
REVIEW
published: 10 August 2015

doi: 10.3389/fnins.2015.00279

Frontiers in Neuroscience | www.frontiersin.org 1 August 2015 | Volume 9 | Article 279

Edited by:
Alfredo Meneses,

Center for Research and Advanced
Studies, Mexico

Reviewed by:
Giovanni Laviola,

Istituto Superiore di Sanità, Italy
Agnieszka Nikiforuk,

Institute of Pharmacology, Polish
Academy of Sciences, Poland

*Correspondence:
Alan L. Pehrson,

Lundbeck Research USA, Inc., 215
College Rd., Paramus,

NJ 07652, USA
apeh@lundbeck.com

†These authors have contributed
equally to this work.

Specialty section:
This article was submitted to

Neuropharmacology,
a section of the journal

Frontiers in Neuroscience

Received: 14 June 2015
Accepted: 23 July 2015

Published: 10 August 2015

Citation:
Li Y, Pehrson AL, Waller JA, Dale E,
Sanchez C and GulinelloM (2015) A

critical evaluation of the
activity-regulated

cytoskeleton-associated protein
(Arc/Arg3.1)’s putative role in

regulating dendritic plasticity, cognitive
processes, and mood in animal

models of depression.
Front. Neurosci. 9:279.

doi: 10.3389/fnins.2015.00279

A critical evaluation of the
activity-regulated
cytoskeleton-associated protein
(Arc/Arg3.1)’s putative role in
regulating dendritic plasticity,
cognitive processes, and mood in
animal models of depression
Yan Li 1†, Alan L. Pehrson1*†, Jessica A. Waller 1, Elena Dale 2, Connie Sanchez 1 and
Maria Gulinello 3

1 External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc., Paramus, NJ, USA, 2 Neuroinflammation
Disease Biology Unit, Lundbeck Research USA, Inc., Paramus, NJ, USA, 3 Behavioral Core Facility, Department of
Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA

Major depressive disorder (MDD) is primarily conceptualized as a mood disorder
but cognitive dysfunction is also prevalent, and may limit the daily function of
MDD patients. Current theories on MDD highlight disturbances in dendritic plasticity
in its pathophysiology, which could conceivably play a role in the production
of both MDD-related mood and cognitive symptoms. This paper attempts to
review the accumulated knowledge on the basic biology of the activity-regulated
cytoskeleton-associated protein (Arc or Arg3.1), its effects on neural plasticity, and
how these may be related to mood or cognitive dysfunction in animal models of
MDD. On a cellular level, Arc plays an important role in modulating dendritic spine
density and remodeling. Arc also has a close, bidirectional relationship with postsynaptic
glutamate neurotransmission, since it is stimulated by multiple glutamatergic receptor
mechanisms but alsomodulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptor internalization. The effects on AMPA receptor trafficking are likely
related to Arc’s ability to modulate phenomena such as long-term potentiation, long-term
depression, and synaptic scaling, each of which are important for maintaining proper
cognitive function. Chronic stress models of MDD in animals show suppressed Arc
expression in the frontal cortex but elevation in the amygdala. Interestingly, cognitive tasks
depending on the frontal cortex are generally impaired by chronic stress, while those
depending on the amygdala are enhanced, and antidepressant treatments stimulate
cortical Arc expression with a timeline that is reminiscent of the treatment efficacy lag
observed in the clinic or in preclinical models. However, pharmacological treatments that
stimulate regional Arc expression do not universally improve relevant cognitive functions,
and this highlights a need to further refine our understanding of Arc on a subcellular and
network level.
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Introduction

Cognitive dysfunction is a common aspect of central nervous
system diseases that has large implications for patients’ daily life
function and adds to the socio-economic burden of psychiatric
illness. Psychiatric illnesses such as major depressive disorder
(MDD) prominently feature disturbances in cognitive domains
such as executive function, memory, attention, and psychomotor
processing speed that predict functional outcomes (Jaeger et al.,
2006; McIntyre et al., 2013). On a theoretical level, proper
cognitive function allows for an organism to identify and adapt
to changing internal or external environmental demands, and
to accrete a repertoire of previously-successful strategies for
meeting those demands. Each of these functions require a
biological system that is capable of self-reorganization, and
thus the machinery governing cellular and dendritic plasticity
in the brain can be conceptualized as fundamental processes
underlying the biology of cognitive function. Importantly, in
addition to a relationship between neuroplasticity and cognitive
function, emerging hypotheses on the mechanistic basis for
mood dysfunction also prominently feature disturbances in
neuroplasticity (Pittenger and Duman, 2008).

In support of these ideas, there is evidence linking altered
neural plasticity to clinical populations. For example, MDD
patients have reduced hippocampal volume (Saylam et al., 2006;
Maller et al., 2007; Nifosì et al., 2010), which has been tied
to increased cellular density and reduced neuropil prominence
in postmortem tissue (Stockmeier et al., 2004; Cobb et al.,
2013). Greater reductions in hippocampal volume among MDD
patients are associated with greater illness duration (McKinnon
et al., 2009; Travis et al., 2014) and poorer clinical outcome
(Frodl et al., 2008; MacQueen et al., 2008). Importantly,
successful antidepressant treatment is associated with increased
hippocampal volume (Frodl et al., 2008; Schermuly et al., 2011;
Tendolkar et al., 2013). Altered hippocampal volumes among
MDD patients have been associated with reduced performance
on tests of executive function (Schermuly et al., 2011), and
memory (Travis et al., 2014; Young et al., 2015). But altered
brain volume is not limited to the hippocampus in MDD
patients. A recent meta-analysis confirmed that reduced volumes
are present in the prefrontal cortex, orbitofrontal cortex and
cingulate cortex of depressed patients (Arnone et al., 2012), and
there is also evidence for increased amygdala volume in some
MDD populations (Saleh et al., 2012).

