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Aging and chronic administration of
serotonin-selective reuptake inhibitor
citalopram upregulate Sirt4 gene
expression in the preoptic area of
male mice
Dutt Way Wong, Tomoko Soga* and Ishwar S. Parhar

Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia

Sexual dysfunction and cognitive deficits are markers of the aging process. Mammalian

sirtuins (SIRT), encoded by sirt 1-7 genes, are known as aging molecules which are

sensitive to serotonin (5-hydroxytryptamine, 5-HT). Whether the 5-HT system regulates

SIRT in the preoptic area (POA), which could affect reproduction and cognition has not

been examined. Therefore, this study was designed to examine the effects of citalopram

(CIT, 10mg/kg for 4 weeks), a potent selective-serotonin reuptake inhibitor and aging on

SIRT expression in the POA of male mice using real-time PCR and immunocytochemistry.

Age-related increases of sirt1, sirt4, sirt5, and sirt7 mRNA levels were observed in the

POA of 52 weeks old mice. Furthermore, 4 weeks of chronic CIT treatment started at 8

weeks of age also increased sirt2 and sirt4 mRNA expression in the POA. Moreover, the

number of SIRT4 immuno-reactive neurons increased with aging in the medial septum

area (12 weeks= 1.00± 0.15 vs. 36 weeks= 1.68± 0.14 vs. 52 weeks= 1.54± 0.11,

p < 0.05). In contrast, the number of sirt4-immunopositive cells did not show a

statistically significant change with CIT treatment, suggesting that the increase in sirt4

mRNA levels may occur in cells in which sirt4 is already being expressed. Taken together,

these studies suggest that CIT treatment and the process of aging utilize the serotonergic

system to up-regulate SIRT4 in the POA as a common pathway to deregulate social

cognitive and reproductive functions.

Keywords: serotonin, aging, reproduction, sirtuins, cognition

Introduction

Aging of the central nervous system deregulates homeostatic mechanisms responsible for sexual
behavior (Davidson et al., 1983), feeding (Weindruch et al., 2001), sleep (Nakamura et al., 2011) and
cognition (Barrientos et al., 2012). Sexual dysfunction and cognitive loss are prominent markers
of the aging process. The preoptic area (POA) is involved in the hypothalamic-pituitary-gonadal
(HPG) axis for the control of reproduction (Larsson and Heimer, 1964). Gonadotropin-releasing
hormone (GnRH) is a pivotal molecule synthesize by neurons in the POA that regulates the
release of gonadotropins (LH, luteinizing hormone and FSH, follicular stimulating hormone) that
are important for reproduction and reproductive behaviors (Tsutsumi and Webster, 2009). The
POA including the GnRHneurons receive serotonergic (5-hydroxytrypramine, 5-HT) innervations
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(Van De Kar and Lorens, 1979; Jennes et al., 1982).
Pharmacological manipulations and lesions of the serotonergic
system has a negative tone on reproduction (Verma et al.,
1989; Kondo and Yamanouchi, 1997; Olivier et al., 2011) and
cognitive function (Sibille et al., 2007). During aging, sex steroid
deprivation shifts the homeostasis of the HPG axis which results
in increase circulating LH and GnRH levels (Chakravarti et al.,
1976). Furthermore, increases in LH are associated with decline
in cognitive performance (Casadesus et al., 2007). Moreover,
an age-related decline in the serotonergic system also leads to
cognitive dysfunction (Meltzer et al., 1998). The POA is involved
in social cognition (Driessen et al., 2014). Hence, to understand
the mechanism of reproductive aging and cognitive loss, it is
important to examine the serotonergic system in the POA during
aging.

