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Cyanobacteria are ecologically one of the most prolific groups of phototrophic
prokaryotes in both marine and freshwater habitats. Both the beneficial and detrimental
aspects of cyanobacteria are of considerable significance. They are important
primary producers as well as an immense source of several secondary products,
including an array of toxic compounds known as cyanotoxins. Abundant growth of
cyanobacteria in freshwater, estuarine, and coastal ecosystems due to increased
anthropogenic eutrophication and global climate change has created serious concern
toward harmful bloom formation and surface water contamination all over the world.
Cyanobacterial blooms and the accumulation of several cyanotoxins in water bodies
pose severe ecological consequences with high risk to aquatic organisms and global
public health. The proper management for mitigating the worldwide incidence of
toxic cyanobacterial blooms is crucial for maintenance and sustainable development
of functional ecosystems. Here, we emphasize the emerging information on the
cyanobacterial bloom dynamics, toxicology of major groups of cyanotoxins, as well as
a perspective and integrative approach to their management.

Keywords: cyanobacteria, eutrophication, cyanobacterial blooms, cyanotoxins, ecotoxicology, mitigation
strategies

INTRODUCTION

Cyanobacteria are considered the most primitive groups of photosynthetic prokaryotes (Bullerjahn
and Post, 2014) and possibly appeared on the Earth about 3.5 billion years ago (Tomitani et al.,
2006). They are ubiquitous in nature and thrive in a variety of ecological niches ranging from
desert to hot springs and ice-cold water. Most cyanobacteria are an immense source of several
secondary natural products with applications in the food, pharmaceuticals, cosmetics, agriculture,
and energy sectors (Rastogi and Sinha, 2009). Moreover, some species of cyanobacteria grow
vigorously and form a dominant microflora in terms of their biomass and productivity in specific
ecosystems. Bloom formations (Figure 1) due to excessive growth of certain cyanobacteria followed
by the production of toxic compounds have been reported in many eutrophic to hypertrophic
lakes, ponds, and rivers throughout the world (Rastogi et al., 2014). A range of toxic secondary
compounds, called cyanotoxins, have been reported from cyanobacteria inhabiting freshwater and
marine ecosystems. These toxic compounds are highly detrimental for survival of several aquatic
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FIGURE 1 | Examples of excessive nutrient enrichment and bloom dynamics in freshwater ponds. (A) Harmful algal blooms in a pond at Chulalongkorn
University, Bangkok, Thailand, showing the life of turtles (in red circle) under the toxic blooms condition (B). (C) Harmful algal blooms in a large pond in Varanasi,
India (Photograph by R.P. Rastogi).

organisms, wild and/or domestic animals, and humans. Aquatic
organisms, including plants and animals, and phyto/zoo-
planktons inhabiting under toxic bloom rich ecosystems, are
directly exposed to the harmful effects of different cyanotoxins.
The intoxication occurring in wild and/or domestic animals
and humans is either due to direct ingestion of cells of toxin
producing cyanobacteria or the consumption of drinking water
contaminated with cyanotoxins (Rastogi et al., 2014). The toxicity
of different cyanotoxins is directly proportional to the growth
of cyanobacteria and the extent of their toxin production. It has
been shown that the growth of different cyanobacteria and their
toxin biosynthesis is greatly influenced by different abiotic factors

such as light intensity, temperature, short wavelength radiations,
pH, and nutrients (Neilan et al., 2013; Häder et al., 2014; Rastogi
et al., 2014). Global warming and temperature gradients can
significantly change species composition and favor blooms of
toxic phytoplanktons (El-Shehawy et al., 2012; Häder and Gao,
2015).

It has been assumed that cyanotoxins play an important role
in chemical defense mechanisms giving survival advantages to
the cyanobacteria over other microbes or deterring predation by
higher trophic levels (Vepritskii et al., 1991; Jang et al., 2007;
Berry et al., 2008). Cyanotoxins may also take part in chemical
signaling. Overall, information regarding the specific role(s)
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of cyanotoxins in the life of individual cyanobacteria or their
ecological and biotechnological operations is still very limited and
needs extensive research. In the present review, we summarize
the recent advances on bloom dynamics, cyanotoxin production,
and mitigation strategies as well as their consequences on
environmental health perspectives.

EUTROPHICATION, GLOBAL CLIMATE
CHANGE, AND CYANOBACTERIAL
BLOOM DYNAMICS

Occurrence of toxic cyanobacterial blooms (cyanoblooms) is
a serious global problem which affects the water quality due
to the production and accumulation of different cyanotoxins
and other malodorous compounds. These blooms may cause an
increase of biological oxygen demand (BOD) and anoxia in the
water bodies, and death of aquatic life (Havens, 2008; Brookes
and Carey, 2011; Rastogi et al., 2014). The factors contributing
to the worldwide occurrence of cyanobacterial blooms are still
debatable. Nevertheless, cultural eutrophication from domestic,
industrial, and agricultural wastes as well as global climate change
can play a major role in the global expansion of harmful algal
blooms and toxin production (Kaebernick and Neilan, 2001;
Conley et al., 2009; Smith and Schindler, 2009; Paerl and Scott,
2010; Kleinteich et al., 2012; O’Neil et al., 2012; Paerl and
Paul, 2012; Neilan et al., 2013; Gehringer and Wannicke, 2014;
Figure 2). Excessive loads of certain inorganic and/or organic
nutrient concentrations are considered as strong risk factors
for bloom promotion both in fresh and marine water habitats
(Smith, 2003; Heisler et al., 2008; Conley et al., 2009; Ruttenberg
and Dyhrman, 2012; Michalak et al., 2013; Davidson et al.,
2014; Beversdorf et al., 2015). The anthropogenically mediated
change in the N/P ratio has frequently been interrelated to the
appearance of cyanobacterial blooms (Glibert et al., 2004). The
phosphorus concentration was found as a primary regulating
factor for increased cyanobacterial growth and changes of
genotypes, both of which were found to be closely related to
the water temperature, signifying the role of eutrophication in
the occurrence of toxic blooms (Joung et al., 2011). Recently,
Molot et al. (2014) presented a novel conceptual model linking
anoxia, phosphorus (P), nitrogen (N), iron (Fe), and sulfate to
the formation of harmful cyanobacterial blooms across three
gradients, i.e., nutrients, salinity, and acidity. Continued transfer
of sediments to a water body may block the natural flow of water
and enrich the dissolved organic carbon and other compounds
leading to potential risk of bloom formation.

Global climate change followed by changes in air/water
temperature gradients, as well as increased nutrient precipitation
can affect the cyanobacterial bloom formation and production of
different cyanotoxins (Kanoshina et al., 2003; Paerl and Huisman,
2009; El-Shehawy et al., 2012; Paerl and Paul, 2012). Several
environmental factors related to the dynamics of the abundance
of toxic cyanobacterial bloom formation have been verified
(Joung et al., 2011; Neilan et al., 2013). Warm and calm weather
and low turbulence can enhance the formation of cyanobacterial
blooms (Paerl and Huisman, 2008). Increased emission of ozone

