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Cancer cells are typically characterized by complex karyotypes including both structural and
numerical changes, with aneuploidy being a ubiquitous feature. It is becoming increasingly
evident that aneuploidy per se can cause chromosome mis-segregation, which explains
the higher rates of chromosome gain/loss observed in aneuploid cancer cells compared to
normal diploid cells, a phenotype termed chromosomal instability (CIN). CIN can be caused
by various mechanisms and results in extensive karyotypic heterogeneity within a cancer
cell population. However, despite such karyotypic heterogeneity, cancer cells also display
predominant karyotypic patterns. In this review we discuss the mechanisms of CIN, with
particular emphasis on the role of aneuploidy on CIN. Further, we discuss the potential
functional role of karyotypic patterns in cancer.
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INTRODUCTION
The karyotype of a human diploid somatic cell consists of 23
pairs of chromosomes, each encoding different genes essential for
cellular function (Alberts et al., 2008). The gain of a single chro-
mosome induces changes in the expression levels of hundreds
to thousands of genes, including genes on the extra chromo-
some as well as genes on other chromosomes (Upender et al.,
2004; Nicholson and Cimini, 2011). To limit the generation of
aneuploidy in somatic cells, chromosome segregation is tightly
regulated during mitosis (Musacchio and Salmon, 2007). Accord-
ingly, chromosome mis-segregation in normal diploid cells occurs
at rates below 1% (Cimini et al., 1999; Minissi et al., 1999; Catalan
et al., 2000). Cancer cells, which are generally aneuploid (Mitel-
man et al., 2011), display significantly higher rates of chromosome
mis-segregation than normal diploid cells, a phenotype termed
chromosomal instability (CIN). Most cancer cells also display
chromosome structural instability (S-CIN), by which chromo-
some aberrations such as translocations, deletions, duplications,
etc., occur with high frequencies. This type of instability is dif-
ferent from whole-chromosome mis-segregation/instability (W-
CIN), by which numerical defects, such as gains and losses of
whole-chromosomes occur at high frequencies. For this review
we focus on mechanisms of W-CIN, hereafter referred to as
CIN. Both the degree of aneuploidy and the rate of chromo-
some mis-segregation vary dramatically in cancer cells (Lengauer
et al., 1998; Mitelman et al., 2011). Indeed, cancer karyotypes
range from near-diploid (2N± few), to near-triploid (3N± few),
to near-tetraploid (4N± few), and the rates of chromosome
mis-segregation in cancer cells, as measured by anaphase lag-
ging chromosomes, range between 10 and 60% (Thompson and
Compton, 2008; Ganem et al., 2009; Silkworth et al., 2009).
In this review we will discuss the relationship between aneu-
ploidy and CIN, the karyotype patterns observed in cancer cells,
and the effects of such karyotypes on populations of cells or
organisms.

THE EFFECTS OF ANEUPLOIDY ON CIN
Most cancer cells are aneuploid and display a CIN phenotype. CIN
can be caused by numerous mechanisms [reviewed in (Nichol-
son and Cimini, 2011)], including transient spindle geometry
defects (Ganem et al., 2009; Silkworth et al., 2009; Silkworth
and Cimini, 2012), impaired microtubule dynamics (Bakhoum
et al., 2009a,b), and, rarely, a dysfunctional mitotic checkpoint
(Cahill et al., 1998; Sato et al., 2000; Haruki et al., 2001), although
the mitotic checkpoint is functional in most cancer cells (Tighe
et al., 2001). Additionally, abnormal centrosome replication (Lin-
gle et al., 2005) and DNA replication stress (Burrell et al., 2013;
Janssen and Medema, 2013) have been proposed as mechanisms of
CIN. Abnormal centrosome replication is likely to induce CIN by
causing transient spindle geometry defects (Silkworth and Cimini,
2012). However, in the study by Burrell et al. replication stress did
not seem related to whole-chromosome mis-segregation. Another
mechanism emerging as a cause of CIN in cancer cells is ane-
uploidy itself (Duesberg et al., 1998; Thompson and Compton,
2010; Sheltzer et al., 2011; Nicholson et al., 2012; Zhu et al.,
2012), although there has been disagreement on whether this is
really the case, with a number of reports concluding that CIN
is an aneuploidy-independent trait (Storchova and Kuffer, 2008;
Zasadil et al., 2013). We believe that such disagreements primarily
arise from two main issues: (i) there is confusion on how CIN is
defined; (ii) different studies measure CIN in different ways. CIN
has been loosely defined as an elevated rate of chromosome mis-
segregation (Lengauer et al., 1997), yet how elevated and compared
to what is often unclear (Geigl et al., 2008). Geigl et al. (2008) sug-
gest that CIN can be defined as a significant increase in the rate
of chromosome mis-segregation compared to an appropriate con-
trol cell population. Further, appropriate statistical tests must be
employed (Geigl et al., 2008). Given this definition, many reports
identifying stable aneuploidies can be reinterpreted. Studies that
use data available in the Mitelman database of cancer karyotypes
(Storchova and Kuffer, 2008; Mitelman et al., 2011; Zasadil et al.,
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Nicholson and Cimini Cancer karyotypes: survival of the fittest