The family of seven sirtuin (SIRT) proteins is involved
in the aging mechanism, which may include reproductive
aging (Duan, 2013). Sirt activity is governed by its co-
activator, nicotinamide adenine dinucleotide (nad), inhibitor
nicotinamide (nam) and the intermediary conversion enzyme
nicotinamide mononucleotide adenylyltransferase (nmnat-1)
(Denu, 2005). All seven SIRT proteins are expressed in the
brain (Dali-Youcef et al., 2007). SIRT proteins are involved

FIGURE 1 | Aging induces sirt gene expression in the preoptic area. (A) Representative brain sections depicting areas dissected for gene

expression studies in the POA. (B) Quantitative real-time PCR revealed differential sirt expression changes. Data are expressed as mean ±

SEM. Statistical analysis was carried out using one-way analysis of variance (12 weeks control, n = 9; 36 weeks, n = 8; 52 weeks, n = 10).

*P < 0.05 and #P < 0.01 vs. control.

in energy balance, reproduction and in brain aging (Duan,
2013). SIRT4 controls glutamate metabolism through glutamate
dehydrogenase (Haigis et al., 2006), overexpression of which
alters synaptic activity similar to serotonin-depleted models
(Michaelis et al., 2011). In addition, serotonin1b (5-HT1b)
receptor knockout mice, up-regulate sirt5 in adult male
mice, causing early onset of brain aging (Sibille et al.,
2007).

Whether the 5-HT system regulates SIRT in the POA, which
could affect the HPG axis, reproduction and cognition has not
been examined. Treatment with citalopram (CIT), a potent
selective-serotonin reuptake inhibitor, shows deficits in sexual
behavior in adult mice (Soga et al., 2010) and sexual dysfunction
in humans(Montejo et al., 2001), a condition that mimics
aging, which has decreased 5-HT synthesis (Hussain and Mitra,
2000). CIT is extremely selective for its transporter, biosynthetic
enzymes and receptors and is used pharmacologically to increase
endogenous 5-HT levels at the synapse, although, chronic
treatment decreases 5-HT synthesis (Moret and Briley, 1996;
Bezchlibnyk-Butler et al., 2000; Stenfors et al., 2001). Therefore,
this study was design to examine the effect of CIT and aging on
sirt mRNA and SIRT expression in the POA of male mice using
real-time PCR and immunocytochemistry respectively.
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Materials and Methods

Animals
Male C57BL/6N mice (CLEA Japan, Inc Tokyo, Japan) aged 12
weeks (weeks) (n = 33), 36 weeks (n = 8), and 52 weeks (n = 16)
were maintained under standard conditions at the animal facility
of the Brain Research Institute, Monash University Malaysia.
These conditions include constant temperature (22◦C) and
lighting (12 h light/12 h dark cycle with lights on from 12:00 a.m.)
with food and water available ad libitum. All procedures were
approved by Animal Ethics Committee of Monash University
(SOBSB/MY/2010/45) and were accordance with the Guidelines
for the Care and Use of Animals by Monash University.

Chronic Citalopram Treatment
Mice were administered with CIT [10mg/kg body weight (BW)
in 50µl, C7861, Sigma-Aldrich, Singapore; n = 15] or 50µl
vehicle (distilled water; n = 15) daily at 9 a.m. by intraperitoneal
(i.p) injections for 4 weeks beginning at 8 weeks of age until 12
weeks of age. Mice were used for two studies; gene expression
study and immunocytochemical study. For the gene expression
study [12 weeks (vehicle), n = 9 and 12 weeks CIT, n = 9]
using the POA and compared with gene expressions of intact
aged mice (36 weeks, n = 8 and 52 weeks, n = 10). For the
immunocytochemical study, the POA of adult mice (12 weeks,
n = 6, 12 weeks CIT, n = 6) and mid-age group (52 weeks, n =

6) was used. In this experiment, 52 weeks C57BL/6 male mice
represented the reproductive aging model. This strain of mice at
52 weeks begin to exhibit declining male fertility (Fox et al., 2006)
characterized by an increase in abnormal spermatozoa leading to
ejaculatory disorders (Fabricant and Parkening, 1982), decrease

in pheromone production (Wilson and Harrison, 1983), and
a decrease in sexual arousal (Bronson and Desjardins, 1982).
Additionally, at 52 weeks old these mice begin to experience
age-related cognitive decline (Pettan-Brewer et al., 2013).