depleting substances (ODSs), due to huge burning of fossil-fuels
and concomitant changes in air temperature, may promote the
water cyanobacterial growth. As a result of climate change, the
frequent droughts in summer as well as flash-flooding may lead
to abandoned nutrient discharges from urban areas to unloading
water bodies such as ponds, lakes, ditches, and estuaries with
the consequence of the augmentation of toxic blooms and the
increase of the BOD of a water reservoir (Whitehead et al.,
2009). Nitrogen limitation under drought condition may cause
a shift from non-N2-fixing to N2-fixing cyanobacteria leading to
an increase in biologically available nitrogen and a subsequent
production of cyanotoxins (Posch et al., 2012). The increased
salination due to summer droughts, rising sea levels, wind flow,
and common practices of the use of freshwater for agricultural
irrigation, all have led to the origin and existence of several
salt tolerant freshwater toxic cyanobacteria as evidenced by an
increased number of blooms in brackish waters (Kanoshina et al.,
2003; Paerl and Huisman, 2009). Under increased temperature
and low wind mixing, the water column becomes stagnant
and a large number of buoyant cyanobacteria move upward
at the water surface causing dense surface blooms to fulfill
their photosynthetic needs (Huisman et al., 2004; Paerl and
Huisman, 2008, 2009; Figure 2). It has been established that dense
cyanobacterial blooms require excessive CO2 to support their
photosynthetic growth (Paerl and Huisman, 2009). Furthermore,
global climate change due to anthropogenically released ODS
and increased atmospheric CO2 levels can minimize carbon
limitation of photosynthetic growth leading to increased algal
biomass productions in the water reservoirs (Paerl and Huisman,
2009). Moreover, increased CO2 levelsmay increase the problems
associated with the harmful cyanobacteria in eutrophic lakes
(Sandrini et al., 2015). Recently, Verspagen et al. (2014) reported
that rising CO2 levels may result in a marked intensification
of phytoplankton blooms in eutrophic and hypertrophic waters.
Climate change, which is predicted to lead the changes in rainfall
patterns along with an increase in temperature may also influence
the occurrence and severity of toxic cyanobacterial blooms due
to a significant impact on inland water resources (Reichwaldt
and Ghadouani, 2012). It has been suggested that UV-B radiation
may significantly influence strain composition of cyanobacterial
blooms in favor of microcystin (MC) producers (Ding et al.,
2013). Several species/strains of bloom forming cyanobacteria
produce different toxic peptides and alkaloids (Table 1), which
are a major threat to the safe drinking water and pose a serious
threat to the global environmental and human health (Kaplan
et al., 2012; Rastogi et al., 2014). Until now, a number of views
have been given for world-wide occurrence of cyanobacterial
blooms (Paerl and Huisman, 2009; Paerl and Paul, 2012; Neilan
et al., 2013; Rastogi et al., 2014); however, the exact mechanisms
and the role of different environmental factors regulating the
bloom dynamics are disputable and yet to be understood.

Our understanding of the responses of various environmental
factors associated with climate change and their impact on
marine/freshwater ecosystems is based on several experimental
and/or inferential data. From the above discussions, it is
clear that the appearance of a cyanobacterial bloom is the
consequence of several coherent signals. It is utmost important
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FIGURE 2 | Formation of cyanobacterial blooms: Schematic illustration showing the key factors such as anthropogenic eutrophication, global
climate change such as increased temperature and light or global warming due to an increase in ozone depleting substances (e.g., CO2, N2O, etc.),
and other biotic and abiotic factors responsible for the worldwide bloom incidence (Illustration by R. P. Rastogi).

to unravel the specific effects of nutrient enrichment and
other global climate change on our aquatic ecosystem, and to
establish the facts on how the structure and function of an
ecosystem can be maintained. Moreover, if the existing level of
anthropogenically induced nutrient loading in the water bodies
and environmental warming continues, multiple-fold increase in
algal bloom followed by contamination of our aquatic ecosystem
by several toxic substances is expected in future. Henceforth,
most conceptual and empirical research on the triggers of
cyanobacterial blooms is needed to understand the multifarious
set of situations that influence the worldwide incidence of toxic
cyanoblooms.

TOXINS FROM CYANOBACTERIA

Cyanobacteria produce a wide range of toxic secondary
compounds causing human and domestic/wildlife intoxication.
A number of bloom forming cyanobacteria from diverse habitats
have been reported to produce different toxins (Rastogi et al.,
2014). Chemically, the cyanotoxins are divided into three main
groups, i.e., cyclic peptides (MCs and nodularins), alkaloids
(anatoxin-a, anatoxin-a(s), saxitoxins, cylindrospermopsin,
aplysiatoxin, lyngbiatoxin-a), and lipopolysaccharides (LPSs;
Kaebernick and Neilan, 2001). However, based on biological
effects, the cyanobacterial toxins can be classified into five
functional groups such as hepatotoxins, neurotoxins, cytotoxins,
dermatotoxins, and irritant toxins (Sivonen and Jones, 1999;
Codd et al., 2005).

CYCLIC PEPTIDES

Among the different cyanobacterial toxins, MCs are the
most frequently occurring cyanotoxins in surface as well as
drinking water and widely investigated hepatotoxins. MCs are
cyclic heptapeptides (Figure 3) produced by several strains of
cyanobacteria (Sivonen and Jones, 1999; Krienitz et al., 2002;
Izaguirre et al., 2007; Aboal and Puig, 2009; Rastogi et al., 2014;
Table 1). Currently, more than 90 variants of MCs are known, all
with the general structure cyclo-(D-Ala-X-D-MeAsp-Z-Adda- D-
Glu- Mdha), X and Z being variable L-amino acids. On the basis
of acute toxicity, microcystin-LR (MC-LR) is considered the most
potent hepatotoxin (Funari and Testai, 2008).

Microcystin is synthesized non-ribosomally by large multi-
enzyme complexes comprising different modules including
non-ribosomal peptide synthetases (NRPSs) as well as
polyketide synthases (PKSs), and several tailoring enzymes.
The gene cluster responsible for MC biosynthesis has been
identified in different cyanobacteria (Tillett et al., 2000;
Rouhiainen et al., 2004; Christiansen et al., 2008; Gehringer
et al., 2012). In the cyanobacterium Microcystis aeruginosa
PCC7806, the MC gene clusters spans 55 kb of DNA and is
composed of 10 (mcyABCDEFGHIJ) bidirectionally transcribed
open reading frames (ORFs) arranged in two divergently
transcribed operons, mcyA-C and mcyD-J (Tillett et al., 2000;
Figure 3). The assembly of MC begins with the activation of
a phenylalanine-derived phenyl propionate starter unit at the
NRPS/PKS hybrid enzyme McyG (Hicks et al., 2006). The
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TABLE 1 | Some common cyanotoxins found in different cyanobacteria and their possible toxicity and mode of actions.

Toxins Producing cyanobacterial
genera

Biological toxicity Possible mechanisms of
action

Reference

Anatoxin a-(s) Anabaena Neurotoxic Inhibition of Ach-esterase
activity, hyper-excitability of
nerve

Matsunaga et al., 1989

Anatoxin-a Anabaena, Aphanizomenon,
Cylindrospermum, Microcystis,
Planktothrix, Raphidiopsis

Neurotoxic Depolarizing neuromuscular
blocking

Devlin et al., 1977; Carmichael,
1998

Antillatoxin Lyngbya Neurotoxic Blocking neuronal
communication by binding to
the voltage-gated Na+
channels

Berman et al., 1999; Li et al.,
2001

Aplysiatoxins Lyngbia, Schizothrix,
Trichodesmium, Oscillatoria

Dermatotoxic Potent tumor promoters and
protein kinase C activators

Fujiki et al., 1982

Cylindrospermopsin Anabaena, Aphanizomenon
Cylindrospermopsis, Lyngbya,
Oscillatoria (Planktothrix),
Rhaphidiopsis, Umezakia

Hepatotoxic, nephrotoxic,
and cytotoxic

Irreversible inhibition of protein
and glutathione synthesis,
implicating cytochrome P-450,
overexpression of DNA damage
repair proteins

Humpage et al., 2000; Froscio
et al., 2003; Neumann et al.,
2007

Cyanopeptolin Microcystis, Planktothrix Neurotoxic activity Transcriptional alterations of
genes belonging to DNA
damage and repair

Faltermann et al., 2014

Homoanatoxin-a Anabaena, Oscillatoria
(Planktothrix), Phormidium,
Raphidiopsis

Neurotoxic Blockade of the neuromuscular
transmission

Aas et al., 1996; Lilleheil et al.,
1997

Jamaicamides Lyngbya Neurotoxic, cytotoxic Blocking voltage-gated sodium
channels

Edwards et al., 2004

Kalkitoxin Lyngbya Neurotoxic Blocking voltage-gated sodium
channels

Wu et al., 2000; LePage et al.,
2005

Lipopolysaccharides (LPS) Anabaena, Anacystis,
Microcystis, Oscillatoria,
Spirulina, and almost all
cyanobacteria

Dermatotoxic Impairment of immune and
detoxification system, irritation,
and allergic effects

Mankiewicz et al., 2003;
Wiegand and Pflugmacher,
2005

Lyngbyatoxin-a Lyngbya, Oscillatoria,
Schizothrix

Cytotoxic, dermatotoxic,
gastroenteritis

Dermonecrotic, protein kinase
C activator, and potent tumor
promoters

Cardellina et al., 1979; Fujiki
et al., 1981, 1984

Microcystins Anabaena, Anabaenopsis,
Aphanocapsa,
Aphanizomenon, Arthrospira,
Cyanobium,
Cylindrospermopsis,
Fischerella, Hapalosiphon,
Limnothrix, Lyngbya,
Microcystis, Nostoc,
Oscillatoria (Planktothrix),
Phormidium, Planktothrix,
Rivularia, Synechocystis, and
Synechococcus