These volumetric data from human depressed patients are
mirrored in non-clinical animal models of depression, which
have shown reductions in hippocampal volume after chronic
exposure to stressors (Lee et al., 2009) or glucocorticoids (Sousa
et al., 1998). Interestingly, in these animal models, the consensus
based on unbiased stereological histology data appears to be
that the reduced hippocampal volumes are not due to a reduced
number of cells, but are rather caused by changes in the neuropil
of the affected regions (Müller et al., 2001; Czéh and Lucassen,
2007; Tata and Anderson, 2010). Specifically, chronic exposure to
stress or the glucocorticoid corticosterone significantly reduces
the length and complexity of apical dendrites in the hippocampus
(Woolley et al., 1990; Sousa et al., 2000) or in the prelimbic

region of the frontal cortex (Hains et al., 2009). Multiple reports
have suggested that these depression models are associated with
reductions in the density of dendritic spines or the number of
synapses in the hippocampus (Sandi et al., 2003; Tata et al., 2006;
Hajszan et al., 2009; Vestergaard-Poulsen et al., 2011) or in the
frontal cortex (Hains et al., 2009; Radley et al., 2013). Importantly,
these dendritic changes have been associated with impaired
cognitive performance (Hains et al., 2009). Based on this line of
reasoning, the machinery governing neuronal plasticity can be
viewed as candidate targets for interventions aimed at correcting
not only more traditional psychiatric symptoms such as mood
dysfunction, but also disturbances in cognitive function.

Immediate early genes (IEGs) may represent an entry into
understanding the relationship between neuronal plasticity and
disturbances in mood or cognitive function. IEGs can be
separated into two broad classes—transcription factors, which
regulate the expression of other gene transcripts, and effector
genes, which can directly modulate cellular processes other
than gene transcription (Clayton, 2000). Perhaps the majority
of the accumulated knowledge on the relationship between
cognitive function and IEG biology has focused on transcription
factors such as c-fos, c-jun, or egr-1. However, more recently
an effector IEG known as the activity-related cytoskeleton-
associated protein (referred to in this paper as Arc but known
alternately as Arg3.1) has garnered an increasing level of interest
from the research community, due to its putative relationship
to behavioral function, synaptic transmission and dendritic
plasticity. This paper seeks to review the accumulated knowledge
on the role of Arc in terms of its relationship to neuronal
plasticity and cognitive function, particularly as it may relate to
MDD.

Arc Expression and Its Molecular
Functions in the Cell

In this section, we will review information on the basic biology of
Arc, its relationship to inter- and intra-cellular signaling, growth
factors, and its relationship to long term potentiation (LTP), long
term depression (LTD), and synaptic scaling.

The Molecular Biology and Cellular Actions of
Arc—A Brief Overview
The IEG Arc encodes a protein that consists of a coiled-coil
domain in the N-terminal region, as well as endocytic protein-
binding domains and homology to the cytoskeletal protein
spectrin in its C-terminus (Bramham et al., 2010). The spectrin
homology domain led to studies examining the role of Arc
in regulating the actin cytoskeleton, wherein co-sedimentation
analyses revealed an association of Arc with F-actin (Lyford
et al., 1995), microtubules, and microtubule-associated protein
2 (MAP2) (Fujimoto et al., 2004). Further studies of Arc’s
relationship to the actin cytoskeleton revealed that Arc maintains
phosphorylation of the actin depolymerization factor cofilin.
Therefore, Arc expression acts to preserve the inactive form of
cofilin and favors increased F-actin formation (Messaoudi et al.,
2007).
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Through this close association with F-actin, Arc induces an
increase in density of spines and in the proportion of thin and
filopodia-like protrusions in hippocampal neurons (Peebles et al.,
2010). Expression of mutant Arc unable to interact with the
endocytic machinery blocked these effects on spine density and
morphology. These in vitro findings were corroborated in the
hippocampal CA1 and dentate gyrus of Arc knockout (KO)mice,
where a reduction in spine density and decreased abundance of
thin spines (Peebles et al., 2010) was observed by comparison
to wild type mice. Moreover, Arc KO mice had a concomitant
increase in mature, mushroom-shaped spines (Peebles et al.,
2010), which could indicate that Arc has a negative influence on
spine maturation, although this idea is speculative and should
be viewed cautiously. Additionally, aberrant Arc expression in
the hippocampus in response to chronic N-methyl-D-aspartate
(NMDA) receptor hypofunction decreased spine density (Balu
and Coyle, 2014). Taken together, these data support a role for
Arc in regulating dendritic spine density and morphology.

In addition to its association with F-actin, Arc localizes to
postsynaptic density (PSD) 95 and NMDA receptor complexes
in the PSD (Husi et al., 2000; Donai et al., 2003; Fujimoto
et al., 2004). At synaptic sites, Arc directly interacts with
an inactive form of calcium/calmodulin-dependent protein
kinase IIβ (CaMKIIβ), and this interaction targets Arc to
actin-rich dendritic spines (Okuno et al., 2012). In addition
to its association with glutamatergic NMDA receptors, Arc
has also been tied to trafficking of the α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptor, which is
thought to be associated with Arc’s endocytic protein-binding
domains (Chowdhury et al., 2006; Bramham et al., 2010). These
data suggest that Arc expression is closely associated with
glutamatergic neurotransmission.

Finally, Arc is believed to have functional actions in the
cellular nucleus (Ramirez-Amaya et al., 2013), although this
aspect of Arc expression is less well-studied than its dendritic
functions. Translocation of Arc to the nucleus may regulate
transcription and homeostatic plasticity (Korb et al., 2013) by
binding to transcriptional regulation sites (Bloomer et al., 2007;
Korb et al., 2013), and may be related to Arc modulation of
AMPA receptor trafficking (described below).