Real-time PCR Quantification of sirt1-7, nam and
nmnat-1 in the POA
At various ages (12weeks, 12weeks CIT, 36weeks, and 52weeks),
animals were deeply anaethesized with an i.p. injection of
ketamine xylazine (4.5mg/kg/BW) followed by rapid removal of
the brain and snap frozen. The POA (bregma +0.98 to +0.26,
8–11 sections/brain) was cut on a cryostat (60µm/section) and
each section further dissected with a sterile blade under naked
eye (Figure 1A). Total RNA from these tissues was extracted
using TRIzol (Invitrogen, Carlsbad, CA, USA) and transcribed
using High Capacity Transcription Kit (Applied Biosystems,
Foster City, CA, USA) according to manufacturer’s protocols.
Quantitative real-time PCR was performed on a ABI 7300
(Applied Biosystems Foster City, CA, USA) using 2X Power
SYBR Green PCR mix (Applied Biosystems), and 0.2M primers
for sirt1-7, nam, and nmnat-1 (Supplementary Table 1) in a final
volume of 10µl. The resulting PCR products were validated using
an ABI PRISM 310 Genetic Analyzer and Sequence Analysis
Software (Applied Biosystems) and ran on a 2.5% agarose gel with
ethidium bromide used for visualization.

SIRT4 Immunocytochemistry
Male mice at 12 weeks (control, n = 6; 12 weeks CIT, n =

6) and 52 weeks of age (control, n = 6) were anaesthesized
with an i.p. injection of ketamine xylazine (4.5mg/kg) and
perfused transcardially with 4% paraformaldehyde (PFA) in

FIGURE 2 | Chronic citalopram (CIT) treatment up-regulates sirt2 and sirt4 in the preoptic area. CIT was administered at 10mg/kg/bodyweight daily in male

mice for a duration of 4 weeks leading to relative mRNA changes in sirt2 and sirt4 expression in the POA. There was no difference in sirt3, sirt5, sirt6, or sirt7 mRNA

levels in the POA after CIT treatment. Data are expressed as mean ± SEM. Statistical analysis was carried out using one-way analysis of variance (12 weeks control,

n = 9; 12 weeks CIT, n = 9). *P < 0.05 vs. control.
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0.1M phosphate buffer (pH 7.5). The brains were removed,
postfixed for 4 h in 4% PFA, and cryoprotected in 30%
sucrose overnight. The POA (bregma +0.98 to +0.26mm)
was then sectioned at 30µm in the coronal plane into three
equal series. A set of sections was incubated for 20min at
60◦C in sodium citrate (pH 6) to unmask antigen epitopes.
Prior to incubation in blocking solution (0.25% bovine serum
albumin and 1.0% Triton X in 0.1M PBS) for 1 h with tissues
were washed twice in 0.1M phosphate buffer saline (PBS)
for 10min each. Subsequently, the same 0.1M PBS wash was
conducted on tissues prior to every incubation step. Sections
were then incubated for 48 h at 4◦C in a polyclonal goat anti-
SIRT4 antibody (ab10140, Abcam, USA) at 1:500 dilution in
blocking solution. Next, tissues were incubated with biotinylated
rabbit anti-goat (Vector Laboratories, Burlingame, CA, USA)
at 1:300 dilution in blocking solution for 1 h. Following this,
sections were incubated in avidin-peroxidase (1:100Vector
Laboratories) and immunoreactive signal was observed using
nickel-enhanced 3,3′-diaminobenzidine hydrochloride (Sigma).
Sections were thoroughly washed in PBS and mounted
on SuperFrost Plus slides (Fisher Scientific, Pittsburgh, PA,
USA), air-dried, dehydrated in ethanol followed by xylene.
Finally, the slides were coverslipped with DPX mounting
medium.