Hepatotoxic Inhibitors of protein
phosphatases 1, 2A and 3,
tumor promoter, genotoxicity

Honkanen et al., 1990;
MacKintosh et al., 1990;
Gulledge et al., 2002

Nodularins Nodularia Hepatotoxic Inhibitors of protein
phosphatases 1, 2A and 3,
tumor promoter

Yoshizawa et al., 1990;
Gulledge et al., 2002

Saxitoxins Anabaena, Aphanizomenon,
Cylindrospermopsis, Lyngbya,
Planktothrix, Raphidiopsis,
Scytonema

Neurotoxic Blocking neuronal
communication by binding to
the voltage-gated Na+
channels

Strichartz et al., 1986; Su et al.,
2004

β-N-methylamino-L-alanine
(BMAA)

Anabaena, Microcystis,
Nostoc, Planktothrix

Neurotoxic Motor system disorder,
glutamate agonist, increasing
the intracellular concentration
of calcium in neurons and
inducing neuronal activity by
hyperexcitation

Brownson et al., 2002; Lobner
et al., 2007
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FIGURE 3 | Chemical structure of microcystin (MC-LR) and nodularin (NOD), and their biosynthetic gene clusters, mcy and nda in the cyanobacteria
Microcystis aeruginosa PCC7806 and Nodularia spumigena NSOR10, respectively. Black – tailoring enzymes, red – polyketide synthases, blue –
non-ribosomal peptide synthetases, light black – non-microcystin synthetase, green – ABC transporter (adapted from Tillett et al., 2000; Moffitt and Neilan, 2004;
Gehringer et al., 2012; Gehringer and Wannicke, 2014; Gene cluster not drawn to scale).

gene clusters encoding MC biosynthesis sequence from the
Microcystis (Tillett et al., 2000), Planktothrix (Christiansen
et al., 2008), and Anabaena (Rouhiainen et al., 2004) species
revealed that the arrangements of ORFs in the mcy cluster
vary among different genera. However, a high sequence
similarity between the mcy gene clusters of different genera
suggests a common ancestor for MC synthesis (Rantala et al.,
2004).

Similar to MCs, cyclic pentapeptide toxic compounds,
nodularins (NODs; Figure 3) represent the second group of
hepatotoxins produced by the cyanobacteria Nodularia and
Nostoc. At present, more than seven variants of NOD have
been reported. Both hepatotoxins (MCs and NODs) contain a
unique hydrophobic amino acid, Adda (2S,3S,8S,9S-3-amino-
9-methoxy-2,6,8-trimethyl-10-phenyl-deca-4,6-dienoic acid).
Chemically, NODs differ from MCs in terms of the absence
of two core amino acids and have N-methyldehydrobutyrine
(Mdhb) instead of N-methyldehydroalanine (Mdha; Rinehart
et al., 1998). Similar to MCs, NODs are also produced non-
ribosomally from nda gene clusters by means of NRPS-PKS
enzyme systems (Moffitt and Neilan, 2004; Figure 3). In the
cyanobacterium Nodularia spumigena NSOR10, the locus of
nda gene clusters (48 kb) consists of nine ORFs (ndaA–I)
transcribed from a bidirectional regulatory promoter region
(Moffitt and Neilan, 2004). Moreover, MCs and NODs show
similar biological activity in spite of their different chemical
structures. These cyclic peptides inhibit the specific protein
serine/threonine phosphatases-1 (PP1) and -2A (PP2A)
which are important regulatory enzymes in eukaryotic cells
(MacKintosh et al., 1990).

ALKALOIDS

A number of toxic alkaloids have been found in different
cyanobacteria. The alkaloids anatoxin-a (MW = 165 Da) and
its homolog homoanatoxin-a (MW = 179 Da) are fast-acting
neurotoxins, also known as fast death factors (FDFs). Anatoxin-a
(Figure 4) was first isolated from Anabaena flos-aquae and so
far has been found in several cyanobacteria such as A. circinalis,
A. planctonica, A. spiroides, Aphanizomenon, Cylindrospermum,
Planktothrix, and M. aeruginosa (Edwards et al., 1992; Park
et al., 1993; Table 1). The alkaloid homoanatoxin-a has a
methylene group at C-2 instead of the acetyl group (Figure 4)
and structurally resembles anatoxin-a. Homoanatoxin-a has
been isolated from the cyanobacteria Oscillatoria (Planktothrix)
formosa, Phormidium formosum, Anabaena, and Raphidiopsis
mediterranea (Furey et al., 2003; Namikoshi et al., 2003;
Watanabe et al., 2003). Another homolog of anatoxin, anatoxin-
a(s) (MW 252 Da; Figure 4), isolated from A. flos-aquae
and A. lemmermannii, is a potent acetylcholinesterase (AChE)
inhibitor (Matsunaga et al., 1989) but more lethal than
anatoxin-a (Carmichael et al., 1990; Méjean et al., 2014). It is
synthesized in the cell from ornithine via putrescine catalyzed
by the enzyme ornithine decarboxylase. Moreover, the partial
genome sequencing demonstrated the presence of putative gene
cluster (Méjean et al., 2014) encoding the biosynthetic pathway
of anatoxin-a and homoanatoxin-a in cyanobacteria such as
Oscillatoria PCC 6506 (Méjean et al., 2009) and Anabaena strain
37 (Rantala-Ylinen et al., 2011; Figure 4).

Saxitoxin and its analogs (e.g., neosaxitoxin; Figure 5) are
a group of carbamate alkaloid toxins which all are highly

Frontiers in Microbiology | www.frontiersin.org 6 November 2015 | Volume 6 | Article 1254

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Rastogi et al. Cyanobacteria Blooms and their Toxins

FIGURE 4 | Chemical structure of anatoxins and its biosynthetic gene
(ana) cluster in the cyanobacterium Oscillatoria sp. PCC6506. Green –
transporter, orange – cyclase, light blue – thioesterase, purple – oxidase, blue-
adenylation protein, yellow – acyl carrier protein, red – polyketide synthase,
black – transposase (adapted from Rantala-Ylinen et al., 2011; Méjean et al.,
2014; Gene cluster not drawn to scale).

potent neurotoxins. These are tricyclic compounds, consisting
of a tetrahydropurine group and two guanidine subunits,
commonly called paralytic shellfish poisons (PSPs). Currently,
about 27 variants of saxitoxins have been found in different
cyanobacteria such as Aphanizomenon, Anabaena flos-aquae,
Anabaena circinalis, Lyngbya wollei, and Cylindrospermopsis
raciborskii (Table 1). Regulation of saxitoxin biosynthetic
pathway and characterization of some enzymes involved are
not well-studied (Soto-Liebe et al., 2010). However, it has
been postulated that biosynthesis of saxitoxin depends on the
multifunctional PKS enzyme, SxtA (Kellmann et al., 2008).
The saxitoxin biosynthetic gene cluster (25.7–36 kb) includes
33 genes, reported in cyanobacteria such as Cylindrospermopsis
raciborskii (strain T3), Anabaena circinalis (strain AWQC131C),
Aphanizomenon strain NH-5, Lyngbya wollei, and Raphidiopsis
brookii (strain D9; Kellmann et al., 2008; Mihali et al., 2009,
2011; Soto-Liebe et al., 2010; Stucken et al., 2010; Neilan et al.,
2013; Figure 5). The positions of genes encoding biosynthetic
enzymes, transporters, and regulatory proteins within the cluster
differ among the different cyanobacterial strains dicsussed above.
Moreover, the toxic profile expressed in different strains is
determined by the position and presence, or absence, of specific
genes in the respective clusters.