Thus, Arc expression appears to have a complex set of actions
that can regulate the actin cytoskeleton in dendritic regions as
well as nuclear transcription factor actions, both of which may
be related to glutamatergic neurotransmission. In the following
section, we will discuss the relationship between Arc expression
and glutamate neurotransmission in further detail.

The Inter-relationship of Arc Expression and
Glutamate Neurotransmission
The postsynaptic density within the glutamatergic tripartite
synapse is associated with multiple interdependent ionotropic
and metabotropic glutamate receptor targets that work together
to facilitate proper synaptic transmission. This includes the
NMDA receptor, which is often conceived as a synaptic
coincidence detector (Cull-Candy and Leszkiewicz, 2004), as
well as the AMPA/kainate and metabotropic glutamate 5
(mGlu5) receptors, which are key regulators of dendritic

membrane depolarization. These glutamate receptor systems
are inter-related on multiple levels (see Figure 1). Each of
these glutamatergic receptors are thought to be co-localized
in postsynaptic excitatory synapses (reviewed in Takumi
et al., 1999). Additionally, each of these receptor systems
can independently lead to increases in intracellular Ca2+
concentrations, either via direct opening of Ca2+ channels in
the case of NMDA and AMPA/kainate receptors (Pankratov and
Lalo, 2014), or via activation of Gq/11 in the case of mGlu5
receptors (Prothero et al., 1998). Importantly, NMDA receptor
function depends critically on activation of AMPA and mGlu5
receptor activation for its function, given that it is both ligand
and voltage gated (Foster and Wong, 1987).

Given the interdependence of these receptor systems and
the close subcellular localization between Arc and glutamate
receptor targets, it should not be surprising that neuronal
activation mediated by metabotropic and ionotropic glutamate
receptor signaling play central roles in regulating Arc localization
throughout the dendritic tree (summarized in Figure 1). For
example, following selective activation of excitatory mGlu5
receptors in striatal neuron cultures, there is an increase in Arc
mRNA levels and immunoreactivity in cell bodies and dendrites
at 1 h post stimulation (Kumar et al., 2012). Importantly,
the increase in Arc mRNA expression was inhibited by the
administration of calcium channel blockers (Kumar et al., 2012).
Moreover, this increased Arc immunoreactivity is dependent
on kinases such as CaMKII and ERK, among others, all of
which are activated in response to increased Ca2+ levels (Kumar
et al., 2012). Non-selective stimulation of neuronal cultures with
glutamate had the same effect on Arc, and this glutamate-induced
elevation in Arc expression was blocked with the mGlu5 receptor
negative allosteric modulator MPEP (Kumar et al., 2012).

Further support for a relationship between mGlu5 receptor
activation and Arc expression can be found in mice lacking the
translational repressor Fragile-X mental retardation protein 1
(FMRP), which display exaggerated mGlu receptor-dependent
long-term depression (LTD) and excessive protein synthesis.
Arc is a target of FMRP, and Fmr1 KO neurons express
elevated dendritic basal levels of Arc protein, similar to that
seen in response to de-phosphorylation of FMRP (Niere et al.,
2012). Transduction of a phospho-mimetic mutant of FMRP in
Fmr1 KO hippocampal slices blocks the exaggerated LTD and
suppresses basal levels of dendritic Arc (Niere et al., 2012). Thus,
following mGlu receptor-LTD, regulation of FMRP is critical
for normal protein synthesis and subsequent Arc translation
in dendrites where Arc expression is normally suppressed for
maintenance of synaptic plasticity and tagging of active synapses
(Niere et al., 2012).

Furthermore, NMDA receptor hypofunction in mice deficient
in serine racemase (SR), the enzyme that converts L-serine
to the NMDA receptor co-agonist D-serine, leads to reduced
Arc expression in the hippocampus (Balu and Coyle, 2014).
These decreased Arc levels are partially reversed with D-
serine treatment (Balu and Coyle, 2014). Conversely, acute
D-cycloserine treatment to partially activate NMDA receptors
at a dose corresponding to enhanced memory acquisition
and consolidation promotes increased Arc protein levels in
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FIGURE 1 | Intracellular causes and effects of Arc expression in
the central nervous system. Arc expression can be modulated by
several converging signaling pathways. Receptor mechanisms that drive
up intracellular Ca2+ signaling and its downstream sequelae (e.g.,
AMPA receptors, NMDA receptors, group I metabotropic glutamate
receptors, BDNF receptor TrkB) tend to activate Arc expression. Other
intracellular signaling cascades related to cyclic AMP may also be

capable of stimulating Arc expression, while receptor mechanisms that
increase intracellular K+ may inhibit Arc expression, although the
precise mechanisms driving these effects are not known. Once
expressed, Arc plays several roles in modulating neural plasticity,
affecting dendritic spine density and remodeling, AMPA receptor surface
expression, and processes such as LTP, LTD, and homeostatic
plasticity.

the dorsal hippocampus 1 h following administration. These
elevations in Arc expression were associated with greater
activation in CA1 pyramidal neurons, measured in this case
as a decreased after-hyperpolarization duration (Donzis and
Thompson, 2014). Furthermore, hippocampal Arc expression
induced by electroconvulsive shock followed by high frequency
stimulation of the perforant pathway could be blocked by local
application of either NMDA or AMPA receptor antagonists
(Steward and Worley, 2001). In addition, there is a NMDA
receptor-dependent increase in Arc mRNA and protein levels in
the CA1 region of the hippocampus following a fear learning
paradigm in novel contextual environments (Tayler et al., 2011).
Thus, it appears that Arc expression is critically dependent
on the function of stimulatory postsynaptic metabotropic and
ionotropic glutamate receptors.

