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Neuroimaging-based functional connectivity (FC) analyses have revealed significant
developmental trends in specific intrinsic connectivity networks linked to cognitive
and behavioral maturation. However, knowledge of how brain functional maturation
is associated with FC dynamics at rest is limited. Here, we examined age-related
differences in the temporal variability of FC dynamics with data publicly released by
the Nathan Kline Institute (NKI; n = 183, ages 7–30) and showed that dynamic inter-
region interactions can be used to accurately predict individual brain maturity across
development. Furthermore, we identified a significant age-dependent trend underlying
dynamic inter-network FC, including increasing variability of the connections between
the visual network, default mode network (DMN) and cerebellum as well as within the
cerebellum and DMN and decreasing variability within the cerebellum and between the
cerebellum and DMN as well as the cingulo-opercular network. Overall, the results
suggested significant developmental changes in dynamic inter-network interaction,
which may shed new light on the functional organization of typical developmental brains.

Keywords: development, functional connectivity, fMRI, multivariate pattern analysis, low-frequency fluctuation

Introduction

Typical brain development, as a prerequisite for studying developmental disorders and pediatric-
onset neuropsychiatric diseases, has received increasing attention in recent years (Shaw et al.,
2008; Westlye et al., 2010). Increasing numbers of functional magnetic resonance imaging (fMRI)-
based functional connectivity (FC) analyses have revealed significant changes in inter-regional
interactions over brain development in several intrinsic connectivity networks (ICNs), including
the prefrontal, sensorimotor, salience, and default mode networks (DMNs). In particular, specific
developmental trends, such as the strengthening of long-range connections and weakening of
short-range connections (Dosenbach et al., 2010), the strengthening of temporal segregation
between task-positive and DMNs (Thomason et al., 2008), and a shift in the locations of cortical
hubs from primary sensory and motor regions to heteromodal association cortex (Fransson et al.,
2011), have been suggested to underlie the improvements in cognitive ability and emotional
processing that occur during maturation (Dosenbach et al., 2010; Betzel et al., 2014). Thus, the
investigation of age-related differences in the spatiotemporal properties of whole-brain FC is
fundamentally important for the understanding of developmental features in brain functional
organization and the development of feasible markers of developmental trajectories.
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Although FC studies have documented reliable changes
in human functional brain maturity throughout development,
temporal stationarity was typically assumed in previous studies,
that is, that FC could be measured over the entire fMRI
scan. However, recent neuroscience studies have suggested that
resting-state FC is dynamic and exhibits significant spontaneous
fluctuation (Chang and Glover, 2010; Jones et al., 2012;
Hutchison et al., 2013a), which has also been observed in
the anesthetized macaque brain (Hutchison et al., 2013b) and
verified by electrophysiological [electroencephalography (EEG)]
data (Von Der Malsburg et al., 2010). Furthermore, brain
dynamics related to temporal variations in large-scale topological
properties have also been reported based on both high-resolution
resting-state fMRI (rs-fMRI) data from human brains and
simulated rs-fMRI data from macaques (Zalesky et al., 2014). It is
notable that the low-frequency fluctuations observed in resting-
state FC exhibit complex spatiotemporal structures, which can
be further identified as multiple discrete, reproducible patterns
(Hutchison et al., 2013a; Allen et al., 2014; Yang et al., 2014). Thus,
resting-state FC dynamics have been suggested to reflect ongoing
dynamic interactions across distributed regions associated with
cognitive and behavioral abilities (Hutchison et al., 2013a).
For example, some state-specific temporal features, such as
the dwell time of select states, change with age although the
brain’s repertoire of functional states is generally preserved
(Hutchison and Morton, 2015). During the transition from
childhood to adulthood, the brain undergoes ongoing functional
reorganization that impacts cognition and behavioral abilities.
Hence, we predict that the identification of age-related changes
in the temporal attributes of dynamic inter-regional interactions
(functional connections) at rest will elucidate fundamentally
important patterns of functional reorganization, which are linked
to cognitive and behavioral maturation. To date, however,
there is very limited knowledge regarding how functional brain
maturation is associated with FC dynamics at rest.

The goal of this study was to test the impact of brain
maturation on the temporal variability of FC fluctuations across
sliding time windows. An increasing number of studies have
suggested that low-frequency oscillations in resting-state FC
are linked to spontaneous shifts between various forms of
conscious brain processing, such as passive mind wandering,
active monitoring, memory formation, or changes in attention
and arousal during image acquisition (Hutchison et al., 2013b;
Liu and Duyn, 2013). Hence, it is reasonable that the temporal
variability of spontaneous fluctuation in FC may contain
specific information on processing patterns and capacity of
functional brain systems, which may change with age during
maturation. This idea is also inspired by recent findings on the
association between variability in dynamic FC and behavior.
For instance, the individual differences in variability of FC
exhibit significant correlation with the tendency to attend
to pain (Kucyi et al., 2013) and are related to the degree
to which a subject is mind-wandering away from a sensory
stimulus (Kucyi and Davis, 2014). Disease-related alterations
in the dynamic properties of FC have also been reported,
suggesting that temporal features of FC associated with the
cognitive dysfunction in diseases can potentially serve as disease

biomarkers (Jones et al., 2012; Damaraju et al., 2014; Shen
et al., 2014). More importantly, cognitive information processing,
especially high-order cognitive function of human brains arises
from specific patterns of spatiotemporal activity within networks
and functional interaction across distinct networks. Increasing
age has been observed to be linked to greater variability in
connection strength across time at rest, while less variability has
been observed among older participants compared to younger
participants during the administration of a cognitive control task
(Hutchison and Morton, 2015).