The cyanotoxin cylindrospermopsin (CYN: MW 415 Da)
is a polyketide-alkaloid having a tricyclic guanidine moiety
and sulfate groups (Figure 6). Presently, some analogs
of CYN such as deoxy-cylindrospermopsin, demethoxy-
cylindrospermopsin and 7-epicylindrospermopsin have been
identified in the cyanobacteria C. raciborskii (Norris et al., 1999)
and Aphanizomenon ovalisporum (Banker et al., 2000). The CYN
variant 7-epicylindrospermopsin differs due to the orientation of
the hydroxyl group close to the uracil moiety (Banker et al., 2000),
and the other variant deoxy-cylindrospermopsin is characterized
by a missing oxygen atom related to the initial hydroxyl group
close to uracil moiety. Moreover, a number of cyanobacteria such
as Cylindrospermopsis raciborskii, Aphanizomenon ovalisporum,

FIGURE 5 | Chemical structure of saxitoxin and its biosynthetic gene
cluster in the cyanobacterium Aphanizomenon sp. NH-5. Light green –
transporter, white – transposase, black – unknown, dark blue – cyclase,
green – polyketide synthase, light blue – oxido-reductase, orange –
hydroxylase, dark red – putative regulator, orange – transferase, red –
hydrolase (for details, see Kellmann et al., 2008; Mihali et al., 2009; Gene
cluster not drawn to scale).

Aphanizomenon flos-aquae, Anabaena lapponica, Anabaena
bergii, Lyngbya wollei, Umezakia natans, Raphidiopsis curvata,
and Oscillatoria (Planktothrix) have been reported to produce
CYN and its analogs (Ohtani et al., 1992; Harada et al., 1994;
Banker et al., 1997; Preussel et al., 2006; Spoof et al., 2006;
Seifert et al., 2007; Mazmouz et al., 2010). McGregor et al. (2011)
reported the presence of the cyanotoxins CYN and deoxy-CYN
from the cyanobacterium Raphidiopsis mediterranea FSS1-150/1
of a eutrophic reservoir in Queensland, Australia. CYN shows
hepatotoxic, nephrotoxic, and cytotoxic effects and is a potential
carcinogen owing to the inhibition of glutathione, cytochrome
P450 and protein synthesis (Humpage et al., 2000; Froscio et al.,
2003; Neumann et al., 2007). The gene cluster (cyr) encoding the
enzymes of the CYN biosynthesis (Figure 6) has been reported
to be present in several cyanobacteria such as C. raciborskii
(Mihali et al., 2008; Stucken et al., 2010; Jiang et al., 2012),
Aphanizomenon strain 10E6 (Stuken and Jakobsen, 2010), and
Oscillatoria PCC 6506 (Mazmouz et al., 2010). The arrangements
of genes and flanking regions differ across genera; however,
all the gene clusters are highly conserved with respect to the
nucleotide sequence of orthologous genes (Neilan et al., 2013).
In case of the cyanobacterium C. raciborskii AWT205, the cyr
gene cluster (42 kb) encodes 15 ORFs (cyrA-O). The biosynthesis
of CYN is initiated by an amidinotransferase and completed
by NRPS-PKS-type enzymes in combination with tailoring
enzymes (Muenchhoff et al., 2010). As stated above, the gene
cluster for CYN biosynthesis has been sequenced from several
cyanobacteria; however, few studies have been conducted on its
transcriptional organization and promoter structure (Stuken and
Jakobsen, 2010).

LIPOPOLYSACCHARIDES

The endotoxins LPSs consist of an internal acylated glycolipid
(lipid-A), core domain (an oligosaccharide) and an outer
polysaccharide (O-antigen) chain (Raetz andWhitfield, 2002). In
general, the fatty acid component (lipid-A) of LPS is responsible

Frontiers in Microbiology | www.frontiersin.org 7 November 2015 | Volume 6 | Article 1254

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Rastogi et al. Cyanobacteria Blooms and their Toxins

FIGURE 6 | Chemical structure of cylindrospermopsin and its
biosynthetic gene (cyr) cluster in the cyanobacterium
Cylindrospermopsis raciborskii AWT205. Red – PKS/NRPS, green – uracil
ring, black – tailoring, blue – transport, white – transposase, orange –
amidinotransferase, purple – regulator (Adapted from Mihali et al., 2008).

for the toxic actions such as irritant and allergenic responses in
human and animal tissues (Mankiewicz et al., 2003). The LPSs
present in cyanobacteria differ from those in enteric bacteria
by having a larger variety of long chain unsaturated fatty acids
and hydroxy fatty acids and the lack of phosphate. Moreover,
there is substantial diversity of LPSs composition among
the cyanobacteria, although variations are basically related to
phylogeny. Different genera of cyanobacteria have distinct LPSs
compositions conserved within the particular genus (Sivonen and
Jones, 1999). Several cyanobacteria such as Anacystis nidulans,
Microcystis, Anabaena, Spirulina, and Oscillatoria all have been
reported to produce LPS toxin (Smith et al., 2008; Bláhová et al.,
2013). The structure of the lipid-A subunit in the cyanobacterial
LPS molecule has not been clearly identified, and furthermore,
the exact mechanism of LPS toxicity produced by cyanobacteria
is still unknown.

Besides the above mentioned cyanotoxins, a number of toxins
such as aplysiatoxin, kalkitoxin, antillatoxin, lyngbyatoxins,
cyanopeptolin, aurilides, and jamaicamides have been reported to
be present in different cyanobacteria in fresh and/ormarine water
habitats (Figure 7). A phenolic bislactone alkaloid aplysiatoxin
has been reported from several cyanobacteria such as Lyngbia
majuscula, Schizothrix calcicola, Trichodesmium erythraeum, and
Oscillatoria nigroviridis (Mynderse et al., 1977; Gupta et al., 2014).
Aplysiatoxin and debromoaplysiatoxin (Figure 7) are potent
tumor promoters and protein kinase C activators and show
signs of several lethal effects. Moreover, an analog of the tumor-
promoting aplysiatoxin has been reported as an antineoplastic
agent rather than a tumor-promoting substance (Nakagawa et al.,
2009). Recently, the analogs of aplysiatoxin debromoaplysiatoxin
and anhydrodebromoaplysiatoxin, as well as two new analogs,
3-methoxyaplysiatoxin and 3-methoxydebromoaplysiatoxin have
been reported from the marine cyanobacterium Trichodesmium
erythraeum (Gupta et al., 2014). The alkaloid lyngbyatoxin,
a prenylated cyclic dipeptide compound, was isolated from
Lyngbya majuscula (Taylor et al., 2014) and has several
similarities with aplysiatoxin in its mechanism of toxicity
and both are potent tumor promoters. Kalkitoxin (Figure 7)
is a lipopeptide neurotoxin produced by some species of

cyanobacteria such as L. majuscula (Berman et al., 1999). The
antillatoxin is an ichthyotoxic cyclic depsipeptide isolated from
L. majuscula (Orjala et al., 1995). A number of bioactive
peptides such as microviridins, microginins, cyanopeptolides,
and β-N-methylamino-L-alanine (BMAA; Figure 7) have also
been reported from diverse cyanobacteria, but their toxicological
profiles and impacts on the environment as well as human
health are not known (Downing et al., 2014). Moreover,
the cyanobacterial neurotoxin, BMAA has been suggested to
function as a causative agent for certain neurodegenerative
diseases (Lobner et al., 2007). The compound curacin-A, isolated
from L. majuscula (Gerwick et al., 1994), exhibited potent
anti-proliferative and cytotoxic activity against colon, renal,
and breast cancer derived cell lines (Verdier-Pinard et al.,
1998). A cyanobacterial toxin cyanopeptolin (CP1020) produced
by Microcystis and Planktothrix strains was found to cause
transcriptional alterations of genes involved in DNA damage and
repair (Faltermann et al., 2014). Recently, two new cyanobacterial
peptides named micropeptins 1106 and 1120 were reported
from cyanobacterial blooms in North Carolina’s Cape Fear
River. However, their biological activities have not yet been
determined (Isaacs et al., 2014). Moreover, several studies
indicate the presence of several additional, still unidentified and
not characterized biotoxins in cyanobacterial blooms.