However, the relationship between glutamate
neurotransmission and Arc expression is not unidirectional.
There are several lines of evidence indicating that Arc expression
can also modulate the efficacy of postsynaptic glutamate
neurotransmission. For example, following mGlu5 receptor
activation, Arc acts downstream of the myocyte-enhancer factor
2 (MEF2) to decrease excitatory postsynaptic potentials (EPSPs;
Wilkerson et al., 2014). In cultures from Arc KO mice, the
inhibitory effect of MEF2 on evoked EPSCs is abrogated, and
Arc overexpression in these cultures restores the decreased
EPSCs (Wilkerson et al., 2014). Thus, it appears that increase
of Arc expression can reduce the postsynaptic consequences of

mGlu5 receptor stimulation. This idea is further supported by
evidence that increased synaptic Arc localization in one study
was inversely correlated with surface GluA1 expression (Okuno
et al., 2012).

Moreover, it appears that Arc’s nuclear expression mentioned
above may play an important role in modulating glutamate
receptor expression, and has a different time course than
its cytoplasmic effects. While cytoplasmic or dendritic Arc
expression happens over a relatively short time frame, transport
to the nucleus increases progressively after neuronal stimulation.
Following depolarization with the GABAA receptor antagonist
bicuculline, there is a large increase in expression of nuclear Arc
that is maximal 8 h after activation (Korb et al., 2013) and is
blockedwith inhibitors of theMEK-ERK pathway. Early evidence
suggests that nuclear, not cytoplasmic, Arc expression promotes
a decrease in surface GluA1 expression and corresponding
decrease in mEPSC amplitude and synaptic strength, given that
this effect is impaired by preventing nuclear transport of Arc
(Korb et al., 2013). Moreover, in the nucleus, Arc induction
associates with promyelocytic leukemia nuclear bodies (PMLs;
Korb et al., 2013). This association with PMLs is thought to
mediate Arc’s effects on GluA1, based on evidence that disrupting
PML expression blocks Arc’s ability to decrease surface GluA1
expression, while ectopic PML expression mimics the effect of
Arc on GluA1 (Korb et al., 2013). Thus, over longer periods
following neuronal activation, in contrast to brief time points
that promote cytoplasmic Arc expression, there is an increase in
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nuclear Arc that acts to modulate synaptic scaling and promote
homeostatic plasticity (described in detail below).

Taken together, these data suggest that Arc expression has a
dual role in the regulation of synaptic strength, with a transient
effect involved in creating new dendritic spines followed by a
slower, longer lasting role that tends to reduce the postsynaptic
consequences of glutamatergic neurotransmission.

The Roles of Arc in LTP and LTD Formation and
Homeostatic Plasticity
Several forms of synaptic plasticity, such as long-term
potentiation (LTP) and long-term depression (LTD) are
thought to support memory formation and learning (Turrigiano
and Nelson, 2000; Escobar and Derrick, 2007). This also includes
the more recently discovered homeostatic plasticity (also known
as synaptic scaling), a phenomenon which describes the ability
of neurons to adjust the relative strength of their synapses within
a range that allows for further increases or decreases in synaptic
transmission (Turrigiano and Nelson, 2000; Davis, 2006).
Notably, Arc is involved in the regulation of all of these types of
plasticity, especially in the hippocampus and cortex (reviewed
in Tzingounis and Nicoll, 2006; Bramham et al., 2010; Shepherd
and Bear, 2011; Steward et al., 2015). In 2000, Guzowski et al.
first showed that infusion of Arc antisense oligonucleotides in
the hippocampus impairs the maintenance, but not induction of
LTP in the dentate gyrus (Guzowski et al., 2000). Consistent with
these electrophysiology results, rats infused with Arc antisense
oligonucleotides had deficits in memory consolidation, but had
normal memory acquisition in a spatial water maze (Guzowski
et al., 2000). These findings were confirmed by Messaoudi et al.
(2007) who showed that Arc mRNA is upregulated during
hippocampal LTP (Messaoudi et al., 2007). Infusions of Arc
antisense oligonucleotides 2 h after LTP induction disrupted
changes in the actin cytoskeleton and inhibited LTP (Messaoudi
et al., 2007). In addition, Arc knockout (KO) mice exhibit deficits
in the late phase of LTP (Plath et al., 2006), although the early
phase of LTP is enhanced in these animals (Plath et al., 2006).
This effect may be due to deficits in homeostatic plasticity that
might leave synapses in a constitutively more plastic state and
thus increase short-term plasticity (Shepherd and Bear, 2011).

Arc also plays a role in the regulation of the activity-dependent
depression of synaptic transmission. In addition to deficits in
LTP, Arc KO mice have impaired hippocampal LTD induced by
the stimulation of NMDA or metabotropic glutamate receptors
(Plath et al., 2006; Park et al., 2008). Moreover, impairment of Arc
expression with antisense oligonucleotides blocks the late phase
of mGlu receptor-dependent LTD (mGluR-LTD; Waung et al.,
2008). Finally, Arc induced by the exposure of animals to novelty
makes hippocampal neurons more susceptible to mGluR-LTD
(Jakkamsetti et al., 2013).

LTD requires rapid protein synthesis and internalization of
surface glutamate receptors (Man et al., 2000; Snyder et al.,
2001; Waung et al., 2008). As discussed above, Arc plays a role
in internalizing AMPA receptors by interacting with dynamin
and endophilin 2/3 (Chowdhury et al., 2006). Accordingly,
cultured neurons from Arc knockout mice have increased AMPA
receptor surface expression, increased spontaneous glutamate
transmission and exhibit a decreased rate of AMPA receptor

endocytosis (Shepherd et al., 2006). In contrast, neurons
overexpressing EGFP-labeled Arc transgene in organotypic
hippocampal brain slices have reduced AMPA receptor surface
expression and smaller AMPA receptor currents, but regular
NMDA receptor currents (Rial Verde et al., 2006). Furthermore,
synthesis of Arc during LTD increases endocytosis of AMPA
receptors (Waung et al., 2008). Taken together, these studies
provide strong evidence that Arc decreases surface expression of
AMPA receptors. However, these results should be interpreted
with caution as they were obtained with cultured neurons or
cultured brain slices taken from neonatal animals and might not
be translatable to the adult in vivo conditions. For instance, in
acute hippocampal slices prepared from older Arc KOmice, there
are no deficits in AMPA receptor-dependent basal glutamate
transmission (Plath et al., 2006). There is also no rundown of
AMPA receptor responses in the dentate gyrus of anesthetized
rats after induction of Arc with electroconvulsive shock (Steward
et al., 2015). Therefore, alternative signaling pathways involved
in AMPA receptor trafficking might exist in vivo that are able to
compensate the effect of Arc on AMPA receptor endocytosis.