Double-label Immunofluorescence
Coronal POA sections (30µm) from male mice at 12 weeks
(n = 3) were used for double immunohistochemistry with
NeuN or GFAP and antisera to SIRT4 as described above. Tissue
sections were incubated in Alexa Fluor 488 Anti-Goat (1:200,
A11055, Molecular Probes) for 1 h and then incubated with
either polyclonal rabbit antibody against GFAP (1:500, G9269,
Sigma) or mouse monoclonal antibody against NeuN (1:500,
MAB377, Millipore-Chemicon, Billerica, MA, USA) for 24 h.
Sections incubated with antisera to GFAP were incubated with
Alexa Fluor 594 Anti-Rabbit (1:200, A11012, Molecular Probes)
while those with antisera to NeuN were incubated with Alexa
Fluor 594 Anti-Mouse (1:200, A11005,Molecular Probes). After a
final 0.1M PBS wash, sections were mounted on SuperFrost plus
slides (Fisher Scientific) and coverslipped with VECTASHIELD
mounting medium (H-1000, Vector Laboratories).

Absorption Test and SIRT4 Antibody Specificity
The SIRT4 antibody employed in this study recognizes amino
acids 302–314 at the C-terminal. For testing antibody specificity,
two procedures were carried out. Firstly, an absorption test was
carried out using intact 12 weeks mice POA sections (n =

3) at 1:500 SIRT4 antisera pre-absorbed overnight with SIRT4
protein (AB23185; amino acids 302–314, 1µg/ml, Abcam) in
immunohistochemical procedures. Secondly, the primary SIRT4
antibody was omitted from the primary incubation solution.
Both pre-absorbed and omission of SIRT4 antisera did not
produce any immunoreactive staining.

SIRT4 Immunoreactive Analysis
POA sections were viewed using bright-field microscopy (Nikon
Eclipse 50i) and images were captured in TIF format (Nikon,

Tokyo, Japan).The distribution of SIRT4 immunoreactivity was
mapped throughout the mouse forebrain and brainstem. Cell
counts for SIRT4 immunoreactive cells in the POA of 12
weeks, 12 weeks CIT treated, and 52 weeks (90µm apart)
were carried out using Image Pro Plus (Media Cybernetics
Incorporation, Bethesda, USA). The POA consisting of the
medial septum (MS), organum vasculosum of the lamina
terminalis (OVLT) and the anterior hypothalamic area (AHA)
were defined as per unit area of 500,000 pixels, 400,000
pixels, and 50,000 pixels respectively using Image Pro Plus.
For each animal, two anatomically matched tissues per area
were captured and used for cell counts. Cell counts were
carried out by a researcher blind to the treatment and age.
A single SIRT4 immunostained cell in a single focal plane
was quantified by Image Pro Plus as 120 pixels. Therefore,
any clusters of immunoreactive cells quantified by Image Pro
Plus were divided by 120 pixels to obtain cell number counts,
only immunostained cells with a full size (120 pixels) nuclei
were counted in each image of the POA to make adjustments
for double counts, in order to obtain true SIRT4 positive cell
numbers. Data is expressed as mean number of identifiable
SIRT4-immunoreactive cells.

FIGURE 3 | Nicotinamide adenine dinucleotide (NAD) biosynthethic

enzymes were not affected by chronic citalopram (CIT) treatment or

aging. CIT was administered at 10mg/kg/bodyweight daily in male mice for 4

weeks duration. Data are expressed as mean ± SEM. Statistical analysis was

carried out using one way analysis of variance (12 weeks control, n = 9; 12

weeks CIT, n = 9) aging animals used were 36 weeks (n = 8) and 52 weeks

(n = 10).
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FIGURE 4 | Representative images of SIRT4 immunoreactivity in the medial septum (MS), organum vasculosum of the lamina terminalis (OVLT) and

anterior hypothalamic area (AHA) from control, citalopram (CIT) treated and mid-aged samples (52 weeks). Scale bar = 100µm.