2013) often rely on karyotypic analysis of small numbers (5–20)
of cells per cancer, thus masking small rates of CIN that may be
present (Adeyinka et al., 1998; Bridge et al., 2004). Other studies
lack appropriate statistical analysis (Lengauer et al., 1997). Finally,
stable is often used in relative terms. For instance, Roschke et al.
(2002) identify stable aneuploid cancer cells in the presence of
high rates of chromosome mis-segregation. These cells are consid-
ered stable because modal chromosome numbers do not deviate
over time, despite deviations per chromosome of up to 20% at a
given time (Roschke et al., 2002). The discrepancy between studies
concluding that aneuploidy can cause CIN and those concluding
that it does not may also stem from the method by which CIN
is evaluated/measured in different studies. Many studies measure
CIN by one of two methods: (i) performing karyotypic analy-
sis (sometimes simply by chromosome count) at some point in
time and measuring what fraction of the cell population pos-
sesses a chromosome number that deviates from the mode; (ii)
performing FISH staining on interphase nuclei with chromosome-
specific probes for two to three chromosomes and again evaluating
what fraction of the cell population possesses a number of copies
for those chromosomes that deviates from the mode. Neither
of these methods really measures chromosome mis-segregation
directly and both of them are very likely to underestimate the rates
of chromosome mis-segregation occurring at each round of cell
division. Because the gain or loss of a single chromosome repre-
sents a dramatic genetic change, whether a mis-segregation event
can become evident as CIN using one of the methods described
above will depend on a number of selective factors, including the
specific chromosome that is lost or gained, the specific cell type
studied, and the context (e.g., current karyotype, presence/absence
of certain environmental conditions, etc.) in which the loss/gain
occurs. In other words, cells that mis-segregate chromosomes may
or may not survive, and therefore analysis of the karyotype in
metaphase spreads or chromosome number in interphase nuclei
may reveal a stable karyotype even in the presence of CIN. A
more accurate way to measure CIN is by analyzing chromosome
segregation in mitotic cells. Many labs have used this approach
in recent years and found that CIN cells display higher rates of
anaphase lagging chromosomes (chromosomes that lag behind
at the cell equator while all other chromosomes segregate to the
spindle poles, Figures 1A,B) compared to non-CIN cells (Thomp-
son and Compton, 2008; Bakhoum et al., 2009a; Ganem et al.,
2009; Silkworth et al., 2009). Anaphase lagging chromosomes,
even when segregated to the correct daughter cell, still represent
a mis-segregation event as they typically form micronuclei in the
daughter cell (Cimini et al., 2002). Micronuclei have been shown
to lead to both numerical and structural defects, including more
anaphase lagging chromosomes (Crasta et al., 2012; He et al.,
2012). Whereas the analysis of anaphase lagging chromosomes
may be a better way to measure CIN, it may still be insufficient
to determine the real rates of chromosome mis-segregation, as
cases in which two sister chromatids segregate to the same spin-
dle pole would go undetected. A good alternative approach to
measure CIN would require the combination of more than one
of the methods outlined above, such as, for instance, anaphase
lagging chromosomes and interphase FISH or anaphase lagging
chromosomes and karyotypic analysis. Alternatively, the analysis

