcuate hypothalamic nucleus; DM, dorsomedial
hypothalamic nucleus; and VMH, ventromedial hypothalamic nucleus.
(B) Orexin neurons are found only in the lateral hypothalamic area and
project to the entire central nervous system. The thickness of arrows
represents relative abundance of projections. Abbreviations: 3V, third
ventricle; 4V, fourth ventricular; TMN, tuberomammillary nucleus;
LC, locus coeruleus; LDT, laterodorsal tegmental nucleus; PPT,
pedunculopontine nucleus.

2003). A recent study using an optogenetic technique confirmed
that orexin neurons released glutamate on TMN histaminergic
neurons (Schone et al., 2012).

Distribution of orexin receptors
In the central nervous system, both orexin receptor mRNAs are
expressed in regions that receive dense orexin innervations as
described above. OX1R and OX2R mRNAs show partial over-
lap, but largely distinct and complementary distribution patterns,
suggesting that each receptor subtype plays different physiolog-
ical roles. OX1R is expressed in many brain regions such as
the prefrontal and infralimbic cortex (IL), hippocampus (CA2),
amygdala, bed nucleus of the stria terminalis (BST), PVT, anterior
hypothalamus, dorsal raphe (DR), ventral tegmental area (VTA),
LC, and laterodorsal tegmental nucleus (LDT)/pedunculopontine
nucleus (PPT) (Trivedi et al., 1998; Lu et al., 2000; Marcus et al.,
2001). OX2R is expressed in the amygdala, TMN, Arc, dorso-
medial hypothalamic nucleus (DMH), paraventricular nucleus
(PVN), LHA, BST, PVT, DR, VTA, LDT/PPT, CA3 in the hip-
pocampus, and medial septal nucleus (Lu et al., 2000; Marcus
et al., 2001). Double in situ hybridization studies have revealed
the expression patterns of OX2R and OX1R mRNA more precisely.
In the TMN, all vesicular monoamine transporter 2 (VMAT2)-
positive histaminergic neurons expressed OX2R mRNA, while
OX1R mRNA was not detected. In the DR and median raphe
nuclei (MnR), the majority of VMAT2-positive serotonergic neu-
rons expressed both OX1R and OX2R mRNA. In the LC, all
VMAT2-positive noradrenergic neurons exhibited OX1R, whereas
OX2R mRNA was exclusively detected in VMAT2-negative non-
noradrenergic neurons. In the LDT and PPT, all vesicular

acetylcholine transporter (VAChT)-positive cholinergic neurons
expressed OX1R but not OX2R mRNA, but many OX1R-positive
and/or OX2R-positive noncholinergic neurons were intermingled
with cholinergic neurons (Mieda et al., 2011). These histological
findings suggest that orexins and their receptors are likely to play a
broad regulatory role in the monoaminergic/cholinergic systems.

INPUT AND OUTPUT OF OREXIN NEURONS
Neuronal afferents
In mice with a genetically encoded retrograde tracer and in
rats with combined antero- and retrograde tracers, upstream
neuronal populations that make innervations to orexin neu-
rons were revealed (Sakurai et al., 2005; Yoshida et al., 2006).
These studies showed that orexin neurons are innervated by
the lateral parabrachial nucleus (LPB), ventrolateral preop-
tic nucleus (VLPO), medial and lateral preoptic areas, basal
forebrain (BF), posterior/dorsomedial hypothalamus, VTA, DR
nucleus, and MnR. Many upstream neurons were identified
in regions associated with emotion including the IL, amyg-
dala, shell region of the nucleus accumbens (NAc), lateral sep-
tum (LS) and BST. Orexin neurons were also shown to receive
innervations from regions associated with energy homeostasis
including NPY-, agouti-related peptide (AgRP)-, and α-melanin-
stimulating hormone-immunoreactive fibers, which presumably
originate in the arcuate nucleus (Broberger et al., 1998; Elias et al.,
1998).

Factors that influence activity of orexin neurons
A number of factors that influence firing rate or membrane
potential of orexin neurons have been identified (Table 1).
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Table 1 | Factors that influence activity of orexin neurons.

Excitation Receptor involved

Glutamate AMPAR, NMDAR mGluRs

Acetylcholine (muscarinic) (27%) M3

Orexin OX2R

Ghrelin GHSR

Cholecystokinin CCKA

Neurotensin NTSR2 (unpublished data)

Vasopressin V1a

Oxytocin V1a

Glucagon-like peptide 1 ND

Corticotropin-releasing factor CRFR1

Thyrotropin-releasing hormone TRH1

BRS3 agonist BRS3

ATP P2X

H+ ASIC1a

CO2 ND

Mixture of amino acids System-A amino acid transporters

INHIBITION

Glucose Unknown

GABA GABAA, GABAB

Glycine Glycine receptor

Serotonin 5HT1A

Noradrenaline α2

Dopamine α2

Acetylcholine (muscarinic) (6%) ND

Neuropeptide Y Y1

Enkephalin μ opioid-R

Nociceptin NOPR

Leptin OBR

Adenosine A1

BRS3 agonist (indirect) BRS3

Importantly, both noradrenaline and serotonin (5HT),
both of which are wake-active substances, hyperpolarize
and inhibit activity of orexin neurons through activation
of G protein-regulated inwardly rectifying K+ channels via
α2-adrenoceptors and 5HT1A-receptors, respectively (Li et al.,
2002; Muraki et al., 2004; Yamanaka et al., 2003b, 2006).