In addition to its role in LTP and LTD, Arc is involved
in homeostatic plasticity (Rial Verde et al., 2006; Shepherd
et al., 2006; Wang et al., 2006; Shepherd and Bear, 2011).
Current theory suggests that this type of plasticity is needed to
counteract possible over-excitation or silence of synapses due
to global changes in network activity and/or Hebbian plasticity
(Davis, 2006). In cortical or hippocampal neuronal cultures,
prolonged blockade of neuronal activity with the sodium channel
blocker tetrotoxin (TTX) leads to widespread enhancement of
spontaneous glutamatergic transmission (Turrigiano et al., 1998;
Shepherd et al., 2006). Interestingly, treatment with TTX down
regulates Arc protein levels in these neurons (Shepherd et al.,
2006). Moreover, Arc overexpression is able to block the TTX-
induced up regulation of synaptic transmission (Shepherd et al.,
2006). Synaptic upscaling in response to TTX is also blocked in
cultured neurons from Arc KO mice (Shepherd et al., 2006).

Thus, Arc is involved in several forms of synaptic plasticity,
including LTP, LTD and homeostatic plasticity, that rely on
remodeling of dendritic spines and changes in AMPA receptor
trafficking. Downstream signaling cascades involved in the
distinct effects of Arc in each form of synaptic plasticity, and
especially the ones engaged during LTP, still remain to be
elucidated.

The Relationship between Arc, BDNF, and LTP
In addition to its relationship to glutamate neurotransmission,
Arc functions seem to be closely related to those of growth
factors, such as brain-derived neurotrophic factor (BDNF).
BDNF signaling is thought to be mediated through the
tropomyosin-receptor kinase (Trk) B receptor (Soppet et al.,
1991), and can have multiple effects on intracellular signaling
cascades including increases in intracellular Ca2+ concentrations
(Berninger et al., 1993; Marsh and Palfrey, 1996; Nakata
and Nakamura, 2007). Thus, BDNF-TrkB signaling seems to
share some intracellular Ca2+-mediated signaling pathways with
excitatory glutamatergic receptors such as AMPA, NMDA, and
group I mGlu receptors.
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Given this information, it is perhaps not surprising to find
that BDNF can increase Arc expression, a phenomenon that
has been observed in cultured neurons (Yasuda et al., 2007), in
synaptoneurosome preparations (Yin et al., 2002), or in vivo in
the cortex (Benekareddy et al., 2013) or dentate gyrus (Wibrand
et al., 2006) of rodents. But the close relationship between BDNF-
TrkB signaling andArc does not stop there. Recent empirical data
has demonstrated that intracranial injections of BDNF cause a
rapid increase in the surface expression of AMPA receptors (Li
and Wolf, 2011; Reimers et al., 2014), and over longer periods of
time mediates a reduction in AMPA receptor surface expression
(Reimers et al., 2014) that resembles Arc’s role in synaptic
scaling. Furthermore, BDNF appears to be closely related to LTP,
given evidence that in vivo BDNF infusions can induce LTP
(Messaoudi et al., 1998), that LTP is impaired in BDNF KO mice
(Patterson et al., 1996), and that electrical stimulation patterns
capable of inducing LTP also stimulate BDNF release (Patterson
et al., 1992). Thus, not only is Arc inducible by BDNF, but they
appear to modulate similar aspects of postsynaptic glutamate
neurotransmission.

Furthermore, recent evidence suggests that synaptic
consolidation at excitatory medial perforant path-granule
cell synapses requires BDNF signaling and Arc induction
(Bramham, 2007). By modulating the spatial and temporal
translation of newly induced Arc protein and constitutively
expressed Arc mRNA in neuronal dendrites, BDNF may
effectively control the window of synaptic consolidation (Soulé
et al., 2006). This notion is supported by the observation
that Arc-dependent synaptic consolidation in dentate gyrus is
activated in response to brief local infusion of BDNF in rats
(Messaoudi et al., 2007). Consistent with the related molecular
mechanism, recovery of memory acquisition impairment in
cholinergic lesioned rats was accompanied by normalization of
Arc and BDNF levels in the hippocampus (Gil-Bea et al., 2011).
These findings support the idea that Arc plays a role in BDNF-
induced neuroplasticity, as well as some aspects of cognitive
function.

Interestingly, there is also evidence supporting a role for
BDNF in mood disorder pathophysiology. For example, there
is substantial evidence that BDNF and TrkB receptor levels
are reduced in rodent models of MDD induced by chronic
stress (Smith et al., 1995; Ueyama et al., 1997). Additionally,
antidepressant treatments increase BDNF levels, whether in
rodent models of MDD, or in depressed patients (Chen et al.,
2001; Duman and Monteggia, 2006; Kozisek et al., 2008; Autry
et al., 2011). Therefore, given the apparently close relationship
between Arc and BDNF, it is plausible to expect that Arc
expression may also be altered in depression, and respond to
antidepressant treatments. Thus, in the following section we
will review data on the relationship between stress and Arc
expression, and behavioral measurements of cognitive function
or mood.