We used the amplitude of low-frequency fluctuation of FC
(ALFF-FC) as a metric to measure temporal variability of
spontaneous fluctuation in resting-state FC. The ALFF-FC is
a simple but appropriate measure of signal variability that is
defined as the total signal power within the low-frequency
range (Han et al., 2011; Yu et al., 2014). We predicted that
the fluctuation of correlations across ICNs, which reflects the
frequency of inter-network interactions and communication,
would vary by age. Further, we used a predictive model to test
this hypothesis by asking whether the temporal property of
dynamic FC can be used to sufficiently predict brain maturity at
an individual level. Compared to group-level fMRI studies, the
use of predictive model to make continuously values predictions
may have implications in clinical scenarios for developmental
disorders. It has been suggested that multivariate pattern
analysis can extract sufficient information from rs-fMRI-based
FC to make accurate predictions regarding an individual’s brain
maturity across development (Dosenbach et al., 2010). During
brain development from childhood to senescence, functional
connections tend to increase linearly in the emotional system
and decrease in the sensorimotor system, whereas quadratic
trajectories have been observed in the functional connections
associated with higher-order cognitive functions (Wang et al.,
2012b). Here, we extend these findings to dynamic aspects of FC.
In particular, we hope to identify the relevant FC with significant
developmental trends that could further our understanding of
typical functional brain development.

Materials and Methods

Participants and fMRI Data Acquisition
Resting-state fMRI data were collected from 183 healthy, the
participants (age range, 7–30 years; mean age, 19.9 ± 5.3 years;
84 males) from the NKI/Rockland Sample (NKI-RS), which is
provided by the Nathan Kline Institute (NKI, Orangeburg, NY,
USA) and is available online in a public database1 (Nooner et al.,
2012). All approvals and procedures for collection and sharing
of data were approved by the NKI institutional review board, and
each participant gave written informed consent. For children who
were unable to give informed consent, written informed consent
was obtained from their legal guardians. A detailed distribution
of age and sex of the whole subjects is shown in Supplementary
Figure S1. There are several papers published only based upon
a subset of NKI-RS sample (Uddin, 2011; Oler, 2012; Laird

1http://fcon.1000.projects.nitrc.org/indi/pro/nki.html
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et al., 2013; Betzel et al., 2014) for controls in developmental or
adulthood studies.

Magnetic resonance imaging (MRI) data were acquired on a
3.0 T SIMENS Trio scanner. Each subject underwent a 10-min
or resting-state fMRI scan involving an echo-planar imaging
(EPI) sequence. 85 subjects of the total healthy from NKI
were scanned by following parameters: TR/TE = 2500/30 ms,
FA = 80, FOV = 216 mm, matrix = 64 × 64, slices = 38,
thickness = 3.0 mm and time points = 260 and the other subjects
were scanned by following parameters: TR/TE = 645/30 ms,
slices = 40, thickness = 3.0 mm and time points = 900.
For each subject, high-resolution T1-weighted images
were also acquired using the magnetization-prepared rapid
gradient echo (MPRAGE) sequence with the parameters of
TR/TE = 2500/3.5 ms, FA= 8, thickness = 1.0 mm, slices = 192,
matrix = 256 × 256, and FOV = 256 mm). The quality of the
fMRI data was good, and the head motion of all of the subjects
was small (head motion < 1 mm and rotation < 1◦).

Data Preprocessing
For the functional images, slice-time correction per volume
and head motion correction per run were performed using the
statistical parametric mapping software package SPM82. Each
volume of functional images was registered to the initial volume
within the run; then, the mean volume of each run was generated
by averaging all of the volumes resliced to the first volume.
In addition, we estimated six head motion parameters with
registration for further data preprocessing. During each run,
the mean functional image was registered to the participant’s
structural image using a rigid body transformation model, and
the structural image was registered into the standard T1 template
in the Montreal Neurological Institute (MNI) space using a
non-linear transformation algorithm with FSL software3. To a
certain degree, performing non-linear transformation between
the structural image and standard template can reduce the effects
of anatomical differences on maturation and aging of the brain
(Garrett et al., 2010). The above data preprocessing yielded, three
image transformation models: the transformation from each
volume to the initial volume within the run, the transformation
from the mean functional volume to the structural volume,
and the transformation from the individual structural volume
to the standard MNI structural template. By concatenating
the above three transformations sequentially, we obtained a
direct transformation from each initial functional volume to
the standard MNI space, allowing each initial functional image
to be directly normalized into the standard MNI space and
resliced to 3 mm × 3 mm × 3 mm. Then, the normalized
functional volumes were spatially smoothed using a Gaussian
filter kernel with 6 mm FWHM. Temporal band-pass filtering
from 0.01 to 0.08 Hz was implemented on the smoothed fMRI
series to remove the signals from other frequency bands. Linear
detrending processing was used to remove the linear signal
drift. By averaging the unsmoothed fMRI time series of voxels
within the whole brain, white matter (WM), and a ventricular

2http://www.fil.ion.ucl.ac.uk/spm
3www.fmrib.ox.ac.uk/fsl

region of interest, separately, we obtained the whole brain, WM,
and cerebrospinal fluid (CSF) signals. Prior to the nuisance
regression, these nuisance signals as regressors were band-pass
filtered to the same frequency range as the fMRI time series
to avoid reintroducing unwanted frequency content (Hallquist
et al., 2013). To further reduce signal noise, the fMRI series
were corrected by regressing with the head motion parameters
and the WM, CSF, and whole-brain signals (Zeng et al., 2012).
The residual of regression was used for further processing.
Importantly, all of the subjects were later divided into two groups
according to head motion and TR for the control analyses of
movement and data type, respectively.