ECOLOGICAL HEALTH IMPACTS OF
CYANOTOXINS

The increased incidence of toxic cyanobacterial blooms is posing
potential risks to aquatic ecosystem as well as human and animal
health. Cyanotoxins may cause several harmful effects on humans
or animals either through direct contact or by means of intake
of untreated contaminated water and food (Miller et al., 2010;
Papadimitriou et al., 2012; Rastogi et al., 2014; Sukenik et al.,
2015). Aquatic organisms may be affected either through direct
ingestion of toxic cyanobacterial cells or through contact with
cyanotoxins. It has been established that intake of contaminated
water or food is a key route for cyanotoxin intoxication (Zhang
et al., 2009; Miller et al., 2010). Several secondary compounds
have been reported to have their toxic effects on different
organisms ranging from plant to animals. In the subsequent
section we have focused on the adverse toxic effects of some
common cyanotoxins on aquatic/wild animals and humans.

The cyanotoxin MCs are well-known for their toxic effects.
MCs can affect the cellular system through disorganization of
cytoskeleton, cell proliferation, genome damage, inhibition of
enzyme activity, imprecise mitotic cell division, loss of membrane
integrity, oxidative stress, and lipid peroxidation (Rastogi et al.,
2014). To know the detailed mechanisms or mode of action
of MCs, readers are referred to the recent review by Rastogi
et al. (2014). MCs act by blocking protein PP1 and -2A, causing
toxicity at the hepatic level. It has been demonstrated that MC-
LR can induce reproductive (Chen et al., 2011; Zhou et al., 2012)
as well as cardio-toxicity in animals (Qiu et al., 2009). MC-LR
was found to cause normocyte anemia and the bone marrow
injury, and also affected the immune system of rabbits (Zhang
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FIGURE 7 | The chemical structure of some common cyanotoxins reported in diverse cyanobacteria.

et al., 2011; Yuan et al., 2012). Moreover, a number of fatal
poisonings of MCs regarding the health risk of domestic and wild
animals, birds, fish, and several other aquatic as well as terrestrial
organisms have been reported worldwide (Stewart et al., 2008;
Rastogi et al., 2014). The mass mortalities of Lesser Flamingos
were reported at Lake Bogoria, Kenya due to MC intoxication
(Krienitz et al., 2003). A new episode of cyanotoxin (MC-LR, -YR,
and -RR) intoxication and mass mortalities of Lesser Flamingos
(Phoeniconaias minor Geoffroy) have also been reported at Lake
Manyara in Tanzania (Nonga et al., 2011). At least 6,000 birds
belonging to 47 species, including endangered species such as
the marbled teal (Marmaronetta angustirostris) and white-headed
duck (Oxyura leucocephala), died due to MC-LR intoxication at
the Doñana National Park, Spain (Lopez-Rodas et al., 2008).

Despite numerous reports of cyanotoxins impact on
the aquatic organisms and wild or domestic animals, the
epidemiological facts for cyanotoxins intoxication in humans
are very limited (Rastogi et al., 2014). Recent studies have
established the cytotoxic and genotoxic potentials of various
cyanotoxins including MCs (Žegura et al., 2011). The use of
untreated water contaminated with cyanobacterial blooms
and MCs resulted in normocytic anemia (Pouria et al., 1998),
liver failure and several other symptoms such as nausea,
vomiting, and acute liver damage leading to human death in
a hemodialysis center in Caruaru, Brazil (Pouria et al., 1998;
Hilborn et al., 2007). The use of MC-contaminated water
can be a potential risk factor for liver and colorectal cancer
among humans (Lun et al., 2002; Hernández et al., 2009).
Moreover, MCs may cause hepatotoxicity and neurotoxicity,
kidney impairment, allergies and eye, ear and skin irritation, and
certain gastrointestinal disorders such as nausea/vomiting and
diarrhea in humans (Torokne et al., 2001; Pilotto et al., 2004;
Codd et al., 2005).

As stated above, the cyanotoxin NODs have chemical structure
as well as mechanisms of action similar to those of MCs
(Yoshizawa et al., 1990); however, NODs have not been studied as
extensively as MCs (Funari and Testai, 2008). NODs are a potent
inhibitor of protein phosphatase 1 and 2A (Ohta et al., 1994) and

show accumulative toxicity and tumor formation (Ohta et al.,
1994; Sueoka et al., 1997; Song et al., 1999). The toxic effects of
NODs have also been investigated in fish (Sotton et al., 2015).
In the flatfish Platichthys flesus, NODs induced oxidative stress
as indicated by a decrease of GST and CAT activity resulting
in increased vulnerability of the cells to reactive oxygen species
(ROS; Persson et al., 2009). NOD can also induce apoptosis
and hyperphosphorylation of signaling proteins in cultured rat
hepatocytes (Ufelmann and Schrenk, 2015). Nevertheless, not
much toxicological data are available for NODs carcinogenicity
in humans.

A cytotoxic alkaloid CYN can irreversibly inhibit the
biosynthesis of protein and glutathione leading to cell death
(Ohtani et al., 1992; Terao et al., 1994; Froscio et al., 2003).
A Cylindrospermopsis bloom episode was found to cause cattle
mortalities and human poisonings in north Queensland (Saker
et al., 1999; Griffiths and Saker, 2003). Moreover, a number of
disorders such as damage to liver, kidney, thymus, and heart, as
well as hepatic and renal toxicity were observed in mice (Terao
et al., 1994; Falconer et al., 1999; Bernard et al., 2003; Froscio et al.,
2003). CYNmay induce DNA strand breaks and possibly disrupt
the kinetochore spindle, leading to chromosome loss, specifying
its clastogenic and aneugenic action (Humpage et al., 2000). In
primary rat hepatocytes, CYN has been shown to inhibit protein
and glutathione synthesis and induce apoptosis (López-Alonso
et al., 2013). Recently, Huguet et al. (2014) studied the effects of
CYN on human intestinal Caco-2 cells and reported that CYN
canmodulate different biological functions by overexpressing the
genes encoding proteins involved in DNA damage repair and
transcription including modifications of nucleosomal histones. It
has been shown that CYN may cause a decrease in glutathione
synthesis (Runnegar et al., 1994) and induce oxidative stress
in fish (Guzmán-Guillén et al., 2013a,b). Indeed, CYN can
accumulate in various organs of fish, leading to deleterious
effects on their normal physiology and biochemistry (Sotton
et al., 2015). CYN may interfere with the basic functions of
fish phagocytic cells and as a consequence, influence the fish
immunity (Sieroslawska and Rymuszka, 2015).
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A number of neurotoxic alkaloids from cyanobacteria have
been reported, exerting their action on the neuromuscular
system by blocking skeletal and respiratory muscles leading
to respiratory failure. The cyanotoxins such as anatoxins,
saxitoxins, antillatoxin, kalkitoxin, and jamaicamide are major
groups of neurotoxic compounds (Aráoz et al., 2010). It
has been established that anatoxin-a is a potent depolarizing
neuromuscular blocking agent which acts by binding to nicotinic
receptors for acetylcholine in the central nervous system
(CNS), peripheral nervous system (PNS) and in neuromuscular
junctions (Carmichael, 1998). Several studies regarding the
mechanisms of anatoxins toxicity were performed in mice using
the sub-lethal or lethal doses of anatoxin-a. Anatoxin-a, well-
known as a “Very Fast Death Factor,” can cause contraction,
muscular paralysis, and respiratory arrest leading to death of mice
in a very short time after intraperitoneal injection (i.p. mouse
LD50: 250 to 375 μg/kg; Devlin et al., 1977). Anatoxin-a can
impair blood pressure, heart rate and gas exchange triggering
hypoxia, respiratory arrest and severe acidosis leading to death
of the animals (Adeymo and Sirén, 1992). The toxicological
properties of homoanatoxin-a are more or less identical to
those of anatoxin-a (Namikoshi et al., 2003). The neurotoxic
alkaloid saxitoxins are considered the most toxic compounds.
The mode of action of all analogs of saxitoxins is more or less
similar; however, they differ in toxicity (Funari and Testai, 2008).
Saxitoxins may block voltage-gated sodium channels in nerve
cells and discontinue the entry of sodium flow, preventing the
generation of a proper action potential or electrical transmission
in nerves and muscle fibers leading to paralysis of muscles
and death by respiratory arrest in mammals (Strichartz et al.,
1986; Su et al., 2004; Bricelj et al., 2005). Another neurotoxic
cyanotoxin antillatoxin is a novel ichthyotoxic (LC50 = 0.1 μM)
cyclic lipopeptide isolated from the marine cyanobacterium
Lyngbya majuscula (Orjala et al., 1995). Antillatoxin-A prompted
a rapid neuronal death in cerebellar granule cell cultures
(LC50 = 0.18 μM; Berman et al., 1999). Voltage-gated
sodium channels were shown as the main molecular target of
antillatoxin (Li et al., 2001). The neurotoxic compound kalkitoxin
isolated from L. majuscula is a thiazoline-containing lipopeptide
compound (Wu et al., 2000). Lyngbyatoxin-A, a cyclic dipeptide
found in L. majuscula, appears to have been responsible for
a severe oral and gastrointestinal inflammation suffered by a
person who accidentally ingested this cyanobacterium (Sims and
Zandee Van Rillaud, 1981). Kalkitoxin was shown ichthyotoxic
to the goldfish Carassius auratus and toxic to the aquatic
crustacean brine shrimp (Artemia salina) with an LC50 700 and
170 nM, respectively (Wu et al., 2000). Kalkitoxin may also
block voltage-gated sodium channels (LePage et al., 2005). The
neurotoxic amino acid BMAA acts in mammals as a glutamate
agonist (Corbel et al., 2014). BMAA increases the intracellular
concentration of calcium in neurons and induces neuronal
activity by hyperexcitation (Brownson et al., 2002).