Arc in MDD-related Animal Models

Stress is considered a major contributing factor in MDD,
primarily based on consistent evidence that high levels of stress

confer a greater risk for developing MDD (e.g., Wurtman, 2005;
Melchior et al., 2007; Sheets and Craighead, 2014). As a result,
most rodent models of MDD prominently feature stress as a
method of inducing depression-like changes in behavior or CNS
biology. Given the putative relationship between MDD, altered
neuroplasticity and Arc expression, it seems logical to examine
how Arc expression is altered in stress models and how these
alterations may be related to the pathology underlying MDD or
to cognitive function.

Stress Effects on Arc Expression
Although modern theory typically emphasizes a role for chronic
stress in the development of MDD, the majority of animal
studies that have examined the relationship of stress to Arc
expression have used acute stressors, and further have tended
to focus on the frontal cortex. By far the most common
stressor used in this literature has been acute restraint stress,
and although there is substantial variation in the specific
methods, there is a consensus that acute restraint stress induces
a significant increase in Arc gene or protein expression in the
frontal cortex (see Table 1; Mikkelsen and Larsen, 2006; Molteni
et al., 2010; Drouet et al., 2015), and more specifically in the
prelimbic, infralimbic (Ons et al., 2004, 2010; Trnecková et al.,
2007), and anterior cingulate PFC subregions (Ons et al., 2004,
2010). Moreover, this phenomenon appears to be mediated by
glucocorticoid receptors (GRs), given that it does not occur
in GR knockout mice (Molteni et al., 2010). Furthermore,
the acute stress induced increase in Arc does not appear to
be selective to acute restraint stress, as acute predator scent
stress also significantly upregulated Arc expression in the frontal
cortex and its subregions (Schiltz et al., 2007; Kozlovsky et al.,
2008).

Importantly, Yuen et al. (2009), demonstrated that acute
stressors of various types including restraint stress induced
a significant increase in AMPA receptor expression that was
associated with increases in cortical AMPA and NMDA receptor-
dependent EPSCs. This increase lasted for at least 24 h and
was mediated via glucocorticoid receptors (GRs) in cortical
pyramidal cells. The acute stress-induced increases in AMPA
receptor-mediated EPSCs has been replicated by the same group
several times (Yuen et al., 2011, 2012), and in addition the
same research group observed increases in the firing rate of PFC
pyramidal neurons after acute stress (Yuen et al., 2013). Thus,
it seems clear that acute stress is associated with an increase
in glutamatergic neurotransmission. Given the relationship
between glutamate receptor activation andArc expression, as well
as data suggesting that stress-induced Arc expression depends
on GRs, it is likely that the increase in Arc expression observed
in the frontal cortex is secondary to a GR-mediated increase in
glutamate neurotransmission.

In addition to acute stress-induced increases in PFC Arc
expression, there appears to be a consensus that acute stress up-
regulates Arc expression in the medial amygdala (Ons et al., 2004,
2010; Trnecková et al., 2007). However, within the hippocampal
formation, data on the effects of acute stress on Arc expression
are equivocal, with some research groups showing increases
(Kozlovsky et al., 2008; Molteni et al., 2010), and others showing
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TABLE 1 | Stress effects on Arc expression.

Species Sex Stressor Arc Brain regions References

Rat M 30min restraint stress Increased PL, IL, MA Trnecková et al., 2007

Rat M 30min restraint stress Increased mPFC Mikkelsen and Larsen, 2006

Rat M 30min restraint stress Increased CC, PL, IL, PIR, LS, MA Ons et al., 2004

Rat M 1h immobilization stress Increased CC, PL, IL, PIR, LS, MA Ons et al., 2010

Rat M 1h restraint stress/10min open field Increased PFC Drouet et al., 2015

Mouse M 1h restraint stress Increased FC, HC Molteni et al., 2010

Rat M 1h restraint stress Increased PL, IL, MA Trnecková et al., 2007

Rat M 2h restraint stress Increased PL, IL Trnecková et al., 2007

Rat M 2h restraint stress Increased Cx Benekareddy et al., 2013

Rat M 2h restraint stress No effect CA1, CA3, DG Benekareddy et al., 2013

Rat M 4h restraint stress Increased PL, IL Trnecková et al., 2007

Rat M acute predator scent stress: 30min post stress Increased FC, CA1 Kozlovsky et al., 2008

Rat M acute predator scent stress: 7 days post stress Increased FC, CA1, CA3, DG Kozlovsky et al., 2008

Rat M acute predator stress Increased PL, IL, VO, LO Schiltz et al., 2007

Rat M Chronic corticosterone po (50μg/mL 14 days, 6 days titrate
off) + washout (2–3 weeks)

Increased LA Monsey et al., 2014

Mouse M Chronic unpredictable stress 3 weeks Increased HC Boulle et al., 2014

Mouse M Chronic mild stress Reduced FC, CC, CA1 Elizalde et al., 2010

Rat M 11 days 1 h immobilization stress Reduced CC, PL, IL Ons et al., 2010

The available data generally suggests that acute stress enhances Arc expression in a variety of brain regions, while chronic stress has more complex and regionally-dependent effects
on Arc expression. CA1, Cornu Ammonis area 1; CA3, Cornu Ammonis area 3; CC, cingulate cortex; Cx, Cortex; DG, dentate gyrus; FC, frontal cortex; HC, hippocampus; IL, infralimbic
cortex; LA, lateral amygdala; LO, lateral orbital cortex; LS, lateral septum; MA, medial amygdala; mPFC, medial prefrontal cortex; PFC, prefrontal cortex; PIR, piriform cortex; PL, prelimbic
cortex; VO, ventral orbital cortex.

constitutive hippocampal Arc expression, but no stress-induced
changes (Ons et al., 2004, 2010).