ALFF-FC Map of Dynamic Functional
Connectivity
Regions of interest (ROI)-based brain signals were generated
by averaging the regressed fMRI series of voxels within
each gray matter region (Shen et al., 2010) according to
the AAL atlas, which anatomically divides the human brain
cortex into 116 regions, including 90 cerebrum regions and
26 cerebellum regions. The AAL atlas masks were obtained
using the WFU_PickAtlas software package4. Then, the inter-
regional dynamic FC network was captured using Pearson’s
temporal correlation of each region signal pair within a sliding
time window size of 36 s. We ultimately obtained a series
of 116 × 116 connectivity matrices in which each element
reflects the correlation coefficient of corresponding connections
within a particular sliding window. To normalize the correlation
coefficient values, Fisher’s z-transform was performed on each
connectivity matrix. To avoid repeated information, only the
upper triangular portion of the symmetrical FC matrix was
properly reformed into a correlation coefficient vector for further
analysis.

The fluctuation amplitude of the correlation coefficient time
courses represents the variability of each connection between
regions over time. Previous studies have demonstrated that the
ALFF-FC is an appropriate measure of signal fluctuation, which is
defined as the total signal power within the low-frequency range
(Han et al., 2011; Yu et al., 2014). However, the sliding window
method may lead to the emergence of spurious fluctuations in
sliding-window correlation due to amismatch between the choice
of the window length and high-pass filtering of the original
time courses (Hutchison et al., 2013a; Leonardi and Van De
Ville, 2015). A high-pass filtering for the original BOLD signals
and a low-pass filtering for correlation coefficient time series
with the cut-off frequency 1/w are suggested to remove spurious
fluctuations in dynamic FC, when a certain window size w is
given (Leonardi and Van De Ville, 2015). Hence, for a given
window size w, we high-pass filtered the ROI signals with cut-
off frequency 1/w prior to calculation of connectivity matrices,
and then low-pass filtered the correlation coefficient time series
with cut-off frequency 1/w. The cut-off frequency and the number
of data points for each window size are listed in Supplementary
Table S1. Accordingly, ALFF-FC values were calculated within
the frequency band of dynamic FC from 0 to 1/w. The fast

4http://www.ansir.wfubmc.edu
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Fourier transform (FFT) was applied to the correlation coefficient
time series of each dynamic FC; then, the ALFF-FC index was
calculated by summing the FFT coefficients within the frequency
band range 0 to 1/w. The ALFF-FC map of the correlation
coefficient vector, which measures the variability of the whole-
brain dynamic FC network, was obtained as a high dimensional
feature for subsequent prediction of the brain maturity of each
subject.

Partial Least-Squares Analysis
To investigate variability in the development of dynamic FC
networks during maturation, partial least-squares analysis (PLS),
which evaluates the relationship between ALFF-FC maps of the
dynamic FC network and maturation age, was performed on
the total of subjects (aged 7–30 years). PLS is a multivariate
analysis method that is normally used to capture the multivariate
patterns of brain structure (Kauffmann et al., 2015) or functional
activity (McIntosh et al., 2014). In this analysis, the correlation
coefficient matrix of age and the ALFF-FC of each dynamic
FC were first calculated across subjects. Then, latent variables
(i.e., the singular value) and so-called “connection saliences”
(age-related weights across connections) were obtained using
singular value decomposition (SVD) of the correlation coefficient
matrix described above. Latent variables indicate the correlation
strength, and connectivity salience reflects the correlation
salience of each dynamic FC with age on corresponding latent
variables. Due to the simplicity of this analysis (age is the
only behavioral variable), there is one latent dimension for PLS
analysis, which allows the connectivity salience to directly reflect

the correlation between each dynamic FC and age. Using the dot
product of connectivity saliences and the ALFF-FC coefficient
vector, we obtained brain maturation scores, a synthetic measure
of the age-dependent pattern of the dynamic FC network on the
corresponding latent variables.

To evaluate the significance of the latent variables, 1000
permutation tests were performed on singular values, by
sampling without replacement and repeated PLS analysis on
permutation samples. Then, the reliability of the connectivity
salience was assessed using 1000 bootstrapping tests with
resampling and data replacement. The bootstrap ratio, a
normalized measure of the reliability of the connectivity
salience, was calculated by dividing the bootstrap mean
salience of each connection by its standard error. Finally,
connections with a bootstrap ratio value that exceeded 3.0 (∼99%
confidence interval) were selected as age-dependent “predictive
connections.”

Predicting Age from Brain Maturation Scores
Brain maturation scores offered an estimation of age-dependent
patterns in the dynamic FC network, which can be used to predict
the chronological age of the brain. For subjects in the maturation
group, PLS regression models were used to predict chronological
age. To measure the performance of the PLS regression model,
the mean absolute error (MAE) of age prediction was calculated
using the leave-one-out cross-validation (LOOCV) method.
A predictable regression model may indicate significant and
reliable age-dependent patterns in the dynamic FC networks
captured using the PLS analysis (see Figure 1 for flowchart).

FIGURE 1 | Flowchart of maturity prediction using the dynamics of resting-state functional connectivity. AAL, automated anatomical labeling; ALFF-FC,
amplitude of low-frequency fluctuation of functional connectivity; FC, functional connectivity; PLS, partial least-squares.

Frontiers in Human Neuroscience | www.frontiersin.org 4 July 2015 | Volume 9 | Article 418

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Qin et al. Predicting maturity using dynamic connectivity

Region Weight for Regions of Interest (ROIs)
We computed the “region weight” for each ROI, which represents
the relative contribution of the various ROIs to brain maturity
prediction (Dosenbach et al., 2010). The weight of each region
was obtained by summing all bootstrap ratios of predictive
connections associated with this region. A region with a weight
of zero was assigned to ROIs which that did not form any
“predictive functional connections.” To visually represent the
relative contribution of individual ROIs to functional brain
maturity prediction, the diameters of the spheres representing the
ROIs were scaled to the region strengths of the ROIs.