In addition, the cholinergic agonist carbachol activates some
orexin neurons through M3 muscarinic receptors (Yamanaka
et al., 2003b; Sakurai et al., 2005). However, histamine appeared
to have no effect on orexin neurons. These observations suggest
that serotonin and noradrenaline neurons might send inhibitory
feedback projections to orexin neurons. These feedback mech-
anisms might stabilize the activity of both orexin neurons and
monoaminergic neurons. Furthermore, although orexin neurons
do not express functional dopamine receptors, dopamine can
inhibit orexin neurons by acting on α2-adrenoceptors (Yamanaka
et al., 2003b, 2006). It was also shown that agonists of ionotropic
glutamate receptors excite orexin neurons, whereas glutamate
antagonists (AP-5, CNQX, or NBQX) reduce their activity (Li
et al., 2002; Yamanaka et al., 2003b). These results indicate that
orexin neurons are tonically excited by glutamatergic neurons.
At the same time, GABAergic and glycinergic input to orexin

neurons strongly inhibits the activity of orexin neurons (Xie et al.,
2006; Matsuki et al., 2009; Hondo et al., 2011; Karnani et al.,
2011b).

In addition, a sulfated octapeptide form of cholecystokinin
(CCK-8S), neurotensin, oxytocin, vasopressin, orexin, and a mix-
ture of amino acids activate orexin neurons (Tsujino et al., 2005;
Tsunematsu et al., 2008; Yamanaka et al., 2010; Karnani et al.,
2011a), whereas glucose and leptin inhibit them (Table 1). These
factors are implicated in energy homeostasis. It was also shown
that adenosine inhibits orexin neurons via the A1 receptor. This
pathway might be related to the sleep-promoting effect of adeno-
sine (Liu and Gao, 2007). In addition, orexin neurons are affected
by physiological fluctuations in acid and CO2 level (Williams
et al., 2007). Since orexin affects respiratory function, this mech-
anism might play a role in the regulation of respiratory function
(Nakamura et al., 2007; Sunanaga et al., 2009). A recent report
suggested that acid-sensing ion channels 1a (ASIC1a) located
on orexin neurons contribute to the regulation of breathing
by sensing local acidity (Song et al., 2012). These results sug-
gest that orexin neurons are specialized sensors of the internal
environment.

OREXIN DEFICIENCY CAUSES NARCOLEPSY
Narcolepsy is a sleep disorder characterized by a primary disor-
ganization of behavioral states. This disorder affects ∼1 in 2000
individuals in the United States (Mignot, 1998). Most cases of
human narcolepsy start during adolescence and persist through-
out life. Many experiments have revealed that human narcolepsy
is caused by orexin deficiency (Chemelli et al., 1999; Lin et al.,
1999; Peyron et al., 2000; Thannickal et al., 2000). Narcolepsy is
characterized by the inability to maintain vigilance states, patho-
logical intrusion of non-rapid eye movement (NREM) and/or
rapid eye movement (REM) sleep into wakefulness, and fre-
quent transitions between states of sleep and wakefulness. Human
narcolepsy patients experience excessive daytime sleepiness, man-
ifested particularly as attacks of falling asleep at inappropriate
times. They often suffer attacks of sudden weakening of postural
muscle tone, called “cataplexy.” These attacks are often triggered
by emotional stimuli.

The first clues to the involvement of the orexins in narcolepsy
came from animal models. Prepro-orexin gene knockout mice
or dogs with null mutations in the OX2R gene show pheno-
types remarkably similar to humans with narcolepsy (Chemelli
et al., 1999; Lin et al., 1999). Prepro-orexin knockout mice,
orexin neuron-ablated (orexin/ataxin-3-transgenic) mice, and
OX1R/OX2R double knockout mice showed highly similar phe-
notypes to the human condition, characterized by behavioral
arrests similar to cataplexy, occasional direct transitions to REM
sleep from wakefulness, and highly fragmented sleep-wake cycles
(Chemelli et al., 1999; Hara et al., 2001; Mochizuki et al., 2004). In
zebrafish, ablation of orexin neurons also increased sleep time and
the number of sleep/wake transitions. This report also suggested
that ablation of orexin neurons altered behavioral state transitions
in response to external inputs (Elbaz et al., 2012).