FIGURE 1 |The degree of aneuploidy directly correlates with CIN, as
measured by analysis of anaphase lagging chromosomes. One way to
measure CIN is by determining the rates of anaphase lagging
chromosomes in dividing cells. In a normal anaphase, chromosomes are
equally segregated to the two poles of the mitotic spindle, as illustrated by
the diagram in (A). Some dividing cells display anaphase lagging
chromosomes (B), single chromosomes that lag behind at the cell equator
as all the other chromosomes move to the spindle poles. Anaphase lagging
chromosomes are caused by merotelic kinetochore attachment (Cimini
et al., 2001), a kinetochore mis-attachment in which a single kinetochore is
bound to microtubules from two spindle poles instead of just one. (C) XY
plot showing the relation between anaphase lagging chromosomes and
modal chromosome number in various cell lines. The graph also shows
linear fits and regression values (R2). The three colors refer to data sets
from different labs: red is for data from the Cimini Lab [(Silkworth et al.,
2009) and (Silkworth, Nardi, and Cimini, unpublished)]; blue is for data from
the Pellman lab (Ganem et al., 2009); green is for data from the Compton
lab (Thompson and Compton, 2008). Karyotype information for cell lines
from the Cimini Lab and the Pellman Lab was obtained from The American
Type Cell Culture website (ATCC). Karyotype information for cell lines from
the Compton Lab is that reported in (Thompson and Compton, 2008).
Although there is a general trend in which higher chromosome modal
number correlates with higher rates of anaphase lagging chromosomes,
there is a certain degree of variability between different labs. Correlation
analysis showed significant correlation between aneuploidy and CIN for the
cell lines in blue (Pearson R=0.85, P < 0.05) and those in red (Pearson
R=0.80, P < 0.05), but no significant correlation for the data shown in
green (R=0.71, P > 0.05).

of anaphase lagging chromosomes (for all chromosomes) could
be combined with analysis of chromosome segregation by FISH
with chromosome-specific probes on anaphase cells and/or on
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Nicholson and Cimini Cancer karyotypes: survival of the fittest

binucleate cells in a cytokinesis-block assay (Cimini et al., 1999)
and/or in the interphase ensuing cell division (Thompson and
Compton, 2008).

Despite the significant difficulties of defining and measuring
CIN, many investigators have shown that aneuploidy per se can
cause CIN. Evidence supporting aneuploidy as a cause of chromo-
some mis-segregation was first suggested by correlations between
the degree of aneuploidy and the degree of CIN in transformed
Chinese hamster embryo cells and in colorectal cancer cell lines
(Duesberg et al., 1998). Extending this analysis, we have plotted the
rate of anaphase lagging chromosomes versus modal chromosome
number and found a significant correlation (Figure 1C), indicat-
ing that a higher degree of aneuploidy (i.e., modal chromosome
number significantly above 46) correlates with higher frequencies
of chromosome mis-segregation (i.e., CIN). This, in turn, suggests
that aneuploidy can induce chromosome mis-segregation due to
an imbalance in the gene dosage (which may include many mitotic
genes), such that a higher degree of aneuploidy will result in a
more severe imbalance. More controlled analyses of the relation-
ship between aneuploidy and CIN have revealed this relationship
to be causal. For instance, studies in haploid yeast strains carrying
specific disomies (aneuploidies) showed that aneuploidy induced
high rates of chromosome mis-segregation (Sheltzer et al., 2011;
Zhu et al., 2012), although not in all disomies tested (70%, 9/13)
(Sheltzer et al., 2011), and to varying degrees depending on the
specific disomy (Zhu et al., 2012). Moreover, we have recently
found that colorectal cancer cells carrying an extra copy of a
chromosome (trisomy) also display higher rates of chromosome
mis-segregation (anaphase lagging chromosomes and karyotypic
heterogeneity) compared to diploid controls (Nicholson et al.,
2012). Similar to yeast, we found the effects to vary depending on
the specific trisomy (Nicholson et al., 2012). Finally, some studies
have reported elevated rates of aneuploidy in somatic cells of indi-
viduals affected by congenital trisomies (Reish et al., 2006, 2011).
Together, these findings indicate that aneuploidy causes chromo-
some mis-segregation in the majority of cases. However, not all
aneuploidies are capable of doing so, and those that do, do not all
do so to the same extent. Given that aneuploidy likely induces chro-
mosome mis-segregation due to the genetic imbalance it generates,
it is possible that the differences between different aneuploidies
may simply depend on the gene content (both number and types
of genes) carried by the aneuploid chromosome. Indeed, studies
in disomic yeast show aneuploidy can induce an imbalance in the
mitotic checkpoint genes MAD1 and MAD2 and in turn increase
the rate of chromosome mis-segregation (Zhu et al., 2012). Cancer
cells frequently over- or under-express genes involved in mitotic
checkpoint and progression, which would be expected to result in
an increase in chromosome mis-segregation (Anand et al., 2003;
Babu et al., 2003; Yuan et al., 2006; Mondal et al., 2007; Sotillo et al.,
2007, 2010; Diaz-Rodriguez et al., 2008; Logarinho et al., 2008;
Baker et al., 2009; Ryan et al., 2012). Notably, the genes encod-
ing proteins involved in mitotic checkpoint and progression are
typically not mutated, but only mis-expressed in cancer (Cahill
et al., 1999; Imai et al., 1999; Yamaguchi et al., 1999; Sato et al.,
2000; Haruki et al., 2001). Another mechanism that may explain
aneuploidy-induced CIN is a delay in timing of chromosome
replication and/or condensation (DRT and DCT, respectively).