Control Analysis
Choosing an appropriate window size is an area of concern when
using the sliding window approach to estimate FC dynamics.
Theoretically, the window size should be sufficiently small
enough to detect potentially interesting transients in the low-
frequency fluctuations in FC (Sakoğlu et al., 2010; Hutchison
et al., 2013b). However, an excessively small window will decrease
the signal to noise ratio (SNR) of the estimated FC due to a
smaller number of time points available and increases in the
higher frequencies of the fMRI time series (Hutchison et al.,
2013b). It has been suggested that cognitive states may be
correctly identified from covariance matrices estimated from as
little as 30–60 s of data (Shirer et al., 2012). Here, we investigated
the stability of identified age-dependent dynamic FC features and
the potential impact of window sizes that varied from 20 to 80 s
on maturity prediction performance.

Additionally, the influence of head motion on the observed
dynamics should be considered, even though we have attempted
to minimize its impact with linear regression and low-frequency
filtering during the preprocessing step (Kucyi and Davis, 2014).
Head motion has been showed to have significant, systematic
effects on FC MRI network measures, especially in the default
and fronto-parietal control networks (Van Dijk et al., 2012),
suggesting the need for greater care when dealing with previous
findings regarding brain development (Kucyi and Davis, 2014).
Furthermore, a recent study has expanded our understanding
of head motion in brain imaging by showing the significant
neurobiological basis of head motion in brain imaging (Zeng
et al., 2014). Here, we computed the average amplitude of head
motion within each sliding window or over the entire scan as
follows (Wang et al., 2012a):

Translation/Rotation = 1
n − 1

n∑
i=2

√
|xi − xi−1|2 + ∣∣yi − yi−1

∣∣2 + |zi − zi−1|2

where n is the number of points in the time series and xi, yi, and zi
are the translations/rotations at the ith time point in the x, y, and
z directions, respectively. We evaluated the potential impact of
head motion on the temporal property of resting-state FC using
two methods. In the first method, we regressed out the average
head-motion signal as confounds within each sliding window

from the time series of sliced FC. In the second method, for each
subject, we regressed out the mean head motion over the entire
scan from the ALFF-FC values of each connection, to exclude
the possible correlation between average head motion and age.
Finally, for both of regression models, we found no significant
differences between the results of performance prediction with
and without motion regression (Supplementary Figure S5). In
addition, to determine whether head motion and FC dynamics
were significantly related, we also calculated the correlation
between mean head motion and ALFF-FC for each connection
across subjects.

The correlation of head movement with age (R = −0.221,
P < 0.005; see Supplementary Figure S6A) were found in present
subjects. To make a better control for head movement, we also
selected 103 subjects whose age is uncorrelated with movement
(P > 0.9; see Supplementary Figure S6C). We repeated the
analysis on the subset of subjects without significant differences
in head motion, and obtained the similar results of significant
correlation between brain scores of dynamic FC and maturation
ages (R = 0.797, P < 0.0001; see Supplementary Figures S6B,D),
demonstrating that our results are motion-independent.

Signal dropout and image artifacts may also affect the results.
Thus, we calculated a temporal SNR map of each subject’s
motion-corrected fMRI data. The SNR map was calculated for
each voxel by averaging the signal intensity across the whole run
and dividing it by the standard deviation over time (Buckner
et al., 2011). In addition, all of the subjects were divided into a
young group (7–20 years, 89 subjects) and an adult group (20–
30 years, 94 subjects). The average SNR maps of the two groups
were calculated (see Supplementary Figure S7). To identify
regions with an SNR that differed significantly between the two
age groups, the SNR maps of the groups were compared with
a two-sample t-test (P < 0.05, FDR corrected). In addition, we
regressed out the temporal SNR (Van Dijk et al., 2012) from the
ALFF-FC value of each connection across subjects and repeated
the PLS analyses to further exclude the effect of artifacts.

For estimating to reproducibility, the subjects from NKI
were divided into the two groups (the first group: 85 subjects,
TR = 2500 ms; the second group: 98 subjects, TR = 645 ms)
according to the TR of parameter in their fMRI scaning. The same
PLS analyses were also performed on the each separate group
with the same window size of 36 s, respectively. Note that the
experiment parameters between the groups such as the repetition
time are different, such that the potential impact of different
repetition time and individual variability on main conclusions of
this research can be evaluated.

Results

Age-Dependent Changes in the Variability of
the Dynamic FC during Maturation
Figure 2 demonstrates a strong correlation (R = 0.731, permuted
P < 0.02) between brain scores from the PLS analysis and
chronological age, suggesting a significant correlation between
variability in the dynamic FC and age during maturation. To
evaluate the reliability of the correlation, a bootstrapping test
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FIGURE 2 | Relationship between brain score and maturation age.
(A) Individual brain scores, reflecting the maturity of the brain, were equal to the
dot products of connectivity salience and ALFF-FC coefficient vectors. Scatter
plots of the age and brain score were constructed to view the correlation

between these two parameters, and age was treated as a continuous variable.
(B) In the reliability test, 1000 bootstrap resamples were performed to estimate
the distribution and 95% confidence intervals of correlation coefficients between
brain score and age.

(1,000 times) was performed on all subjects, and the bootstrapped
confidence interval (CI; 95% CI for R = 0.715, 0.755) was
estimated. Connections with a bootstrap ratio over 3.0 were
considered to be significantly correlated with age.