Consistently, postmortem studies of human narcolepsy sub-
jects showed an 80–100% reduction in the number of neu-
rons containing detectable prepro-orexin mRNA or orexin-like
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immunoreactivity in the hypothalamus and undetectable levels
of orexin peptides in projection sites (Figures 2A,B) (Peyron
et al., 2000; Thannickal et al., 2000). In good agreement with this
report, an undetectable level of orexin A in the cerebrospinal fluid
(CSF) of narcolepsy patients has been reported (Nishino et al.,
2000; Mignot et al., 2002). A low CSF level of orexin A is now
one of the diagnostic criteria for narcolepsy-cataplexy (American
Academy of Sleep Medicine, 2005).

Furthermore, a concomitant loss of dynorphin, NARP, and
orexin, which colocalize in orexin neurons, suggests a loss of
orexin neurons in narcolepsy-cataplexy (Crocker et al., 2005).
The cause of the specific loss of orexin neurons in narcolepsy
is unknown thus far, but because of its strong association with
certain HLA alleles (Kadotani et al., 1998) it is possible that nar-
colepsy may be an autoimmune disorder. Recently, the transcript
encoding Tribbles homolog 2 (Trib2), an autoantigen in autoim-
mune uveitis, was reported to be enriched in orexin neurons, and
has been considered as a possible candidate antigen responsible
for the autoimmunity. Serum from narcolepsy patients had higher
Trib2-specific antibody titers compared with normal controls
(Murillo-Rodriguez et al., 2008).

Because narcolepsy is a disorder resulting from an absence
of orexin, replacement therapy may provide an effective treat-
ment for narcolepsy. In fact, acute administration of orexin A or
chronic overproduction of orexin from an ectopically expressed
transgene prevented cataplectic arrests and other abnormali-
ties of REM sleep in orexin neuron-ablated mice (Mieda et al.,
2004). Furthermore, following viral vector transfer of the gene
for mouse prepro-orexin to the LHA of orexin-deficient mice,
the incidence of cataplexy declined and abnormalities of REM
sleep were improved (Liu et al., 2008). Moreover, orexin gene
delivery into neurons of the zona incerta blocked cataplexy in
orexin neuron-deficient mice (Liu et al., 2011). Orexin gene trans-
fer into the dorsolateral pons significantly decreased cataplexy
and modestly improved wake maintenance (Blanco-Centurion
et al., 2013). These results indicate that narcoleptic mice retain
the ability to respond to orexin and that temporally regulated and
spatially targeted secretion of orexins is not necessary to prevent
narcoleptic symptoms.

The deficiency of orexin signaling in narcolepsy symptoms and
pathophysiology suggests that orexins play important roles in the
regulation of sleep and wakefulness, especially in their stabiliza-
tion, as well as inhibition of REM sleep and REM sleep-related
phenomena.

ROLES OF OREXINS IN REGULATION OF SLEEP/WAKE STATES
Interactions with sleep and waking centers
Sleep-active neurons in the POA, especially the ventrolateral
preoptic area (VLPO), appear to play a critical role in the ini-
tiation of NREM sleep and maintenance of both NREM and
REM sleep (Sherin et al., 1998). Neurons in the VLPO fire at
a rapid rate during sleep, with attenuation of firing during the
waking period (Figures 3A,B). These neurons mostly contain
GABA and/or galanin, and send descending inhibitory projec-
tions to wake-active neurons that produce wake-promoting neu-
rotransmitters, including histamine, noradrenaline, 5-HT, and
acetylcholine (Sherin et al., 1998; Lu et al., 2002) (Figures 3A,B).

On the contrary, these sleep-promoting neurons are inhibited
by wake-active transmitters such as noradrenaline, acetylcholine,
and 5-HT (Gallopin et al., 2000). These reciprocal interactions of
inhibition constitute the flip-flop switching of wake/sleep states
(Saper et al., 2001). Importantly, GABAergic neurons in the
POA also densely innervate orexin neurons (Sakurai et al., 2005;
Yoshida et al., 2006). This pathway might be important to turn-off
orexin neurons during sleep (Figure 3B). In fact, orexin neu-
rons are strongly inhibited by both GABAA and GABAB receptor
agonists (Yamanaka et al., 2003a; Xie et al., 2006). Moreover,
selective deletion of the GABAB receptor gene in orexin neu-
rons resulted in highly unstable sleep/wake architecture in mice
(Matsuki et al., 2009).