Double-label Immunofluorescence Analysis
The co-localization of NeuN or GFAP with SIRT4
immunoreactive cells was viewed with a 20X objective lens
under a fluorescent microscope (Nikon Eclipse 90i, Tokyo,
Japan). Sections were viewed using a Texas red filter to observe
NeuN and GFAP labeled cells while a fluorescein-isothiocyanate
filter was used to observe SIRT4 immunolabeled cells. Images of
co-localized cells, SIRT4/NeuN and SIRT4/GFAP, were further
captured using a laser scanning confocal microscope (C1si,
Nikon) and software (NIS Elements AR v4.0, Nikon). The images
were captured at 1024 pixel density using a 20X objective and
3X digital zoom function at every 1.25µm interval to cover the
entire neuronal volume.

Statistical Analysis
Statistical analysis for the effect of age and treatment (CIT)
on sirtuin and NAD was carried out using one-way Analysis
of variance (ANOVA) PASW statistic software (Version 17.0
Chicago, IL USA), followed with post-hoc analysis, Tukey’s test,
for comparison of multiple age groups. The effect of CIT was
further analyzed using unpaired Student’s t-test. Significant main
interactions fromOne-Way ANOVAwere further analyzed using
Student’s t-test. Statistical analysis for the effect of age and CIT
on SIRT4 protein expression was carried out using Two-Way
ANOVA using age and region (MS, OVLT and AHA) as factors
followed by T-test to determine significance. Data are presented
as means ± SEM. Significant difference was considered when
p < 0.05.

Results

Effects of Aging on sirt Expression in the POA
Aging did not alter sirt2, sirt3, and sirt6 gene expression in the
POA ofmalemice. There was an increase in sirt4 and sirt5mRNA

expression in the POA during aging [sirt4; 12 weeks 1.00 ± 0.15
vs. 36 weeks 1.68 ± 0.14 vs. 52 weeks 1.54 ± 0.11, F(2, 27)= 7.20,
p < 0.01] and [sirt5; 1.00 ± 0.14 vs. 36 weeks 1.69 ± 0.15 vs.
52 weeks 2.02 ± 0.21, F(2, 27)= 10.40, p < 0.01] (Figure 1B).
Post-hoc analysis revealed an increase in sirt4 (12 weeks vs. 52
weeks; p < 0.05) and sirt5 (12 weeks vs. 52 weeks; p < 0.05).
sirt1 and sirt7 showed an increase only during 36 week [sirt1; 12
weeks 1.00 ± 0.11 vs. 36 weeks 1.46 ± 0.07 vs. 52 weeks 1.28 ±

0.12, F(2, 27) = 4.93, p < 0.05 and sirt7; 12 weeks 1.00 ± 0.14
vs. 36 weeks 1.75 ± 0.11 vs. 52 weeks 1.28 ± 0.09, F(2, 27) =

11.26, p < 0.01] (Figure 1B). Post-hoc analysis for sirt7 revealed
a decrease at 52 weeks compared to 36 weeks of age (36 weeks vs.
52 weeks; p < 0.05).

Effects of CIT on sirt Expression in the POA
Chronic CIT treatment induced an increase in sirt2 (12 weeks
1.00 ± 0.13 vs. 12 weeks CIT 1.61 ± 0.12, p < 0.05) and sirt4
(12 weeks 1.00 ± 0.15 vs. 12 weeks CIT 1.43 ± 0.13, p < 0.05)
expression in the POA (Figure 2). There was no difference in
sirt3, sirt5, sirt6, and sirt7 levels in the POA after CIT treatment
(Figure 2).

Effects of Aging and CIT on nampt and nmnat-1

Expression in the POA
CIT and aging had no effect on nam and nmnat-1 expression in
the POA (Figure 3).

Effects of Aging and CIT on SIRT4 Protein in the
POA
SIRT4 immunoreactive cells were observed in the MS, OVLT
and AHA regions (Figure 4). We observed SIRT4 protein
localized mainly in neurons compared to glial cells in the POA
(Figure 5A). SIRT4 co-localization with glial cells were observed
in areas close to the third ventricle of the preoptic area whereas
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FIGURE 5 | Aging but not citalopram (CIT) induced SIRT4

immunoreactive cells in the medial septum (MS). (A) SIRT4 in the POA

was observed to be highly co-localized with neuronal nuclei (NeuN) compared

to glial fibrillary acidic protein (GFAP) Scale bar = 10µm. (B) SIRT4

immunoreactive cell counts revealed up-regulation of SIRT4 during aging in the

MS but not in the organum vasculosum of the lamina terminalis (OVLT) and

anterior hypothalamic area (AHA). However, CIT treatment did not alter any

SIRT4 immunoreactive cell counts. (C) High magnification image of SIRT4

staining in MS of 12 weeks and 52 weeks. Scale bar = 50µm. Data are

expressed as mean ± SEM. Statistical analysis was carried out using analysis

of variance, #P < 0.01 vs. control.