In the context of chronic or repeated stress administration,
there are far fewer studies of Arc expression (Table 1). Those
that are available suggest that Arc expression in the frontal cortex
is reduced after repeated stress (Elizalde et al., 2010; Ons et al.,
2010), increased in the lateral (Monsey et al., 2014) and medial
amygdala (Ons et al., 2010), and increased in the lateral septum
(Ons et al., 2010). We only identified two studies that examined
the effects of chronic stress on hippocampal Arc expression, and
once again the results are equivocal, with one study showing a
significant increase (Boulle et al., 2014) and another showing a
significant decrease (Elizalde et al., 2010).

In general, more replications of these results are needed in
order to understand how chronic stress alters this aspect of
neuroplasticity. However, based on the available data there are
some early trends that seem to be present. Specifically, Arc
expression in the PFC appears to be stimulated by acute stress but
inhibited by chronic stress, while Arc expression in the amygdala
seems to be stimulated by stress regardless of its chronicity.
Importantly, there is no clear trend in terms of how either acute
or chronic stress alters Arc expression in the hippocampus. These
data may be particularly interesting from the perspective that
humanMDD populations have reduced cortical volume (Arnone
et al., 2012) and may also have increased volume in the amygdala
(Saleh et al., 2012), which on the surface seems to mirror the
regional effects chronic stress has on Arc expression.

Another important trend seems to be that stress-induced
changes in Arc expression mirror changes in glutamate

neurotransmission. Within the cortex, acute stress was associated
with an increase in Arc expression, as well as increases
in AMPA receptor expression, AMPA-mediated EPSCs and
pyramidal neuron firing. However, chronic stress appears to
induce an opposite response. Yuen et al. (2012) demonstrated
that repeated stressors significantly reduce AMPA-mediated
EPSCs in cortical pyramidal neurons and significantly reduced
the surface expression of AMPA receptors. Additionally, Yuen
et al. (2013) demonstrated that repeated stress significantly
reduced the firing rate of cortical pyramidal neurons. These
reductions in glutamate neurotransmission could provide an
explanation for the lack of Arc induction in the cortex by chronic
stressors. However, it is important to note the possibility that
Arc itself may play a role in some of the reduced glutamate
neurotransmission induced by repeated or chronic stressors.
Repeated stimulation of Arc expression, particularly within the
nuclear cellular compartment, could theoretically play a role in
the reduced surface AMPA receptor expression, reduced AMPA-
mediated EPSCs, and reduced pyramidal cell firing observed
after chronic stress. Thus, Arc-dependent AMPA trafficking may
represent an example of a normal synaptic plasticity mechanism
that becomes maladaptive after chronic stress, although it is
important to note that this idea has yet to be empirically
tested.

Stress Effects on Mood
The relationship between stress and development of mood
disorders is complex. While there is sufficient evidence
suggesting a link between stressful life events and depression in
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patients (Brown et al., 1987; Strauss et al., 2011; Tao et al., 2011;
Baarendse and Vanderschuren, 2012), it is difficult to establish a
causal relationship. Some studies support an alternative theory,
that events are perceived to be stressful by depressed patients
(Liu and Alloy, 2010; Hamilton et al., 2013). In rodent models,
chronic stressmanipulations (such as chronicmild stress, chronic
social stress, and repeated single stress) more reliably induce
depression-like behavior (increased immobility in forced swim
test or tail suspension test, and reduced preference for sweetened
water-anhedonia), at least in a subset of animals. Yet some studies
report no change in depression-like behavior after applying
chronic stressors. On the other hand, acute stresses are less
effective in inducing depression-like behavior in rodents (for
more in-depth discussion, see reviews Anisman and Matheson,
2005; Sickmann et al., 2014). As chronic stress induces imbalance
of Arc expression between cortex and amygdala (as discussed in

previous section), these rodent behavioral readouts are consistent
with the hypothesis that dysregulation of Arc or neuroplasticity
is involved in mood disorders.

Stress Effects on Cognitive Function
Given the putative relationship between Arc expression and
neuroplasticity, it seems interesting to investigate how acute and
chronic stressors alter plasticity-dependent forms of cognitive
function, such as learning and memory. Unfortunately, there
is a substantial mismatch between the primary methods used
to investigate stress-induced changes in Arc expression and
those used to investigate stress-induced changes in cognitive
function. For example, while most labs have used acute stressors
to investigate Arc function, the majority of labs focused on
stress-induced changes in cognitive function have used chronic
stressors (Table 2). Additionally, while the hippocampus has

TABLE 2 | Stress effects on cognitive function.

Species Sex Stressor Task Effect References

Rat M 1 or 4 h restraint stress NOR Impairment Vargas-Lopez et al., 2015

Mouse M 1.5 h restraint stress NOR Impairment Guercio et al., 2014

Rat M 20min restraint stress MWM Impairment Kasar et al., 2009

Rat M 30min restraint stress acute MWM Improvement Zheng et al., 2007

Rat M 3h restraint before water maze probe trial MWM Impairment Buechel et al., 2014

Rat M 30min acute stress AST Improvement Thai et al., 2013

Rat M 2.5 h restraint stress SA Impairment Amin et al., 2014

Rat M 2h restraint stress FCO Improvement Cordero et al., 2003

Rat M 6h restraint stress for 7 days NOR Impairment Bowman et al., 2009

Rat M 1h restraint stress for 10 days NOP Impairment Gomez et al., 2012

Rat M 6h restraint stress for 14 days NOP Impairment Park et al., 2015

Rat F 6 h restraint stress for 7 days NOP Improvement Bowman et al., 2009

Rat M 6h restraint stress 7 days NOR Impairment Bowman et al., 2009

Rat M 6h restraint stress 13 days RAM Improvement Bowman et al., 2009

Rat F 6 h restraint stress 21 days RAM Improvement Bowman et al., 2009

Rat M 6h restraint stress 21 days RAM Impairment Bowman et al., 2009

Rat F Chronic unpredictable restraint 21 days RAWM No effect Ortiz et al., 2015

Rat M Chronic unpredictable restraint 21 days RAWM Impairment Ortiz et al., 2015

Rat M 5mg/kg s.c. corticosterone 21 days MWM Impairment Trofimiuk and Braszko, 2015