As already mentioned, narcolepsy patients and animals with
defects of orexin or OX2R cannot maintain a consolidated wake-
fulness state. It is recognized that monoaminergic neurons in the
hypothalamus and brain stem, including neurons in the TMN,
LC, and DR, play crucial roles in maintaining arousal (Saper
et al., 2005). Firing rates of these neurons are known to be syn-
chronized and strongly associated with sleep/wake states. They
fire tonically during the awake state, less during NREM sleep,
and are virtually quiescent during REM sleep (Vanni-Mercier
et al., 1984). Orexin neurons were also reported to discharge
during active wakefulness and cease firing during both NREM
and REM sleep (Lee et al., 2005), or displayed transient dis-
charge in REM, in vivo (Gerashchenko and Shiromani, 2004;
Blanco-Centurion et al., 2007). Furthermore, many studies also
suggested that noradrenergic cells of the LC (Hagan et al., 1999;
Bourgin et al., 2000), dopaminergic cells of the VTA (Nakamura
et al., 2000), serotonergic cells of the DR (Brown et al., 2002;
Liu et al., 2002), histaminergic cells of the TMN (Yamanaka
et al., 2002), and cholinergic neurons in the BF (Eggermann
et al., 2001) are all excited by orexins in vitro (Alam et al., 1999).
These results suggest that orexin neurons fire during the wake-
ful period, and excite these wake-active neurons to sustain their
activity.

On the other hand, as described previously, orexin neurons are
regulated by acetylcholine and monoamine. Constantly, orexin
neurons are innervated by BF-cholinergic neurons (Sakurai et al.,
2005). A cholinergic agonist, carbachol, activates some popula-
tions of orexin neurons. Furthermore, serotonergic and nora-
drenergic neurons send inhibitory projections to orexin neurons
(Muraki et al., 2004; Sakurai et al., 2005; Yamanaka et al., 2006).
These findings indicate that orexin neuron maintain an awake
state by activation of wake-active neurons. On the other hand,
during a sleep state, sleep-active neurons inhibit both orexin
neuron and wake-active neurons to maintain a sleep state. If
orexin neurons were deleted as in narcolepsy, sleep-active neurons
and wake-active neurons would make a mutually inhibitory sys-
tem. This might result in behavioral instability, which is a major
symptom of narcolepsy (Figure 3C).

Additionally, optogenetic activation of orexin neurons express-
ing channelrhodopsin-2 increased the probability of transition
to wakefulness from sleep (Adamantidis et al., 2007). This effect
was observed throughout the entire light/dark period, but was
diminished with sleep pressure (Carter et al., 2009). Carter
et al. suggested that the orexin system promotes wakefulness
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FIGURE 3 | Mechanisms by which orexin system maintains

consolidated sleep and wakefulness. The figures represent the functional
interaction between orexin neurons, wake-active centers, and sleep-active
centers during various states of sleep and wakefulness. Arrows show
excitatory and lines show inhibitory input. The thickness of arrows and lines
represent relative strength of input. Circle sizes represent relative activities
of each group of neurons (A) Awake state. Orexin neurons send excitatory
input to wake-active neurons, which send inhibitory feedback projections to
orexin neurons. This system might maintain the activity of wake-active
neurons. A small decrease in the activity of wake-active neurons results in
decreased inhibitory influence to orexin neurons. Orexin neurons, therefore,

are disinhibited and increase their excitatory influence on wake-active
neurons to maintain their activity. These wake-active neurons send
inhibitory projections to the POA sleep center and excitatory projections to
the thalamus and cerebral cortex. (B) Sleep state. GABAergic neurons in
the sleep center are activated and send inhibitory projections to wake-active
neurons and orexin neurons to maintain a sleep state. (C) Model of
narcolepsy. Sleep-active neurons in the POA inhibit wake-active neurons
and in turn are inhibited by them, thus forming a mutually inhibitory system.
This system can cause unnecessary transition between the states, because
when either side begins to overcome the other, the switch abruptly turns
into the alternative state.

throughout the light/dark period, but the downstream targets
are inhibited with increased sleep pressure overriding the effect
of orexin. Optogenetic inhibition of orexin neurons expressing
halorhodopsin resulted in induction of slow wave sleep dur-
ing the light period, although it had no effect during the dark
period (Tsunematsu et al., 2011). Pharmacogenetic modulation
of orexin neurons also revealed that excitation of orexin neu-
rons increased wakefulness time and inhibition of orexin neurons
decreased wakefulness time and increased NREM sleep (Sasaki
et al., 2011). These selective modulations of orexin neurons
in vivo suggest that activity of orexin neurons actually influ-
ences an animal’s vigilance states. Furthermore, optogenetic mod-
ulation of orexin neurons and LC neurons revealed that the
wake-promoting influence of orexin is mediated by LC neurons
(Carter et al., 2012).

Contribution of OX1R and OX2R in regulation of wakefulness
Intracerebroventricular (icv) injection of orexin during the
light period potently increases the awake period in rats, and

this effect is markedly attenuated by a histamine H1 antag-
onist (Yamanaka et al., 2002). The pharmacological effect of
orexin A on waking time in mice is almost completely absent
in H1-receptor-deficient mice (Huang et al., 2001). Moreover,
focal restoration of OX2R in neurons of the TMN and adjacent
parts of the posterior hypothalamus in mice lacking OX2R com-
pletely rescued the sleepiness of these mice (Mochizuki et al.,
2011). These results suggest that the TMN-histaminergic path-
way might be an important effector site of orexin for sleep/wake
regulation.