Among the identified predictive connections, we found both
increasing and decreasing trends in the variability of the dynamic
FC with maturation age (Figure 3). However, connections
with various developmental trends regarding maturation age
indicate distinct distributions in the six functional networks
(the sensorimotor, occipital, fronto-parietal, and DMN; the
cingulo-opercular network (CON); and the cerebellum). Network
affiliations among the 116 ROIs according to the AAL template
were provided by He et al. (2009). An increasing trend with
age was mainly found in connections between the cerebellum
and occipital network (e.g., the superior occipital gyrus, lingual
gyrus, calcarine fissure, and surrouding cortex) and DMN
(e.g., the medial superior and orbital middle frontal gyrus, the
posterior cingulate gyrus and inferior temporal gyrus), as well
as within the cerebellum and DMN, as shown in Figure 3A. In
contrast, a decreasing trend was found in connections within
the cerebellum and connections between the cerebellum and
DMN (e.g., the precuneus, posterior cingulate, anterior cingulate
and paracingulate gyri, and the orbital middle frontal gyrus)
and CON (e.g., the caudate nucleus, middle temporal pole,
median cingulate and paracingulate gyri), as shown in Figure 3B.
Bootstrap ratios and region labels of each predictive connection
are listed in Supplementary Tables S2 and S3, and the overall
distribution of bootstrap ratios of the connections shown in
Supplementary Figure S2. In the PLS analysis on eachmaturation
group, age-dependent patterns of connectivity are similar to that
in analysis on the total of subjects, as shown in Supplementary
Figure S3.

To further evaluate the distribution of age-dependent
connectivity in networks, a “network bootstrap ratios” matrix
was calculated in which each element is equal to the sum
of reliable connection bootstrap ratios within or between
associated networks (Figure 4). Figures 4A,B indicate the
network distribution of the respective decreased and increased
connections with maturation age. Both in the analyses on each

group and the total of subjects, network bootstrap ratios matrices
are reproducible. Furthermore, age-dependent connections were
mainly located between functional networks, except for a portion
of age-dependent connections located within the cerebellum and
DMN (Figure 4C).

Age Prediction Performance
Brain scores reflect the development of a participant’s age-related
brain connections and are strongly correlated with chronological
age (Figure 2). We used a PLS regression mode to predict
maturation age. To measure the performance of the PLS-based
age prediction mode, the prediction error (for the total of
subjects, MAE = 4.6 years, SE = 0.3 years; for the first group,
MAE = 4.7 years, SE = 0.3 years; for the second group,
MAE = 4.8 years, SE = 0.4 years) between predicted age and
chronological age was calculated using a LOOCV method. The
accurate and reliable age prediction demonstrated not only the
presence of a relationship between maturation age and the
dynamics of FC, but also a strong relationship between the
connections in spatial patterns captured from PLS analyses and
maturation age.

Influence of the Sliding Time Window Size
To measure the impact of the sliding window size on prediction
performance, the correlation coefficient (Figure 5A) between
brain scores and age, MAE of prediction (Figure 5B), and
permuted P-value (Figure 5C) of the correlation coefficient
were calculated for each window size (from 20 to 80 s). To
evaluate the effects on spatial patterns of maturation-dependent
FC, “region bootstrap ratios” (1/2 the sum of the bootstrap
ratios of all the connections to and from that region) were
calculated and then scaled to an interval from −1 to 1. The
significant regions with the top 50% of absolute region bootstrap
ratios are shown in Figure 5D, and all regions are shown in
Supplementary Figure S5. We found that the absolute prediction
errors varied slowly with window sizes from 30 to 64 s. However,
errors increased with window sizes shorter than 30 s or longer
than 64 s. Furthermore, the permuted P-value of the correlation
coefficient significantly increased, and the region bootstrap
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FIGURE 3 | Maturation-dependent connections and regions in the
dynamics of functional connectivity from the analysis on the total of
subjects. Only connections with bootstrap ratios over 3.0 were selected and
considered predictive connections. (A) Functional connections that decreased
with maturation during the PLS analysis (shown in green) and maturation-

dependent ROIs are displayed on the surface of the brain. Connection lines are
scaled according to the bootstrap ratios. The color and scale of ROIs represent
the functional networks and region weights (1/2 the sum of connection
bootstrap ratios to and from that region). In contrast, (B) functional connections
that increased with maturation are displayed in orange.

ratios became unstable above the window size thresholds. These
results demonstrated that the influence of window size on PLS
results was minimal when windows between 30 and 64 s were
selected.

Reproducibility
Inter-subject variability and experimental parameters, such as the
sampling period of the fMRI data, may have a potential impact
on the robust of dynamic properties of FC. In addition to the
currently reported results on all 183 subjects, we also selected the
two separate subsets to verify the reliability of the results. The
two subsets differ in repetition time so that the impact of the
sampling period could be evaluated. The correlation coefficient
(R) between the bootstrap ratios of predictive connections was
used as the similarity measurement. We found that the two
subsets have a high degree of similarity in age-dependent patterns
of connectivity, which is also similar to that of all the subjects
(R = 0.94, P < 0.001; refer to Supplementary Figure S3). The
bootstrap ratios of part of the connections exhibit differences,
however, and a majority of predictive regions and connections
are maintained across analyses of the different groups and all
the subjects. Furthermore, network bootstrap ratios matrices,
reflecting the distribution of age-dependent connectivity in
networks, are reproducible (refer to Figure 4). Both of the
groups have a high prediction accuracy (for the first group,
MAE = 4.7 years, SE = 0.3 years, and for the second group,
MAE = 4.8 years, SE = 0.4 years).