Pre-mitotic defects such as DRT and DCT have been shown to
cause CIN (Smith et al., 2001; Chang et al., 2007; Grinberg-Rashi
et al., 2010), and aneuploidy has been shown to induce DRT and
DCT (Amiel et al., 1998, 1999; Kost-Alimova et al., 2004) in a
chromosome-specific manner. This may depend on the presence
of specific loci found on autosomes that control their own sta-
bility (Stoffregen et al., 2011; Thayer, 2012). Disrupting these loci
leads to a dramatic increase in micro-nucleated cells (Donley et al.,
2013), a common outcome of anaphase lagging chromosomes
(Cimini et al., 2002) and a common defect of cancer cells (Bhatia
and Kumar, 2012). Nonetheless, more work will undoubtedly need
to be performed to fully understand how aneuploidy induces CIN.

THE CANCER KARYOTYPE
As described above, most cancer cells display rates of anaphase
lagging chromosomes ranging between 10 and 60% (Thompson
and Compton, 2008; Ganem et al., 2009; Silkworth et al., 2009).
Considering that in 1 cm3 of tumor tissue there are approxi-
mately 109 cells, chromosome mis-segregation rates of 10–60%
could theoretically produce 100,000,000–600,000,000 cells with
different karyotypes although it is not known whether these mis-
segregation rates identified in cultured cells represent the actual
chromosome mis-segregation rates occurring within the tumor.
Moreover, although karyotypic analysis has revealed extensive
intratumor heterogeneity (Heppner, 1984; Gerlinger et al., 2012),
cancer karyotypes are not totally random (Winge, 1930; Levan,
1956; Makino, 1956; Hauschka and Levan, 1958; Roschke et al.,
2002; Nicholson and Duesberg, 2009). Indeed, karyotypic analysis
of thousands of cancers has revealed the existence of karyotypic
patterns, with aneuploidies that are recurrently found in several
different cancer types (Table 1), and others that are specific to
individual tumors and tissues/organs of origin (Table 1) (Geb-
hart and Liehr, 2000; Beroukhim et al., 2010; Mitelman et al.,
2011; Ozery-Flato et al., 2011; Cai et al., 2012). For instance, extra
copies of 1q, 3q, 8q, 7, and 20 are found in numerous different
cancers at least 25% of the time (Table 1). And in general, small,
gene poor chromosomes are lost across all cancers (Duijf et al.,
2012). On the other hand, gain of chromosome 13 is frequently
seen in colorectal cancer, but is rarely observed in other cancer
types (Bomme et al., 1994; Bardi et al., 1995) (Table 1). Simi-
larly, gain of chromosome 21 is frequent in acute lymphoblastic
leukemia, but not in other cancers (Table 1). Karyotype alter-
ations are apparent not only spatially but also temporally, with
certain chromosomes being gained or lost earlier than others dur-
ing cancer progression (Bardi et al., 1995; Fabarius et al., 2002; Ly
et al., 2011; Tabach et al., 2011; Ried et al., 2012). What are the
factors that generate karyotypic patterns in cancer? Some studies
have reported that aneuploidy and CIN can result in loss of het-
erozygosity for p53 (Matsumura et al., 1992; Blount et al., 1994;
Baker et al., 2009) or Rb (Cavenee et al., 1983), supporting the
idea that karyotypic changes lead to gain of oncogenes and loss
of tumor suppressor genes. Whereas this may be true in some
cases, findings from other studies argue against this conclusion.
For example, in glioma about half of significant copy number
changes are not associated with oncogenes or tumor suppressor
genes (Beroukhim et al., 2007). Moreover, if the significance of
aneuploidy was exclusively related to its role in promoting the
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Table 1 | Recurrent aneuploidies in cancers from different sites.