Consistently, OX2R knockout mice show characteristics of nar-
colepsy (Willie et al., 2003), while OX1R knockout mice exhibit
only very mild fragmentation of the sleep-wake cycle (Willie
et al., 2001). However, notably, the phenotype of OX2R knockout
mice is far less severe than that found in prepro-orexin knock-
out mice and double receptor knockout mice. Especially, OX2R
knockout mice are only mildly affected by cataplexy and direct
transitions to REM sleep from an awake state. Furthermore,
the effects of orexin A on wakefulness and NREM sleep were
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significantly attenuated in OX2R knock-out mice as compared
with wild-type mice, but OX1R knockout mice also showed an
impaired response (Mieda et al., 2011). These observations sug-
gest that although the OX2R-mediated pathway has a pivotal
role in the promotion of wakefulness, OX1R also has addi-
tional effects on sleep-wake regulation. These findings suggest
that loss of signaling through both OX1R- and OX2R-dependent
pathways is necessary for emergence of a complete narcoleptic
phenotype.

REM-related atonia
Cataplexy has been proposed to be controlled by mechanisms
similar to those producing atonia during REM sleep. Recent
reports suggested that the REM-related atonia is induced by
activation of REM-on neurons in the sublaterodorsal tegmental
nucleus (SLD) (Fuller et al., 2007; Luppi et al., 2011). One of the
activation pathways of REM-on neurons is likely to be mediated
by input from the amygdala, which is well-known to be acti-
vated during REM sleep (Luppi et al., 2011). Strong, generally
positive emotional stimuli, which might activate the amygdala,
are known to trigger cataplexy in narcolepsy-cataplexy patients.
These suggest that the amygdala-induced REM-on neuron acti-
vation might play a role in cataplexy. During wakefulness and
NREM sleep, the SLD REM-on neurons are inhibited by REM-
off neurons in the ventrolateral periaquaductal gray and dorsal
deep mesencephalic reticular nucleus (vlPAG/dDPMe) (Luppi
et al., 2011). These findings suggest a possibility that excita-
tory input from orexin neurons to vlPAG/dDPMe supports the
activity of these REM-off neurons to avoid muscle atonia. This
hypothesis explains why narcoleptic patients exhibit cataplexy
during emotional events. Moreover, neural input from the lim-
bic system, especially the amygdala, to orexin neurons might
also be implicated in the pathophysiology of cataplexy. Some
report also suggested that cholinergic neurons in the LDT/PPT
are implicated in REM-related atonia (Shiromani et al., 1988),
and the same pathway is implicated in cataplexy. A local injec-
tion of orexin into the PPT strongly inhibited REM-related
atonia in cats (Takakusaki et al., 2005). It is possible to spec-
ulate that emotional stimuli may increase orexin release in
the PPT, which indirectly inhibits cholinergic neurons, to pre-
vent muscle atonia in wild-type animals. Another report also
showed that orexin activates lateral vestibular nucleus neu-
rons and promotes vestibular-mediated motor behavior. This
report suggests that orexin is critical when an animal is fac-
ing a major motor challenge. The orexin system participates not
only in sleep and emotion but also in motor regulation directly.
These findings may also account for the mechanism of cataplexy
(Zhang et al., 2011).

It is known that food perception often evokes cataplexy in
narcoleptic dogs and orexin knockout mice (Reid et al., 1998;
Clark et al., 2009), suggesting that orexin signaling is phys-
iologically activated upon perception of food, and that this
system is necessary to evoke proper feeding behavior. This sug-
gests that regulation of feeding behavior might also be con-
trolled by input to orexin neurons from the limbic system,
because some of the affective content of the perception of food
is thought to be processed in the amygdala and limbic system

(Berthoud, 2004), and this information may be passed on to
orexin neurons.

ROLE OF OREXINS IN STRESS RESPONSE
Orexin neurons are activated by a variety of emotional and physi-
cal stressors including a resident intruder paradigm, air-jet stress,
cold exposure, food deprivation, foot shock, and immobiliza-
tion stress (Sakurai et al., 1998; Ida et al., 2000; Salin-Pascual
et al., 2001). Orexin administration promotes a variety of auto-
nomic responses associated with a stress state, including eleva-
tion of blood pressure, heart rate, oxygen consumption, body
temperature, energy metabolism, and respiration (Lubkin and
Stricker-Krongrad, 1998; Samson et al., 1999; Shirasaka et al.,
1999; Yoshimichi et al., 2001; Shahid et al., 2011; Tupone et al.,
2011). Administration of orexin also elevated plasma corticos-
terone level (Hagan et al., 1999). A recent study also suggested
that activation of orexin neurons is necessary for developing a
panic-prone state in a rat panic model. Moreover, human sub-
jects with panic anxiety have elevated levels of orexin in the CSF
(Johnson et al., 2010). These findings suggest that input coming
from regions implicated in emotion and stress might be impor-
tant for regulation of the orexin system, and activation of orexin
neurons might induce an increase in sympathetic outflow and
stress response.