Discussion

In this study, we confirmed the presence of a strong
correlation between spontaneous fluctuation of resting-state
FC and maturation age. Connections with increasing or
decreasing fluctuation variability with maturity were mainly
distributed between the specific ICNs. Accurate prediction
of individual brain maturity using a predictive model based
on the temporal variability of these connections further
demonstrated that maturation information was encoded in
the spontaneous fluctuations of specific resting-state functional
connections. Furthermore, the identified predictive connections
with increasing dynamics were mainly located between the
cerebellum and the occipital network and DMN, as well as
within the cerebellum and DMN. In contrast, connections
with decreasing dynamics were found within the cerebellum
and between the cerebellum and other networks, including the
CON and DMN. These results suggested there are significant
developmental changes in dynamic functional interaction
between the major brain networks, which may provide new
information about the functional organization of typical
developmental brains.

Functional Connectivity Fluctuations Decode
Individual Brain Maturity
We have demonstrated the feasibility of predicting individual
brain maturity based on low-frequency fluctuation of specific
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FIGURE 4 | Maturation-related networks in the dynamics of functional
connectivity. SMN, sensorimotor network; OCC, occipital network; FPN,
fronto-parietal network; DMN, default mode network; CON, cingulo-opercular
network; CER, cerebellum. The first group includes 85 subjects with
TR = 2500 ms and the second group contains 98 subjects with TR = 645 ms.
(A) Negative network weight (1/2 the sum of the bootstrap ratios of connections

that decreased with age affiliated with corresponding networks) reflects the
“network-distribution” of connections that decrease with age in dynamics.
(B) The positive network weight, which was calculated by a similar method,
represents the distribution of connections that increase with age. (C) The sum of
all of the connection bootstrap ratios within each network and between
networks are shown to the left and right of the black line, respectively.

FC. We described the use of a novel measure, termed ALFF-
FC, which characterizes the temporal variability of spontaneous
fluctuation in resting-state FC. This measure was previously used
to measure the total power of spontaneous neural activity within
a specific frequency range (Yang et al., 2007) and has been applied
to the resting-state fMRI studies of health and disease (Han
et al., 2011; Yu et al., 2014). Recent studies of dynamic FC have
shown that resting-state FC is not completely static, and changes
generally manifest as movements from one short-term state to
another rather than as continuous shifts (Hutchison et al., 2013a).
If the connections become more variable with age, overall FC
strength may become lower; otherwise, it may show the opposite
effect (Betzel et al., 2014). Thus, the amplitude of oscillation
in FC would reflect the frequency of information exchange
and functional interaction between anatomically distinct regions.
For example, a connection with the weaker amplitude of low-
frequency fluctuation may mean more stable communication
between distinct regions. Consequently, a whole-brain ALFF-FC
map would provide new important information about dynamical
organization of resting-state brains. In fact, individual differences

in FC variability have been suggested to correlate with the
tendency to attend to pain (Kucyi et al., 2013). Moreover, the
degree to which a subject’s mind wanders away from a sensory
stimulus has also been related to the variability of dynamic FC
(Kucyi and Davis, 2014).

Increasing evidence supports the idea that major changes in
cognitive and emotional functions from childhood to adolescence
are the result of important refinements in complex neural
dynamics and a reflection of the organization of the human
brain (Kelly et al., 2009; Stevens et al., 2009; Dosenbach et al.,
2010). For example, investigations into the organizing principles
of this development found a developmental tendency toward
functional segregation, which occurs through the weakening of
short-range functional connections and the strengthening of
long-range functional connections (Fair et al., 2009; Dosenbach
et al., 2010). Further studies have demonstrated that children
have stronger subcortical-cortical and weaker cortico-cortical
connectivity compared to young adults (Supekar et al., 2009).
Our results extend these findings on the developmental changes
of static FC in response to dynamic aspects by demonstrating
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FIGURE 5 | Influence of the sliding windows size on the results of partial
least-squares analysis. SMN, sensorimotor network; OCC, occipital network;
FPN, fronto-parietal network; (A) Correlation coefficients of the brain score and
age with each time window size are shown in blue, and the green circle above
indicate the confidence intervals. (B) Average MAE (±SE) curves for age
prediction are shown in blue, and their confidence intervals with each time
window size are shown in green. (C) The height of the bar in the figure indicates
the upper border of the permuted P-value for correlation coefficients of the brain

score and age with each time window size. (D) The figure reflects the stability of
the region bootstrap ratios (1/2 the sum of the connection bootstrap ratios to
and from the regions) with changing time window size, suggesting the stability
of the spatial patterns of maturation-dependent connections. Due to the large
number of regions, only the “predictive regions” were selected and shown.
Positive values indicate regions with connections mainly showing increased
dynamics with age, and negative values denote regions with connections
showing decreased dynamics.

that the temporal variability of certain specific functional
connections is significantly linked with the functional maturity
of the brain. Our finding that fluctuation amplitude in some
specific functional connections changes with age likely reflects
developmental trends of functional organization in distinct brain
systems. In addition, our results provide new evidence for
the recent suggestion that spontaneous FC fluctuation is not
just “noise” but rather tracks meaningful neural phenomena
(Hutchison et al., 2013a).

Specific Brain Networks Exhibit Changed
Connectivity Fluctuation with Age
Separately summing the feature weights for each network
(Figure 4) revealed that the DMN has a great relative feature

weight for predicting functional maturity. As a hub for distant
connections and a core functional network, the DMN plays
a vital role in fundamental functions, such as self-relevant
internal information processing (Raichle and Snyder, 2007)
and monitoring the external environment (Hahn et al., 2007).
A previous multimodal imaging study (combining resting-state
fMRI, voxel-based morphometry and diffusion tensor imaging-
based tractography) demonstrated that the DMN significantly
changes with brain development both in functional and structural
connectivity (Supekar et al., 2010). Many resting-state and task-
based MRI studies also have found developmental changes
in the DMN (Dosenbach et al., 2010; Grady et al., 2010;
Sambataro et al., 2010; Meier et al., 2012; Sato et al., 2014).
For example, the coherence of spontaneous activity in the DMN
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strengthens with maturation according to FC analyses (Fair
et al., 2008; Kelly et al., 2009). The development of both the
DMN and CON, with integration between the posterior and
anterior neuronal modules is obviously observed (Sato et al.,
2014). Furthermore, atypical DMN connectivity in attention-
deficit/hyperactivity disorder (ADHD) may be involved in the
delay and disruption of maturation (Fair et al., 2010). Current
evidence supports the presence of changes in the dynamic FC
within the DMN and between the DMN and other networks with
age, confirming the crucial role of the DMN in functional brain
maturation.