Cancer type Recurrent aneuploidies Cases

Gains Losses

Acute lymphoblastic

leukemia

21 – 533

Breast cancer 1q, 8q, 17q, 20 8p, 16q, 17p 2,108

Cervical cancer 3q NA 526

Colorectal cancer 7, 8q, 13, 20 8p, 17p, 18 989

Esophageal cancer 1q, 3q, 5p, 7,

8q, 12p, 20

3p, 4, 5q, 8p,

13, 18q, 19

402

Gastric cancer 8q, 20 – 777

Glioma 7 1p, 19q 591

Head and neck

cancer

3q, 8q, 11q 3p, 8p 714

Hepatic cancer 1q, 8q 4q, 8p, 13,

16q, 17p

903

Medulloblastoma 7, 17q 17p 1,153

Pancreatic cancer 1q, 3q, 5p, 7p,

8q, 20q

3p, 4q, 6, 8p,

9p, 17p, 18, 22

327

Cancers display common recurrent aneuploidies (indicated in bold), as well as

recurrent aneuploidies that are tumor – and tissue/organ of origin-specific. Data

are adapted from the arrayMap website [www.arraymap.com; (Cai et al., 2012)]

and represent gains or losses that occur in at least 25% of cases analyzed.

gain of oncogenes or loss of tumor suppressor genes, then one
could not explain the individuality of cancer karyotypes per site
of origin, given that oncogene and tumor suppressor loci are the
same in all human somatic cells. Instead, the fact that the tis-
sue/site of origin is important in determining karyotypic patterns
in cancer cells indicates that selection of specific karyotypes must
also depend on the specific biology and physiology of cells from
different tissues/organs. Indeed, microarray analysis of cells from
different tissues shows tissue-specific gene expression patterns in
normal diploid cells (Hsiao et al., 2001; Liu et al., 2008). These
fixed expression patterns allow cells with the same karyotypes to
define different organs and tissues. Such fixed expression patterns
will also make it so that the same aneuploidy in different tissues has
different effects. Indeed, identical trisomies in different cell types
result in different expression patterns for genes both on and off
the aneusomic chromosome (Upender et al., 2004). For instance,
trisomy 3 in colorectal cancer cells causes significant changes in
expression of genes located on chromosomes 1p, 3, 10p, and Y
while trisomy 3 in immortalized mammary epithelial cells causes
significant changes in expression of genes located on chromo-
somes 2p, 3, 6q, and 18q (Upender et al., 2004). In further support
of the idea that the effect of aneuploidy is cell type-specific is the
observation that individuals with trisomy 21 (Down’s syndrome)
show an increase in hematological cancers, but decreased inci-
dence of solid tumors compared to diploid individuals (Rabin and
Whitlock, 2009). Interestingly, gain of chromosome 21 is the most
common karyotype alteration in acute lymphoblastic leukemia
(Table 1), but is infrequent in glioblastoma, breast, and colorec-
tal cancer. The enhanced tumorigenic potential conferred by the
same aneuploidy in certain tissues but not in others underscores

the importance of both the specific karyotypes and the context in
which such karyotypes are found.