Orexin neurons receive input from the limbic system (Winsky-
Sommerer et al., 2004; Sakurai et al., 2005; Yoshida et al., 2006),
and the importance of this connection is shown in the defense,
or “fight or flight,” response. A resident-intruder paradigm or
air-jet stress-induced increases in blood pressure, heart rate, and
locomotor activity were smaller in orexin-deficient mice than
in wild-type mice (Kayaba et al., 2003; Zhang et al., 2006).
Stimulation of the amygdala or the BST, both of which are impli-
cated in stress-induced autonomic responses, induced cardiores-
piratory excitation in wild-type but not in orexin neuron-ablated
mice (Kuwaki, 2011). In addition, stress-induced analgesia (SIA)
induced by foot shock was attenuated in orexin knockout mice
(Watanabe et al., 2005). These results indicate that orexin neu-
rons might be important modulators required for orchestrating
the neural circuits controlling emotional behavior and autonomic
functions, and act as a master switch to activate various efferent
pathways of emotional responses.

Corticotrophin-releasing factor (CRF) neurons in the amyg-
dala and the PVN receive orexin-containing fibers (Winsky-
Sommerer et al., 2004). On the other hand, CRF-immunoreactive
fibers are abundant in the LHA, and CRF excites orexin neu-
rons via the CRF-R1 receptor (Winsky-Sommerer et al., 2004).
The reciprocal link between the CRF system and orexin neurons
might maintain wakefulness during stressful events. Indeed, acti-
vation of orexin neurons by foot shock stress is severely impaired
in CRF-R1 receptor-deficient mice, suggesting that such activa-
tion is mediated by CRF (Winsky-Sommerer et al., 2004). On
the other hand, orexin activates CRF-containing neurons, result-
ing in activation of the HPA axis (Kuru et al., 2000; Fuller et al.,
2007).

Excessive activation of orexin neurons during the rest period
by limbic input might contribute to sleep disruption under stress-
ful conditions.
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ROLES OF OREXINS IN FEEDING BEHAVIOR AND ENERGY
HOMEOSTASIS
It is has been thought that the LHA is involved in food
intake and energy homeostasis. Icv injection of orexins dur-
ing the light period induces feeding behavior in rodents and
zebrafishes (Sakurai et al., 1998; Edwards et al., 1999; Haynes
et al., 2000, 2002; Yokobori et al., 2011). These observations
suggest that orexin neurons might regulate feeding behavior in
various species. As previously mentioned, orexin neurons are
able to monitor humoral and neural indicators of energy bal-
ance. A high extracellular concentration of glucose and leptin
induces marked hyperpolarization of orexin neurons. Conversely,
decreased concentration of glucose, ghrelin, and a mixture of
amino acids induces depolarization (Yamanaka et al., 2003a;
Burdakov et al., 2005; Gonzalez et al., 2009; Schone et al., 2011).
The LHA contains glucose-sensitive neurons that are activated
by glucopenia and are thus implicated in the positive short-
term regulation of feeding and energy expenditure (Oomura
et al., 1974). The responses of orexin neurons to glucose are
divided into transient and sustained inhibitory responses. These
mechanisms maintain orexin neurons’ response to glucose fluc-
tuations (Williams et al., 2008). These studies suggest that orexin
neurons are glucose sensitive and may play an important role
in feeding and energy expenditure. Importantly, this mecha-
nism is sufficiently sensitive to encode variations in glucose
levels reflecting those occurring physiologically between nor-
mal meals (Burdakov et al., 2005). Prepro-orexin mRNA level
is also increased in hypoglycemic conditions or after a 48 h
fast, suggesting that expression of the gene is also regulated by
plasma glucose level (Sakurai et al., 1998; Griffond et al., 1999;
Moriguchi et al., 1999; Yamanaka et al., 2003a). These findings
suggest that orexin neurons monitor indicators of energy bal-
ance of the body and mediate adaptive augmentation of arousal
in response to fasting. POMC neurons and NPY neurons in
the Arc have been shown to innervate orexin neurons (Elias
et al., 1998). Injection of agouti-related protein (Agrp), which
is an endogenous antagonist of MC3/4Rs, resulted in activa-
tion of orexin neurons (Zheng et al., 2002). These findings
suggest that the orexin system is involved in the hypothalamic
neuronal network that regulates feeding behavior and energy
homeostasis.

The altered energy homeostasis in human narcolepsy patients
also suggests roles of orexin in regulation of energy homeostasis
(Honda et al., 1986; Schuld et al., 2000). The finding of decreased
caloric intake (Lammers et al., 1996) combined with an increased
body mass index (Schuld et al., 2000) suggests that narcolepsy
patients have a feeding abnormality with reduced energy expendi-
ture. Consistently, orexin neuron-ablated mice show hypophagia
and late-onset obesity (Hara et al., 2001). One of the reasons
for obesity in narcolepsy is related to impaired thermogenesis
(Tupone et al., 2011). Inability of brown preadipocytes to dif-
ferentiate was also observed in orexin knockout mice (Sellayah
et al., 2011). Orexin also regulated muscle glucose metabolism
by activating muscle sympathetic nerves and β2-adrenergic sig-
naling (Shiuchi et al., 2009). These studies indicate that orexin
regulates not only feeding behavior but also peripheral energy
expenditure.