Another large-scale association network exhibiting a
strong predictive power for brain maturity is the CON.
This network is responsible for various cognitive processes
and is a key component of control-related brain networks
(Sadaghiani et al., 2010). fMRI studies have found that
the CON exhibited a sizable weight in the prediction of
functional maturity (Dosenbach et al., 2010; Meier et al.,
2012). In particular, the caudate nucleus and thalamus were
significantly associated with to brain maturation. Developmental
interactions of the thalamus and the cerebellum with age
have been found during inhibitory control tasks (Rubia
et al., 2007). Furthermore, the variability of voxels within the
middle temporal gyrus was increased with brain development
(Garrett et al., 2010). In particular, we found a decreased
fluctuation with age in the connections between the CON and
cerebellum, suggesting increasing stability of the interactions and
communication between these networks during functional brain
maturation.

It should be noted that certain dynamic connections
associated with the cerebellum exhibited a relatively high
predictive power regarding brain maturity. Past resting-state and
task neuroimaging studies have suggested that the cerebellum
plays an important role in functional brain maturation (Rubia
et al., 2007; Dosenbach et al., 2010). Abnormal functional
maturation of cerebellar regions could help explain the cause of
certain neurodevelopmental disorders, such as autism (Challis
et al., 2015). Anatomical studies have demonstrated that
major portions of the cerebellum are connected to cerebral
association regions. Additionally, these cerebellar regions are
functionally dedicated to cerebral association networks, with
the exceptions of the primary visual and auditory cortices
(Buckner et al., 2011). Based on these findings, we suggested that
these observed age-dependent connections with the cerebellum
may represent the normal maturation patterns of the cerebro-
cerebellar circuit (Hunyadi et al., 2015) and underlie the
development of motor and cognitive function from childhood to
adulthood.

Inter-Network Rather than Within-Network
Connectivity Dynamics Shows Strong
Developmental Trends
With respect to age-dependent connections, we can see that
the internetwork functional connections are more extensively
represented than are the intra-network connections, except for
that of the cerebellum (Figure 4C). The connections with the
greatest predictive power are mainly distributed across the

DMN, CON, and cerebellum (Figures 4A,B), suggesting the
significant development of inter-network dynamic interactions
in addition to the intra-network connection alterations reported
previously in these areas. This result is consistent with findings of
functional brain network development, which demonstrate the
organization of multiple functional networks, mainly involving
the CON, fronto-parietal network, DMN, the cerebellar network,
shifting from a local anatomical emphasis in children to a more
“distributed” architecture in young adult during development
(Fair et al., 2009).

The findings of inter-network interaction changes presented
here are also consistent with the recent suggestion that perceptual
and cognitive development involve the simultaneous segregation
and integration of processing streams (Johnson, 2001; Luna
and Sweeney, 2004; Bunge and Wright, 2007; Fair et al., 2007).
We observed that obvious decreases in dynamic connection
variability occur between the DMN and CON, as well as between
the CON and cerebellum (Figure 4A). Given that connections
that are less variable with age converge toward higher overall
FC strength, these results are consistent with earlier findings
that static FC tends to increase with age between higher-
order cognitive systems. For example, increased connectivity
with age between the DMN and the control network as well
as the ventral attention network has been reported (Geerligs
et al., 2015). In contrast, the fluctuation of connections between
the occipital cortex and the cerebellum and between the
DMN and the cerebellum exhibits a significant, linear increase
during development (Figure 4B). Age-related differences in the
frequency of state expression may provide a possible explanation
of the different developmental trends in between-network FC
(Hutchison and Morton, 2015). For example, older participants
express several connectivity states more frequently than younger
participants, while the opposite relationship is observed for
other connectivity states. These specific patterns of dynamic
interactions across functional networks carry a large volume
of developmental information from the various processing
streams that underlie the brain’s cognitive and emotional
functions.

An alternative interpretation of these results is based on
the structural connectivity changes that occur with age, as the
temporal stability of FC has been empirically demonstrated
to be dependent on structural topology (Shen et al., 2015).
One of the significant trends in anatomical changes with age
is the reduction in the number of edges for the transmission
of neural signals, resulting in an increase in multi-step paths
of functional communication to support the high FC (Betzel
et al., 2014). This likely leads to more variable functional
connections between specific regions, especially in higher-order
cognition-related cortices. For instance, EEG and MEG studies
of infants and children up to 15 years-old have confirmed
that brain signal variability increases with age and that greater
variability is correlated with higher cognitive performance
(McIntosh et al., 2008; Mišić et al., 2010). In particular, this
increase in the entropy of brain activity could be attributed to
the widespread exchange of information between distal brain
regions, rather than an increase in local dynamics (Vakorin et al.,
2011).
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Control Analysis, Limitations, and Directions
for Future Research
It has been shown that head movement artifacts could bias
measurements of FC by decreasing long-distance correlations
and increasing short-distance correlations (Satterthwaite et al.,
2012; Van Dijk et al., 2012), thereby having a potential impact
on developmental studies that evaluate FC (Dosenbach et al.,
2010). Head movement confounding is of particular importance
during maturation studies because motion is strongly related to
subjective age in children (Seto et al., 2001;Van Dijk et al., 2012).
On the one hand, we hypothesized in the present study that
low-frequency fluctuations in FC may contain head movement
artifacts, and we investigated the present results after regressing
out the mean head movement time course from the time series
of dynamic FC. On the other hand, given that head motion
has a neurobiological basis (Zeng et al., 2014), which is likely
dependent on age, a direct regression of averaged head motion
signals on the ALFF-FC values for individual subjects was also
performed. In both cases, our results revealed few changes, even
after adjusting for movement, suggesting that head motion had
a limited impact on the fundamental patterns of developmental
changes in the dynamics of resting-state FC during maturation
(Supplementary Figure S5). In fact, no connections exhibited
a significant correlation between averaged head motion and
ALFF-FC (FDR-corrected P < 0.05). In order to further
demonstrate that the results are not motion-related, we repeated
the analysis on a subset of subjects where age is uncorrelated
with head motion, found that the correlation between the brain
scores and ages remained (Supplementary Figure S6). Together,
these results of the control analyses demonstrated that head
motion has a limited impact on the fundamental patterns of
developmental changes in the dynamics of resting-state FC
during maturation. This conclusion is consistent with those of
other developmental studies using this dataset that have already
quantified the micro movements of the subjects (Betzel et al.,
2014).