THE ADAPTIVE POTENTIAL OF ANEUPLOIDY
The large-scale genomic changes caused by aneuploidy, which
alters the expression of hundreds to thousands of genes (Thayer,
1996; Pollack et al., 2002; Upender et al., 2004; Gao et al., 2007),
can limit the growth of aneuploid cells under standard environ-
mental conditions (Torres et al., 2007). Under certain circum-
stances, however, these same changes can confer enhanced fitness
(Pavelka et al., 2010; Tang et al., 2011). For example, in Candida
albicans, formation of isochromosome 5L causes azole resistance
via upregulation of the genes ERG11 and TAC1 (Selmecki et al.,
2008). Similarly, in aneuploid Saccharomyces cerevisiae, the gain of
chromosome XIII confers resistance against the DNA damaging
agent 4-NQO (Pavelka et al., 2010) due to the overexpression of
ATR1, a gene on chromosome XIII whose overexpression is suffi-
cient to confer resistance to 4-NQO (Mack et al., 1988; Pavelka
et al., 2010). The adaptive potential of aneuploidy in yeast is
well demonstrated for many other exogenous stresses (Selmecki
et al., 2006, 2009; Pavelka et al., 2010; Tang et al., 2011; Ran-
cati and Pavelka, 2013). Aneuploidy has also been proposed as
a mechanism that can counteract the accumulation of deleteri-
ous mutations, a process termed Muller’s Ratchet (Muller, 1964;
Bignold, 2007a,b; Torres et al., 2008; Vincent, 2011; Duesberg and
McCormack, 2013). An elegant study by Rancati et al. (2008) sup-
ports this idea showing that aneuploidy can rescue deleterious
mutations in a conserved cytokinesis motor. Similarly, the gain
of chromosome VI in yeast is lethal due to the overexpression of
the highly dosage-sensitive gene encoding β-tubulin (TUB2) (Katz
et al., 1990; Torres et al., 2007; Anders et al., 2009); however, gain
of chromosome XIII, which encodes α-tubulin, restores the bal-
ance and the double disome VI/XIII is viable (Anders et al., 2009).
The findings in yeast extend to many other situations, includ-
ing naturally occurring chromosomal imbalances, and aneuploidy
in cancerous and non-cancerous mammalian cells. For instance,
immortalized colon epithelial cells with trisomy 7 out-compete
immortalized diploid colon cells in serum-free media (Ly et al.,
2011). Likewise, tyrosinemia-induced stress in mouse liver can
be overcome by the emergence of aneuploid hepatocytes lacking
chromosome 16 (Duncan et al., 2012a). Chromosome 16 carries
the homogentisic acid dioxygenase (HGD) gene and loss of HGD
in a heterozygous background causes resistance to tyrosinemia-
induced hepatic injury (Duncan et al., 2012a). Although the exact
mechanisms have been hard to elucidate due to the complexity of
cancer karyotypes, the karyotype-phenotype relationship has also
been proposed as a mechanism for adaptation in cancer (Duesberg
et al., 2007). Indeed, cancer cells that display high rates of CIN, and
consequent karyotypic heterogeneity, display intrinsic drug resis-
tance to a wide range of kinase inhibitors (Lee et al., 2011) and
other drugs (Li et al., 2005). There have been attempts to selec-
tively inhibit proliferation of aneuploid cells with specific drugs
(Tang et al., 2011), however such drugs have not proven effec-
tive in other aneuploid cells, even at the highest tolerated dose (Li
et al., 2012). In summary, the effects of aneuploidy on the adaptive
potential of cancer cells are twofold; (1) specific aneuploidies can
confer resistance due to specific changes in gene expression and
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(2) aneuploidy causes chromosome mis-segregation, thus leading
to new karyotypes, some of which will confer selective advantage
under specific conditions and in specific contexts.