Administration of an OX2R selective agonist-suppressed
weight gain in mice on a high-fat diet (Funato et al., 2009).
Central administration of anti-orexin antibody or an OX1R-
selective antagonist-reduced food intake (Haynes et al., 2000;
Yamada et al., 2000), and prepro-orexin knockout mice also
showed hypophagia (Willie et al., 2001). Moreover, an OX1R-
selective antagonist-reduced food intake and ameliorated obesity
in leptin-deficient ob/ob mice (Haynes et al., 2002), suggesting
that leptin deficiency at least partly activates the orexin pathway
to increase food intake. This is consistent with findings that lep-
tin inhibited the activity of orexin neurons. The Arc receives dense
projections from orexin neurons (Peyron et al., 1998; Date et al.,
1999; Yamanaka et al., 2000), and Fos expression was induced in
Arc NPY neurons by icv injection of orexin (Yamanaka et al.,
2000). Electrophysiological studies showed that orexin activated
NPY neurons (van den Top et al., 2004; Li and van den Pol, 2006)
and inhibited proopiomelanocortin (POMC) neurons (Muroya
et al., 2004; Ma et al., 2007). Furthermore, the orexin A-induced
increase in food intake was partly inhibited by administration of
an NPY-Y1 receptor antagonist (Yamanaka et al., 2000). These
experiments suggest that orexin-stimulated food intake is at least
partially mediated by activation of NPY neurons.

Infusion of orexin A or a GABAA receptor agonist into the shell
of the NAc increased feeding behavior (Thorpe and Kotz, 2005)
and increased Fos expression in orexin neurons (Baldo et al.,
2004). These findings indicate that projections from the NAc to
orexin neurons might play a role in regulating feeding behavior.

Orexin-mediated maintenance of consolidated wakefulness
states might also be important in supporting motivated behavior
related to food intake, such as food seeking, because proper main-
tenance of arousal during food searching and intake is essential
for an animal’s survival. For example, when faced with reduced
food availability, animals adapt with a longer awake period, which
disrupts the normal circadian pattern of activity (Itoh et al., 1990;
Challet et al., 1997). During starvation, orexin neurons might be
activated by low leptin and glucose levels, along with a high ghre-
lin level. These mechanisms may directly modulate the activity of
orexin neurons according to appetite and body energy stores to
maintain wakefulness. Consistently, orexin neuron-ablated mice
fail to respond to fasting with increased wakefulness and activ-
ity (Yamanaka et al., 2003a). These findings suggest that orexin
neurons have a critical role in the maintenance of arousal dur-
ing a period of negative energy balance. These properties might
allow orexin neurons to promote alertness in a hungry animal
and maintain long periods of wakefulness. These findings indi-
cate that orexin neurons provide a crucial link between energy
balance and arousal.

ROLES OF OREXINS IN REWARD SYSTEMS
Interaction with reward system
The LHA has been implicated in the reward system by both lesion
experiments and the intracranical self-stimulation paradigm
(Anand and Brobeck, 1951; Olds and Milner, 1954). Recently, sev-
eral lines of evidence have suggested that orexins are involved in
modulation of the reward system.

Narcoleptic patients are often treated with highly addictive
amphetamine-like drugs (Nishino and Mignot, 1997) but they
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rarely become addicted to these drugs (Akimoto et al., 1960;
Guilleminault et al., 1974). Consistently, orexin knockout mice
are less susceptible than wild-type mice to developing mor-
phine dependence as measured by physical withdrawal response
(Georgescu et al., 2003; Narita et al., 2006). Moreover, abnor-
mal activity in reward brain circuits was observed in human
narcolepsy (Ponz et al., 2010).

These observations suggest that orexin neurons play important
roles in reward processing. In fact, VTA dopaminergic neurons
receive input from orexin neurons composed of both synap-
tic terminals (Peyron et al., 1998; Marcus et al., 2001; Fadel
and Deutch, 2002) and en-passant fibers (Balcita-Pedicino and
Sesack, 2007), and orexin directly activates VTA dopaminergic
neurons (Nakamura et al., 2000; Korotkova et al., 2003). Icv
orexin-induced hyperlocomotion and stereotypy were blocked
by a dopamine receptor antagonist (Nakamura et al., 2000).

Moreover, icv or local VTA infusion of orexin was shown to rein-
state drug-seeking or food-seeking behavior in rodents (Boutrel
et al., 2005; Harris et al., 2005).