the vast majority of SIRT4 immunoreactivity was observed in
neurons. There was no immunostaining when the antibody was
preadsorbed with its corresponding antigen or when the antibody
was excluded.

There was an increase in SIRT4 immunoreactive cell counts
in the MS of 52weeks aging male mice (12 weeks 421 ±

116, 12 weeks CIT 559 ± 146, 52 weeks 1521 ± 306) [Age
effect in the MS, F(1, 16) = 16.98, p < 0.01] and T-
test revealed that SIRT4 immunoreactivity at 52 weeks was
higher than 12 weeks (p < 0.05) and 12 weeks CIT
treated mice (p < 0.01) (Figures 5B,C). CIT treatment did
not alter SIRT4 immunoreactivity in the MS. Age and CIT

treatment did not alter SIRT4 expression in the OVLT and AHA
(Figure 5B).

Discussion

In this study, we observed an age-related up-regulation of sirt1,
sirt4, sirt5, and sirt7 gene expression in the POA. The expression
patterns of sirt1, sirt4, sirt5, and sirt7 gene were different at 36
and 52 weeks, which suggest that different regulatory factors
might be involved in their control. Higher levels of sirt4 and
sirt5 mRNA at 52 weeks may be linked with a decrease in 5-
HT (Hussain and Mitra, 2000) and a decrease in testosterone
levels (Eleftheriou and Lucas, 1974; De Marte and Enesco, 1986)
which are observed during the aging process. In contrast to sirt4
and sirt5 expression pattern in the POA, the expression level of
sirt7 was higher in 36 weeks than in 52 weeks old animals. This
could be due to an overall decrease in transcription activity in
the brain at 52 weeks or due to hypothalamic neurodegeneration
that begins at 36 weeks (Bourre and Piciotti, 1992). Since sirt1
is an age induced gene (Duan, 2013), the increase expression of
sirt1 in the POA of 36 weeks old animals was not unexpected. Sirt
1 gene expression may be regulated by site-specific modulation
in the brain. As sirt 1 gene is a regulator of metabolic functions,
centrally through the hypothalamus (Duan, 2013), up-regulation
of sirt1 gene expression may be due to metabolic changes at 36
weeks in the POA.

CIT treatment up-regulated only sirt2 and sir4 gene in the
POA. Sirt1 remained unchanged following CIT treatment as it
does not respond to SSRI-class of antidepressant (Kishi et al.,
2011). This suggests that the effect of CIT on sirt1 might involve
factors aside from 5-HT that change in the male HPG axis
during aging (Veldhuis, 2008). CIT treatment may affect sirt2
gene through 5-HT signaling in the POA, since sirt2 gene up-
regulation is also seen in patients during remission state of
depression (Abe et al., 2011). On the other hand, sirt4 gene
expression is regulated by age and CIT in the POA. A decrease
in 5-HT during aging (Hussain and Mitra, 2000) has been linked
with neurodegenerative diseases (Glorioso et al., 2011), decreased
gonadotropin release and cognitive loss (Alzheimer’s disease)
(Simpkins et al., 1977; Meltzer et al., 1998). Antidepressants
like CIT and fluvoxamine cause sexual dysfunction in rodents
(Montejo et al., 2001; Soga et al., 2010), and human (Waldinger
et al., 2001). Recent studies have shown that chronic SSRI
treatment could decrease 5-HT content and signaling in the brain
(Delgado et al., 1990; Hervás and Artigas, 1998), rather than
simply facilitating synaptic 5-HT availability (de Jong et al., 2006;
Geddes et al., 2015). Therefore, age-related and CIT induced
sexual dysfunction and cognitive loss due to the decline in 5-HT
in the POA may be mediated by an up-regulation of sirt4 gene
expression.