We also investigated the stability of the identified predictive
connections and corresponding prediction performance with
varying sliding window sizes. Interestingly, we found that
window sizes of 30-60 s achieved the best prediction performance
(Figures 5A–C). More importantly, the identified “predictive
connections” that made the greatest contribution to prediction
converged within this range of windows lengths (Figure 5D).
This result suggests that durations of 30–60 s are short
enough to capture interesting transient events that decode
the functional maturity of brains. However, Figures 5B,C
demonstrate a significant decrease in prediction accuracy when
using longer (>60 s) windows. At the same time, the predictive
connections also become unstable (Figure 5D). These results
are consistent with a previous finding indicating that variability
across longer windows does not adequately capture the dynamics
of spontaneous cognition (Shirer et al., 2012; Kucyi and Davis,
2014). Additionally, an excessively small window size also results
in poor prediction performance (Figures 5B,C) due to the
reduced number of time points, which results in a decreased SNR
(Hutchison et al., 2013a).

We found that the averaged SNRmaps of the young and adult
groups were similar (see Supplementary Figure S7), and the t-
test used to compare the SNR maps of the groups did not reveal
any significant regions (P < 0.05, FDR corrected). Moreover,
compared to the results without SNR regression, SNR regression
had little effect on the performance of the prediction between age
and brain scores, R = 0.701, P < 0.0001). Overall, the results
indicated that the SNR maps of the subjects did not exhibit
significant differences with age and that the largest differences in
the cerebellum and visual cortex were likely not due to excessive
artifacts.

In the present study, we attempted to decrease the impact
of these nuisances on the signals of interest as far as possible,
by filtering the original BOLD signals using a more narrow
frequency band from 1/w (w is a windows length) to 0.08 Hz
(Glerean et al., 2012), low-pass filtering correlation coefficients
timecourses with the cut-off frequency 1/w (Leonardi and
Van De Ville, 2015) and regressing CSF signals from the
BOLD signals. However, one should also consider that
fluctuations of dynamic FC could partly be driven by time-
varying noise (e.g., head motion and variable respiratory and
cardiac rhythms, which correlate with age during maturation),
despite our attempts to minimize the influences of these
confounding factors. The observed distinctions between
identified regions associated with the predictive connections
and the previously reported heartbeat-dependent or respiration-
related regions offer some confirmation that the observed effects
are not solely due to non-specific physiological alteration.
Future research should further validate to what extent these
changes of dynamic FC reflect developmental trends of
underlying neurophysiological signals, using concurrent
measurements such as EEG and non-neurophysiological
signals.

Some of the results presented here should be considered in the
context of several experimental and methodological limitations.
First, respiration and heart-rate signals were not provided in the
NKI sample. Although we attempted to weaken the impact of
these physiological nuisance factors by regressing out the WM
and CSF signals, the use of more sophisticated tools for the
removal of nuisance factors and artifacts, such as ICA+ Fix
(Smith et al., 2013), would be expected to further remove the
nuisance factors. Second, other measures of variability, such as
the autocorrelation coefficients of FC time series (Shen et al.,
2015), have been applied to estimate the temporal stability of
FC. The reliability of the results using different measures of
temporal variability should be tested in future studies. Finally,
a limitation of resting-state FC MRI in general is the restricted
frequency distribution when measuring correlations, which is
typically below 0.1 Hz. There is also the possibility of undetected
developmental changes that manifest as dynamic correlations
in other frequency distributions. Including other imaging and
psychometric techniques, such as simultaneous EEG-fMRI, will
likely help address these considerations. Specifically, future work
that investigates a direct relationship between behavior and the
variability of dynamic FC is needed to deepen our understanding
of the developmental trajectory of dynamic FC.

Frontiers in Human Neuroscience | www.frontiersin.org 11 July 2015 | Volume 9 | Article 418

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Qin et al. Predicting maturity using dynamic connectivity

Conclusion

Using a sliding window approach based on resting-state fMRI
data, we provided the first evidence of developmental changes
in the amplitude of low-frequency spontaneous fluctuations
in resting-state FC. Various age-dependent changes have been
found within and between several specific ICNs of human
brains, suggesting a typical maturation pattern of dynamic
interaction and communication across the major brain networks.
This developmental tendency in the temporal properties of FC
deepens our understanding of functional network dynamics
of typical brain development and will help expand research
into the relationship between the variability of low-frequency
oscillations in resting-state FC and the development of cognitive
and perceptual abilities from childhood to adulthood.
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