On the contrary, orexin neurons receive projections from the
VTA, NAc, and LS—regions involved in reward systems (Yoshida
et al., 2006). Consistently, dopamine has an inhibitory influ-
ence on food intake and reward pathways when injected into the
LHA/PFA (Yang et al., 1997). These reciprocal interactions might
constitute regulatory mechanisms of reward systems (Figure 4).

Furthermore, many reports suggest a critical role of orexin sig-
naling in neural plastic effects at glutamatergic synapses in the
VTA. In vivo administration of an OX1R antagonist, SB334867,
inhibited cocaine- or high fat-induced potentiation of excita-
tory currents in VTA dopaminergic neurons (Borgland et al.,
2006, 2009). Orexin A input to the VTA potentiates N-methyl-
D-aspartate receptor (NMDAR)-mediated neurotransmission

FIGURE 4 | Input and output of orexin neurons at interface of sleep,

stress, reward, and energy homeostasis. Orexin neurons in the lateral
hypothalamic area (LHA) and posterior hypothalamus (PH) are placed to
provide a link between the limbic system, energy homeostasis, the brain
stem, and other systems. Arrows show excitatory projections and broken
arrows inhibitory projections. Gray semicircles indicate OX1R and black
semicircles indicate OX2R. Neurotransmitters/modulators are underlined. LC,
DR, and TMN are wake-active regions, VLPO is sleep-active region, and
LDT/PPT is REM-active region. Orexin neurons promote wakefulness through
monoaminergic nuclei that are wake-active. Stimulation of dopaminergic
centers by orexins modulates reward systems (VTA). Peripheral metabolic

signals influence orexin neuronal activity to coordinate arousal and energy
homeostasis. Stimulation of neuropeptide Y neurons by orexin increases
food intake. The SCN, the central body clock, sends input to orexin neurons
via the DMH. Input from the limbic system (amygdala and BST) might be
important to regulate the activity of orexin neurons upon emotional stimuli to
evoke emotional arousal or fear-related responses. Abbreviations: BST, bed
nucleus of the stria terminalis; VLPO, ventrolateral preoptic area; LC, locus
ceruleus; DR, dorsal raphe; TMN, tuberomammillary nucleus; LDT,
laterodorsal tegmental nucleus; PPT, pedunculopontine tegmental nucleus;
VTA, ventral tegmental area; SCN, suprachiasmatic nucleus; DMH,
dorsomedial hypothalamus; Arc, arcuate nucleus.
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via PLC/PKC-dependent recruitment of NMDA receptors in
dopamine neuron synapses (Borgland et al., 2006). Moreover,
orexin B increased presynaptic glutamate release in addition
to postsynaptic potentiation of NMDA receptors in the VTA
(Borgland et al., 2008). These findings suggest roles of orexin
in the mechanisms of reward systems and drug addiction
(Figure 4).

Motivation for positive reinforcement
Behavioral studies have suggested that orexin neurons play an
important role in motivation, feeding, and a variety of reward-
seeking behaviors. For example, orexins are involved in self-
administration behavior. Under fixed ratio schedules, SB334867
reduced self-administration of nicotine, alcohol, high-fat pellets
and sucrose in food-restricted rats, and heroin (Hollander et al.,
2008; Nair et al., 2008; Cason et al., 2010; Jupp et al., 2011;
Smith and Aston-Jones, 2012). Under a progressive schedule
that requires the animal to lever-press progressively more times
to obtain a reinforcer, SB-334867 also reduced the motivation
to self-administer sucrose in food-sated, but not food-restricted
rats, and cocaine (Borgland et al., 2009; Espana et al., 2010).
These results show that OX1R signaling is important for moti-
vation for a variety of highly salient, positive reinforcement.
Orexin is also involved in reward-based feeding. Furthermore,
orexin is also involved in cue-induced reinstatement of seek-
ing for rewards. SB-334867 blocked foot shock-induced rein-
statement of cocaine-seeking behavior (Boutrel et al., 2005;
Smith and Aston-Jones, 2012) and an olfactory cue-induced
reinstatement of alcohol-seeking behavior (Jupp et al., 2011).

These findings suggest that orexin serves to motivate the ani-
mal to engage in goal-directed behavior interacting with reward
systems.

CONCLUSION
Orexin neurons provide crucial links between energy balance,
emotion, reward systems, and arousal (Figure 4).

Symptoms of narcolepsy undoubtedly show that the orexin
system plays highly important roles in regulating sleep/awake
states and the maintenance of arousal by reciprocal interaction
between orexin neurons and monoaminergic/cholinergic nuclei
in the brain. The orexin system is also related to the limbic
system, which regulates emotional responses, the reward sys-
tem in the VTA, and hypothalamic mechanisms that regulate
feeding behavior. These findings suggest that the orexin system
senses the body’s external and internal environments to regu-
late the state of arousal. Recently, a pharmaceutical company
has stated that it plans to apply in 2012 for U.S. regulatory
approval to market a dual orexin receptor antagonist for insom-
nia. Future research on the effect of orexin receptor antagonists in
humans might shed light on the role of the orexin system more
distinctly.
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