We speculate that the up-regulation of sirt4 gene expression
in the POA might occur through one or several potential
mechanisms, such as: (1) the blockade of 5-HT uptake by chronic
CIT treatment could decrease presynaptic 5-HT content or
desensitize postsynaptic 5-HT receptors; (2) the aging process
might be associated with a decrease in 5-HT synthesis or a
decline in postsynaptic 5-HT receptors (Figure 6). According to
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FIGURE 6 | A hypothetical diagram of sirt4 gene regulation by serotonin (5-HT) in the preoptic area (POA) of intact adult, chronic citalopram (CIT)

treated adult and aged animals. (A) In the intact adult, sirt4 gene expression levels do not change; (B) in the chronic CIT treated adult, the inhibition of 5-HT

re-uptake results in decreased presynaptic 5-HT content (pathway ①) or desensitization of postsynaptic receptors that could subsequently be less activated in the

presence of normal, or even increased, synaptic 5-HT concentrations (pathway ②), either of which can result in decreased 5-HT neurotransmission and increased sirt4

gene expression; (C) in aged animals, the serotonergic system may be impaired by decreased 5-HT synthesis (pathway ③) or a decrease in postsynaptic 5-HT

receptors (dotted receptor) (pathway ④) to explain sirt4 upregulation, or an unknown age related effect could increase sirt4 gene expression. These 5-HT signaling

pathways could facilitate sirt4 gene expression in the POA leading to reproductive and cognitive failure. 5-HT receptors Desensitized 5-HT receptors

Decrease 5-HT receptors 5-HT transporter re-uptake Inhibition of re-uptake increase No change in gene expression, ① decrease 5-HT

neurotransmission, ② desensitized receptor, ③ decrease 5-HT neurotransmission, ④unknown age-related factors could activate sirt4 gene expression.

our model, any of these events could explain a change in sirt4
expression associated with a decrease in serotonergic tone.

The localization of SIRT4 primarily in adult neurons is
similar to other members of the SIRT family; SIRT1 and SIRT2
in neurons (Houtkooper et al., 2012). The roles of SIRT1, 2
and 4 in neuronal and glial development have been reported
(Prozorovski et al., 2008; Park et al., 2012; Komlos et al., 2013).
SIRT4 might function in tandem with other SIRT during early
development of glial cells and aging of neurons in the POA.
Unlike the increase in sirt4 mRNA, our failure to observe an
increase in the number of SIRT4 immunostained cells in the POA
following CIT treatment could be due to the methodology used

to detect protein levels. Although, immunohistochemistry is an
accepted semi-quantitative measure of protein levels; a subtle
change in protein levels within cells could go undetected using
immunocytochemistry and thereby result in unaltered SIRT4 cell
numbers.

The POA is involved in social cognitive functions such as
paternal behavior, social recognition and reproductive behavior
(Ferguson et al., 2002). An age-related decline in cognitive and
reproductive functions (Meltzer et al., 1998) might be associated
with decline in the serotonergic system. The POA is known
to project to brain regions important for cognitive functions
such as the dorsal raphe that harbors 5-HT neurons and the
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hippocampus (Sava and Markus, 2008). This suggests that the
anatomical and functional connection between the POA and
the hippocampus and the dorsal raphe might be involved in
age-related cognitive impairment. Inversely, 5-HT neurons are
known to project to GnRH neurons in the POA (Jennes et al.,
1982). A decrease in 5-HT during aging could decrease GnRH
levels through the activation of sirt, which could cause a decrease
in LH receptors and GnRH receptors in the hippocampus,
resulting in deregulation of the social cognitive functions.

Hence, we suggest that the age-related and CIT-induced
activation of sirt4 gene expression, might be initiated by the
decline in 5-HT in the POA which leads to reproductive
dysfunction and cognitive deficits.
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