The endotoxic LPSs are known to cause fever in mammals
and are involved in septic shock syndrome and liver injury (Choi
and Kim, 1998). LPS can impair the immune system and also
affect the detoxification system of diverse organisms (Wiegand
and Pflugmacher, 2005). Until now, very little is known about the

LPS intoxication and its toxicity is assumed to be associated with
the host-mediated factors (Stewart et al., 2006a,b).More extensive
research is needed to clarify a definite toxicity mechanism of LPS.
Overall, it is no doubt that the acute effects of several cyanotoxins
represent the major concern for ecological health impacts.

CYANOBLOOMS AND CYANOTOXINS:
MITIGATION STRATEGIES

The increased incidence of toxic cyanobacterial blooms
(cyanoblooms) worldwide and their potential health risks have
generated tremendous concern for dynamic management of
toxic cyanoblooms. The economic cost of freshwater blooms
in the United States was estimated to be about 2.2–4.6 billion
dollars/annum (Dodds et al., 2009). Henceforth, advanced
approaches or development of a new technology is needed
to terminate or prevent/suppress the harmful cyanobacterial
blooms for environmental sustainability and economic vitality
(Hudnell, 2008, 2010; Srivastava et al., 2013; Harris et al., 2014;
Koreivienë et al., 2014). Several factors boosting the incidence
of harmful cyanobacterial blooms, such as nutrient input, wind
velocity, sediment deposition, reduced water flow, increased
salinity and temperature gradients, global warming and drought
can be regulated to a certain extent to eliminate or minimize
the bloom incidence. The approaches implemented for bloom
suppression should be environmentally sustainable without
adversely influencing the aquatic ecosystems. A number of
strategies or approaches such as chemical, physical, biological,
and other cognizance approaches came into consideration for
mitigating the harmful cyanobacterial bloom incidences.

CHEMICAL APPROACHES

Cyanoblooms can be controlled to a certain extent using some
chemicals such as algicides, inhibitors or flocculants; however,
use of these chemicals can inevitably recontaminate water bodies
(Murray-Gulde et al., 2002; Van Hullebusch et al., 2002; Jančula
and Maršálek, 2011). The use of certain pigments (aquashade)
can reduce the amount of light availability, and inhibit the growth
of harmful algae; however, this approach may not be effective
due to growth inhibition of other beneficial microalgae, thereby
undesirably influencing the aquatic ecosystems (Spencer, 1984).
The use of some algicides has been reported to decline the
bloom formation. The natural product cyanobacterin has been
shown to be toxic to most cyanobacteria at a concentration of
approximately 5μM(Gleason and Baxa, 1986).Many biologically
derived (but non-antibiotic) bioactive substances are known to
inhibit the growth of aquatic bloom-forming cyanobacteria (Shao
et al., 2013). Recently, Dai et al. (2012) have shown the fast
removal (up to 98.99%) of MC-LR by a low-cytotoxic microgel-
Fe(III) complex. Preoxidation with chlorine dioxide followed
by flocculation and settling was found effective in removing
cyanobacterial blooms and MCs (Bogialli et al., 2013). The use of
aluminum salts can be used as algicides for nuisance algae and
cyanobacteria control (Lelkova et al., 2008). The use of slaked
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lime [Ca(OH)2] or calcite (CaCO3) has also been reported to
remove the algal communities, including cyanobacteria (Prepas
et al., 2001; Zhang et al., 2001). Aluminum compounds can
be used to remove the nutrients from industrial and domestic
wastewaters (Auvray et al., 2006; Rodriguez et al., 2008; De
Julio et al., 2010). Besides aluminum, several other metals such
as iron and copper are used to remove the algal blooms. The
salt of copper (CuSO4.5H2O) is widely used as an algicide
(Murray-Gulde et al., 2002). The herbicide diuron together with
copper sulfate as well as other copper-based compounds have
been approved by the United States Environmental Protection
Agency (USEPA) for use as algicides in fish production ponds
(Schrader et al., 2004). Moreover, the use of synthetic compounds
for bloom control has their own limitations, and therefore, a
range of natural chemicals (e.g., anthraquinone, nostocarboline,
and stilbenes) from diverse organisms have been derived as
potent substituents of synthetic algicides (Schrader et al., 2003,
2004; Becher et al., 2005; Mizuno et al., 2008; Table 2).
Recently, Jančula andMaršálek (2011) reviewed the availability of
different chemical compounds for prevention and management
of cyanobacterial blooms.

PHYSICAL APPROACHES

Bloom control by physical methods generally involves mecha-
nical removal techniques or short wavelength radiation treatment
to control the incidence of cyanobacteria. The use of new
and improved technologies can eliminate industrial/agricultural/
household pollutants to a certain extent to minimize the
environmental pollution, including the water pollution by the
incidence of harmful algal blooms. Global climate change
and rising fresh water demand for multipurpose usage caused
a remarkable increase in drought frequency and decreased
freshwater flow rates (Paerl and Huisman, 2008; Paul, 2008).
However, increasing flow rates and decreasing water residence
time can remove fresh water algal blooms of a reservoir even in
nutrient-rich conditions (Paerl, 2008). The artificial circulation
for increased water flow is reported to suppress the blooms, but
it may also cause habitat disturbance (Visser and Ibelings, 1996;
Jungo et al., 2001; Huisman et al., 2004; Hudnell et al., 2010).
Moreover, a solar powered circulation (SPC) has been designed
to create long-distances circulation of the epilimnion (>200 m)
to suppress freshwater harmful algal blooms (Hudnell et al.,
2010). Data obtained from a case study of nutrient-enriched,
source-water reservoirs, revealed the role of SPC in reduction of
cyanobacterial peak density by about 82 and 95% during the first
and second year of SPC deployment, respectively (Hudnell et al.,
2010). Intensity of light and temperature play a significant role
in bloom incidence as mentioned above. However, the increase
in incidence of light and temperature can hardly be controlled
in a large water reservoir, where as it is energy intensive in
smaller water bodies. Short wavelength ultraviolet radiation can
bring about a rapid degradation of the cyanotoxins MCs (Tsuji
et al., 1995; Kaya and Sano, 1998). Moreover, it has been
concluded that photosensitized processes may play an important
role in the photochemical transformation of cyanotoxins (e.g.,

MC-LR; cylindrospermopsin) in the natural water (Lawton et al.,
1999; Song et al., 2007; Wörmer et al., 2010; He et al., 2012).
Simulated waterfalls or fountains may also be effective to control
the cyanobacterial blooms in smaller water bodies; however, it
requires electric-grid power constantly (Clevely and Wooster,
2007). The use of hydraulic jet cavitation may be a good approach
to cyanobacterial water-bloommanagement (Jančula et al., 2014).
Moreover, cavitation treatment can disintegrate gas vesicles of
cyanobacterial cells, and can remove up to 99% cyanobacteria
growing in a lake, ponds or reservoirs (Jančula et al., 2014).