THE UNIQUE CASE OF B-CHROMOSOMES: A NATURALLY
OCCURRING CHROMOSOMAL IMBALANCE
Chromosomal imbalance is generally thought to be associated
with disease, which is the case for trisomies causing congenital
syndromes, such as Down (trisomy 21), Patau (trisomy 13), and
Edwards (trisomy 18) syndrome, or for the high levels of aneu-
ploidy associated with cancer. However, high rates of aneuploidy
have also been observed in healthy human tissues, such as liver
(Duncan et al., 2012b) and brain (Rehen et al., 2005), in which
aneuploidy has been argued to confer adaptive potential (Kings-
bury et al., 2005; Duncan et al., 2012a; Bushman and Chun, 2013).
Moreover, there exist examples of chromosomal imbalance that
simply reflect species-specific evolutionary adaptations. A com-
mon example of this is the evolution of sex-specific chromosomes
with different genetic content, or the case of species with X0 sex
determination system, or the even more extreme case of certain
insect species in which a complete set of chromosomes is elimi-
nated (haplodiploidy) in males [for a review on sex determination
see (Sumner, 2003)]. Finally, a very unique case is represented by B-
chromosomes, extra chromosomes found in the karyotype of wild
populations of many animal, fungi, and plant species (Camacho
et al., 2000). B-chromosomes are unique supernumerary chro-
mosomes ranging in size and structure from a small fragment
to the largest chromosome in the karyotype (Jones and Diez,
2004; Gregory, 2005). While unique, B-chromosomes share some
homology with the A-chromosomes (chromosomes of the stan-
dard, normal karyotype) and are consequently thought to have
derived from them (Jones and Rees, 1982; Martis et al., 2012). The
derivation of new chromosomes from the normal chromosome
complement is similar to the evolution of marker chromosomes
in cancer. Moreover, when present, B-chromosomes can vary in
number in different individuals of the same species, thus rep-
resenting a clear example of chromosomal imbalance similar to
aneuploidy. Given the deleterious effect that extra chromosomes
can have in many different cell-types and organisms, it is surpris-
ing that so many species can maintain these extra chromosomes in
their genome. As with aneuploidy, however, this may be possible
if B-chromosomes were maintained through a balance between
negative effect and adaptive potential. B-chromosomes are largely
heterochromatic but they can affect the expression levels of genes
on the A-chromosomes (Kirk and Jones, 1970; Ayonoadu and Rees,
1971), and accordingly, induce phenotypic changes such as differ-
ent sex traits in cichlids (Yoshida et al., 2011) or leaf color in
corn (Staub, 1987). The mechanism responsible for maintaining
B-chromosomes in the karyotype is still debated (Camacho et al.,
2000), but it is clear that, at least in some cases, B-chromosomes
can act heterotically (i.e., enhance fitness) and confer an adaptive
advantage to the individual carrying them compared to individuals
whose karyotype lacks B-chromosomes, much like aneuploidy in
yeast grown under stressful conditions. For instance, Avena sativa
with B-chromosomes shows resistance to rust (Dherawattana and
Sadanaga, 1973) and the fungus Nectria haematococca with B-
chromosomes is resistant to antibiotics (Miao et al., 1991a,b).

Similarly, the plant Allium schoenoprasum with B-chromosomes
displays higher survival rates in natural environments than A.
schoenoprasum without B-chromosomes (Holmes and Bougourd,
1989), due to the ability of B-chromosomes to enhance the ger-
mination rate in drought conditions (Plowman and Bougourd,
1994). Alternatively, B-chromosomes have been thought to be
maintained via a “parasitic-selfish model.” In this model, B-
chromosomes are detrimental to the carriers (Camacho et al.,
2000). In reality, these two models can be unified in a frame-
work in which B-chromosomes, like aneuploidy for a cell, are
generally detrimental to the individual, but can confer an adap-
tive advantage in certain environmental conditions. In support
of this model is the observation that in the British grasshop-
per Myrmeleotettix maculatus specific B-chromosomes occur in
warm, dry environments, and are scarce or absent in humid, cooler
localities (Robinson and Hewitt, 1976).

CONCLUSION
That cancer cells are typically aneuploid is currently a widely
acknowledged fact. However, there is still confusion on whether
most cancer cells also display CIN (i.e., increased rates of chro-
mosome mis-segregation compared to normal cells) or whether
this is a less common phenotype. Here we described how the way
CIN is typically evaluated is likely to underestimate the actual
rates of chromosome mis-segregation in cancer cells. Moreover,
emerging evidence indicates that aneuploidy itself promotes CIN.
Thus, we argue that CIN, like aneuploidy, is a common feature
of cancer cells. One point of confusion about CIN is the fact
that cancer karyotypes are not totally random, but rather kary-
otypic patterns can be identified in various cancers, thus raising
the question of how can a cell population mis-segregate chromo-
somes at high rates and yet display relatively stable karyotypes.
We believe that the answer to this question is that karyotype pat-
terns evolve due to the selective pressure within the cancer-specific
microenvironment. This will lead to selection of aneuploidies that
are common to various cancer types (e.g., chromosomes carrying
genes important for cell survival and proliferation in all cell-types)
as well as aneuploidies that are specific to individual cancers (e.g.,
chromosomes carrying genes that are important for cell survival
and/or proliferation within a certain tissue/organ). The selection
of cancer karyotypes due to the effects they confer (i.e., enhanced
fitness in specific environmental conditions/contexts) appear to
be the same in naturally occurring chromosomal imbalances (e.g.,
B-chromosomes), thus indicating that changes in chromosome
number represent a natural mechanism of adaptation and evo-
lution or simply stated: survival of the fittest karyotype leads to
evolution of cancer, populations, and species.
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