BIOLOGICAL APPROACHES

Control of cyanoblooms through biological mechanisms such
as regulation of nutrient uptake or availability, alteration
of normal physiology (such as a decrease in photosynthetic
pigment), and/or direct feeding of cyanobacterial biomass by
some aquatic organisms may be promising ways of ecological
restoration (Bond and Lake, 2003; Qin et al., 2006; Zhang
et al., 2008; Zhang et al., 2012, 2014). The gastropod Radix
swinhoei can ingest cyanobacteria and survive well without loss
in fecundity in the water reservoirs with cyanobacterial blooms
(Zhang et al., 2012). The combined use of snails (R. swinhoei)
and a submerged plant (Potamogeton lucens) in eutrophic
waters can eliminate cyanobacterial bloom by minimizing the
eutrophication; however, this method is under the preliminary
stage due to the lack of the field study (Zhang et al., 2014).
Occurrence and growth of aquatic plants are considered good
candidates for limiting algal growth as the aquatic plants directly
compete with algae for nutrients, light and space (Qiu et al.,
2001; Wang et al., 2009). Some aquatic plants release different
allelochemicals that can inhibit the growth of cyanobacteria and
other phytoplanktons (Nakai et al., 2000; Körner and Nicklisch,
2002). Biodegradation using different species/strains of bacteria
(Table 3) and other organisms may be the most efficient process
to control the fate of some cyanotoxins in natural waters (Zhang
et al., 2008; Manage et al., 2009; Lawton et al., 2011; Rastogi et al.,
2014).

RESEARCH AND MANAGEMENT

Development of wastewater research and management program
is highly amenable to prevent or control the worldwide incidence
of algal blooms and maintaining the ecological integrity and
sustainability. Documentation of different environmental factors
responsible for increased incidence of harmful cyanoblooms
is crucial toward the development of demarcated management
strategies. Moreover, interactive management of anthropogenic
over nutrient-enrichment and global climate change is a major
task for ensuring the protection and sustainability of aquatic
ecosystems (Paerl et al., 2011a,b). The availability of phosphorus
plays an important role in the growth of cyanobacteria
and other microalgae or phytoplanktons (Schindler et al.,
2008); henceforth, controlled input of phosphorus to the
water reservoir may be an effective management strategy for

Frontiers in Microbiology | www.frontiersin.org 11 November 2015 | Volume 6 | Article 1254

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Rastogi et al. Cyanobacteria Blooms and their Toxins

TABLE 2 | Allelochemicals and their inhibitory effects against some bloom forming cyanobacteria.

Allelochemicals Source Target cyanobacteria EC50 Mechanisms Reference

(+)-catechin Myriophyllum spicatum M. aeruginosa 5.5 mg l−1 Growth inhibition, produced
radicals

Nakai et al., 2000

1-Desgalloyleugeniin Myriophyllum bradieme M. atwginosa, Anabaena
flos-aquae

3.7 μM Growth inhibitory activity Saito et al., 1989

3-oxo-a-ionone Periphyton biofilm Microsystis aeruginosa – Thylakoid membrane
damage, failure of
photosynthesis

Wu et al., 2011

4-OH-coumarin Ruta graveolens Synechococcus
leopolensis, A. flos-aquae

– Growth inhibition Aliotta et al., 1999

5-methoxypsoralen Ruta graveolens Synechococcus
leopolensis, A. flos-aquae

– Growth inhibition Aliotta et al., 1999

Alantolactone Inula helenium O. perornata >100 μg mL−1∗ Growth inhibition Cantrell et al., 2007

Anthraquinone Plant extracts Oscillatoria perornata 63 nM Inhibits photosynthesis Schrader et al., 2000,
2003

Bacillamide Bacillus sp. (Jeong et al.,
2003)

M. aeruginosa,
Aphanizomenon gracile,
Anabaena circinalis,
Anabaenopsis circularis

29–160 μg mL−1 Morphological and
ultrastructural changes,
growth inhibition, reduction,
and collapse of gas;
vesicles, distortion of cell
shape

Churro et al., 2009

Caffeic acid (CA) Hydrilla verticillata,
Vallisneria spiralis

M. aeruginosa ∼5 mg l−1 Growth inhibition Gao et al., 2011

Chrysophanol Limonium myrianthum O. perornata 10 μg mL−1∗ Growth inhibition Cantrell et al., 2007

Cis-6-octadecenoic Myriophyllum spicatum Microcystis aeruginosa 3.3 ± 0.4 mg l−1 Growth inhibition Nakai et al., 2005

Cis-9-octadecenoic
acids

Myriophyllum spicatum Microcystis aeruginosa 1.6 ± 0.4 mg l−1 Growth inhibition Nakai et al., 2005

Dicyclohexanyl orizane Oryza sativa M. aeruginosa 100 μg l−1 (66–80%
inhibition)

Growth inhibition Park et al., 2009

Ellagic acid Myriophyllum spicatum M. aeruginosa 5.1 mg l−1 Produced free radicals,
growth inhibition

Nakai et al., 2000

Ethyl 2-methyl
acetoacetate (EMA)

Phragmites communis Microcystis aeruginosa 0.65 ± 0.13 mg l−1 Damage of cell membrane,
ion leakage, decreased
activity of antioxidants

Li and Hu, 2005

Eudesmin Haplophyllum sieversii Oscillatoria sp. – Growth inhibition Cantrell et al., 2005

Eugeniin Myriophyllum bradieme M. aeruginosa, Anabaena
flos-aquae

1.6 μM Growth inhibitory activity Saito et al., 1989

Ferulic acid (FA) Hydrilla verticillata,
Vallisneria spiralis

M. aeruginosa ∼130 mg l−1 Growth inhibition Gao et al., 2011

Flindersine Haplophyllum sieversii Oscillatoria sp. 15.9 μM Growth inhibition Cantrell et al., 2005

Gallic acid Myriophyllum spicatum M. aeruginosa 1.0 mg l−1 Produced free radicals,
growth inhibition

Nakai et al., 2000

Gramine Higher plant tannin
extracts (Robinson, 1967)

M. aeruginosa 0.5–2.1 mg l−1 Oxidative damage,
lipid-peroxidation

Hong et al., 2009

Haplamine Haplophyllum sieversii Oscillatoria sp. 1.8 μM Growth inhibition Cantrell et al., 2005

Harmane
(1-methyl–carboline)

Pseudomonas sp. K44-1 Anabaena cylindrical, A.
variabilis, Oscillatoria
agardhii, Anacystis
marina, Microcystis
aeruginosa, M. viridis

– Cell lysis Kodani et al., 2002

Isoalantolactone Inula helenium O. perornata 100 μg mL−1∗ Growth inhibition Cantrell et al., 2007

L-2-azetidinecarboxylic
acid (AZC)

Polygonatum odoratum M. aeruginosa, Anabaena
flos-aquae

1.6–6.3 μM (92%
inhibition)

Cell growth inhibition Kim et al., 2006

Nanaomycin A methyl
ester (NAME)

Streptomyces hebeiensis M. aeruginosa 2.97 mg l−1 Lytic activity, delay cell
division, enlarge cell size,
decreases in biomass,
esterase activity, and
chlorophyll-a content, lipid
peroxidation, damage of
cell membrane

Feng et al., 2013

(Continued)
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TABLE 2 | Continued

Allelochemicals Source Target cyanobacteria EC50 Mechanisms Reference

Nepodin Limonium myrianthum Oscillatoria perornata 100 μg mL−1∗ Growth inhibition Cantrell et al., 2007

Nonanoic acid Myriophyllum spicatum Microcystis aeruginosa 0.5 ± 0.3 mg l−1 Growth inhibition, loss of
plasma lemma integrity

Nakai et al., 2005

Norharmane
(β-carboline
9H-pyrido(3,4-b) indole)

Synechocystis aquatilis M. aeruginosa,
Oscillatoria limnetica

4.6–4.8 μg mL−1 Growth inhibition Mohamed, 2013

Phenolic compounds
(HHDP-di- and -tri-
galloylglucose)

Myriophyllum verticillatum Anabaena variabilis – Growth inhibition Bauer et al., 2009

Physcion Limonium myrianthum O. perornata >100 μg mL−1∗ Growth inhibition Cantrell et al., 2007

Prodigiosin Serratia marcescens M. aeruginosa 1.7–8.9 μg mL−1 Damage of cell membranes
due to strong lytic activity

Yang et al., 2013

Protocatechuic acid
(PA)

Hydrilla verticillata,
Vallisneria spiralis

M. aeruginosa ∼15 mg l−1 Growth inhibition Gao et al., 2011

Pyrogallol Myriophyllum spicatum M. aeruginosa 0.65 mg l−1 Growth inhibition, produced
radicals, oxidant damage

Nakai et al., 2000;
Shao et al., 2009

Salcolin A/B Barley straw (Hordeum
vulgare)

Microcystis sp. 6.02–
9.60 × 10−5 mol l−1

Intracellular ROS formation,
inhibit esterase activity,
leakages of cytoplasms

Xiao et al., 2014

Torachrysone Limonium myrianthum O. perornata 100 μg mL−1∗ Growth inhibition Cantrell et al., 2007

Tryptamine Natural/synthetic M. aeruginosa, A.
circinalis, Anabaenopsis
circularis, Leptolyngbya
sp., Aphanizomenon
gracile, Nodularia
spumigena

<4.15 μg mL−1 ROS production, lipid
peroxidation, irreversible
membrane damages

Churro et al., 2010

Vanillic acid (VA) Hydrilla verticillata,
Vallisneria spiralis

M. aeruginosa ∼60 mg l−1 Growth inhibition Gao et al., 2011

β-Ionone Algae and higher plants M. aeruginosa 21.23 ± 1.87 mg l−1 Decrease in pigment
content, thylakoids
distortion, damage of PS II
reaction center

Shao et al., 2011

β-sitosterol-β-D-
glucoside

Oryza sativa M. aeruginosa 100 μg l−1 (66–80%
inhibition)

Growth inhibition Park et al., 2009

∗Lowest-complete-inhibition concentration.

restoration of aquatic ecosystems. In order to minimize the
bloom boosting organic or inorganic nutrients coming from
common practices such as excessive use of fertilizers (e.g., NPK)
and detergents, prior wastewater treatment may be needed to
reduce the incidence of cyanobacterial blooms (Conley et al.,
2009; Paerl et al., 2011a; Jacquet et al., 2014). The modeling of
different water bodies at risk of toxic blooms may be a good
approach to develop a proactive algal bloom monitoring and
management strategies (Tyler et al., 2009; Coad et al., 2014).
Moreover, the fundamental research and quantitative ecological
awareness toward the bloom incidence can be a supportive tool
guiding large-scale water management against harmful bloom
incidence.

PUBLIC AWARENESS APPROACHES

Public environmental awareness (PEA) is a fundamental
approach for the attainment of sustainable environment (Xu
et al., 2013; Kirkpatrick et al., 2014). PEA about the incidence and
harmful effects of toxic cyanoblooms may be a dynamic approach

to eradicate and avoid the blooms and their toxic effects. The
edifying approaches will allow people to think about their
practices in their day-to-day life, such as unregulated disposal
of organic/inorganic domestic wastes in the water reservoir,
thereby enhancing the risks of bloom formation. As discussed
elsewhere, global climate change may potentially impact the
success of cyanobloom incidence. An emphasis on social practice
to minimize the bloom formation and intoxication can allow
intellectuals actualizing the significant development to control
the environmental pollution. A change in the PEA levels in
response to the increased incidence of environmental pollution is
indispensable for ensuring the effective environmental protection
and restoration (Xu et al., 2013). An increase in public awareness
regarding the environmental sustainability and ecosystem health
can inform the policy or decision makers to develop the
strategies or to set-up the environmental protection laws against
anthropogenic environmental pollution (such as direct disposal
of domestic or industrial waste in open water reservoir such
as rivers, ponds, lakes, and catchments). Moreover, various
means of environmental protection program should be launched
worldwide by the concerned government or non-government
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TABLE 3 | Biological control of some common cyanotoxins by different bacterial isolates.

Bacterial isolates Strains Microcystin variants Reference

Arthrobacter sp. C6, F7, F10, R1, R4, R6, R9 LR Manage et al., 2009; Lawton et al., 2011

Bacillus nanhaiencis K-W39 LR Zhang et al., 2015

Brevibacterium sp. F3 LR Manage et al., 2009; Lawton et al., 2011

Bacillus sp. AMRI-03, EMB LR, RR Alamri, 2010; Hu et al., 2012

Bordetella sp. MC-LTH1 LR, RR Yang et al., 2014a

Methylobacillus sp. J10 LR, RR Hu et al., 2009

Microbacterium sp. DC8 LR Ramani et al., 2012

Novosphingobium sp. THN1 LR Jiang et al., 2011

Ochrobactrum sp. FDT5 LR Jing et al., 2014

Pseudomonas aeruginosa – LR Lemes et al., 2015

Rhizobium gallicum DC7 LR Ramani et al., 2012

Rhodococcus sp. C1, C3 LR Manage et al., 2009; Lawton et al., 2011

Sphingomonas sp. MD-1 LR, RR, YR Saito et al., 2003

Sphingomonas sp. 7CY LR, RR, LY, LW, LF Ishii et al., 2004

Sphingopyxis sp. LH21 LR, LA Ho et al., 2007

Sphingopyxis sp. C-1 LR, RR Okano et al., 2009

Sphingopyxis sp. USTB-05 RR, YR Wang et al., 2010; Xu et al., 2015

Stenotrophomonas sp. EMS LR, RR Chen et al., 2010

Stenotrophomonas acidaminiphila MC-LTH2 LR, RR Yang et al., 2014b

organization (NGO) to spread the knowledge about different
environmental issues such as harmful cyanobloom incidence
(Mikami et al., 1995; Palmer et al., 1998; Li et al., 2008; Várkuti
et al., 2008; Xu et al., 2013).

Overall, little is known concerning the formation of
cyanoblooms and production of different variants of cyano-
toxin in diverse water bodies. Furthermore, each of these
strategies mentioned above has their own advantages and
limitations, and more extensive collaborative work is needed to
control or manage the occurrence of algal blooms worldwide.
Since eutrophication is considered as the most immediate
environmental consequence of cyanoblooms, the uncontrolled
disposal of organic/inorganic nutrients in the water reservoir
through agricultural runoff or through industrial and household
sewage water must be diminished or even forbidden. The
establishment of several dyes or chemical based industries are
the source of several blooms forming substances and therefore
the government law should strictly be implemented to sanitize
unwanted industrial effluents before reaching the water bodies.
Furthermore, the eutrophication of water reservoirs must be
regularly checked for an increased prevalence of toxin producers
mainly in the bloom sensitive areas of subtropical and temperate
climates. Severity on global warming is also an important trigger
that is likely to create toxic cyanoblooms, therefore a proper
environmental management toward increasing global climate
change is necessary for sustainability of the pollution-free aquatic
ecosystems.

CONCLUSION AND PERSPECTIVE

Cyanobacterial blooms are an increasing issue in both the waste-
water-treatment and drinking water systems. Eutrophication and

global climate change is the key factors for the occurrence of
cyanoblooms all over the world. Cyanoblooms and production
of several cyanotoxins in water bodies may reduce the
surface/drinking water quality leading to high health risk to
the organisms in aquatic ecosystems as well as wild/domestic
animals and humans. A number of cyanotoxins such as MCs,
nodularins, cylindrospermopsins, anatoxins, saxitoxins, and LPSs
have been recognized as the major environmental contaminants
in the immediate aquatic ecosystems. Control of cyanobloom
using the chemical approaches can be effective; however, some
algicidal/herbicides chemicals can cause secondary pollution
of aquatic ecosystems. Several mitigation strategies have been
tested and employed at laboratory levels; however, their
efficacy to remove the blooms has not been confirmed
under field environments. Establishment of effective mitigation
strategies such as chemical, biological as well as public
cognizance approach toward environmental awareness may
be the most realistic measure to overcome the worldwide
incidence of algal blooms and the attainment of a sustainable
environment. Some natural algicidal compounds are really
very effective to control the cyanoblooms; however, their
production and availability is still very limited. The cost-
effective synthesis of these biochemicals would be highly
valuable to control the cyanoblooms. Furthermore, several
cyanobacteria may become resistant toward certain chemicals.
The use of biocides or several different biological processes
against cyanoblooms may also affect other non-target aquatic
organisms. Hence, common ecotoxicological impacts should be
sensibly evaluated in the milieu of the lack of ecological health
risk assessment. Moreover, a combined policy should strictly
be regulated to diminish the bloom-boosting cause such as
massive eutrophication of aquatic ecosystems by anthropogenic
sources.
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