Mouse M 8h restraint stress 21 days MWM Impairment Tian et al., 2013

Rat M 6h restraint for 21 days MWM Impairment Kasar et al., 2009

Mouse M 2h restraint stress daily for 8 weeks MWM Impairment Huang et al., 2015

Mouse M Chronic unpredictable stress 28 days MWM Impairment Rinwa and Kumar, 2014

Mouse M chronic unpredictable stress 40 days MWM Impairment Bian et al., 2012

Rat M 5mg/kg s.c. corticosterone 21 days BM Impairment Trofimiuk and Braszko, 2015

Rat M Chronic restraint stress 6 h daily for 21 days AST Impairment Liston et al., 2006

Rat M Chronic unpredictable stress 14 days AST Impairment Bondi et al., 2010

Rat M Restraint stress 1 h daily for 7 days AST Impairment Nikiforuk and Popik, 2011

Mouse M 8h restraint stress 21 days PA Impairment Tian et al., 2013

Rat M 6h restraint stress 21 days FCO Improvement Conrad et al., 1999

Rat M 6h restraint stress 21 days FCO Improvement Sandi et al., 2001

Rat M Chronic corticosterone po (50μg/mL 14 days, 6 days titrate
off) + washout (2–3 weeks)

FCO Improvement Monsey et al., 2014

Stress has complex effects on cognitive function that depend on the chronicity of the stressor, the sex of the experimental subject, and the cognitive task being used. AST, attentional
set shifting task; BM, Barnes maze; FCO, fear conditioning; MWM, Morris water maze; NOP, novel object placement; NOR, novel object recognition; PA, Passive avoidance; RAM, radial
arm maze; RAWM, radial arm water maze; SA, spontaneous alternation.
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not been a primary focus in studies investigating stress-
induced changes in Arc expression, most labs have investigated
stress-induced cognitive changes using hippocampus-dependent
cognition tasks.

The available data suggest that acute restraint stress induces
mixed effects in hippocampus-dependent learning and memory
tasks, with most labs showing significant impairments in tasks
such as the Morris water maze (Kasar et al., 2009; Buechel
et al., 2014) and others showing significant improvements (Zheng
et al., 2007). Performance in cognitive tasks that are thought to
depend on the extended hippocampal network, such as novel
object recognition (Aggleton and Brown, 2005; Barker and
Warburton, 2011) are also negatively affected by acute stress
(Guercio et al., 2014; Vargas-Lopez et al., 2015). Interestingly,
acute stress appears to significantly improve performance in
cognitive tasks that depend on the frontal cortex (e.g., attentional
set shifting; Thai et al., 2013) or amygdala (e.g., fear conditioning;
Cordero et al., 2003), where Arc expression is increased in
response to similar stressors (Ons et al., 2010; Monsey et al.,
2014).

Chronic stress has some mixed effects on hippocampus-
dependent cognitive tasks that may depend on the chronicity of
the stressor and on the sex of the experimental subject. Several
research groups have demonstrated that repeated restraint stress
induces significant impairments in the novel object placement
task in male rodents (Bowman et al., 2009; Gomez et al., 2012;
Park et al., 2015), while performance in the same task was
improved in female subjects under similar stress conditions
(Bowman et al., 2009). In a radial arm maze task, performance
in male rodents was significantly improved by 6 h restraint
stress for 13 days, but impaired by the same stressor over
21 days (Bowman et al., 2009). Additionally, female rodents
subjected to 6 h restraint stress per day for 21 days performed
significantly better in the same radial arm maze task (Bowman
et al., 2009). However, in the Morris water maze and Barnes
maze, chronic stress universally seems to impair performance
(Kasar et al., 2009; Bian et al., 2012; Tian et al., 2013; Rinwa
and Kumar, 2014; Huang et al., 2015; Trofimiuk and Braszko,
2015). Thus, although there are some complexities in terms of
how chronic stress modulates performance in hippocampus-
dependent cognitive tests, on average stress seems to impair
performance, at least inmale subjects. Given the greatly increased
prevalence of MDD in women, more study of the effects of
stress on hippocampus-dependent cognition in female subjects
is required. Unfortunately, it is not possible to relate these sex-
dependent responses to stress to Arc expression, given that there
are no studies that have attempted to investigate sex differences
in Arc expression in response to stressful stimuli.

In amygdala-dependent cognitive tasks such as fear
conditioning, there is a substantial literature indicating that
chronic stress enhances some aspects of fear conditioning
acquisition (for example, Conrad et al., 1999; Sandi et al.,
2001), and interestingly that it may impair extinction of fear
conditioning (e.g., Hoffman et al., 2014), which is thought to be a
frontal cortex-mediated cognitive function (Zelinski et al., 2010).
Similarly there appears to be a consensus that chronic stress
impairs performance in the attentional set shifting task, another

frontally-mediated cognitive task (Liston et al., 2006; Bondi et al.,
2010; Nikiforuk and Popik, 2011).

These data seem to be in alignment with observations
that chronic stressors activate Arc expression in the amygdala
while simultaneously suppressing Arc expression in the frontal
cortex. Additionally, stress appears to have mixed effects on
hippocampus-dependent cognitive tasks, and similarly hasmixed
effects on Arc expression. Taken together, these data are
consistent with the notion that cellular neuroplasticity is critical
for stress-related dysregulation of cognitive function.

Effects of Antidepressants on Arc
Expression

Given the relationship between stress and depression, and the
putative dysregulation of neuroplasticity in MDD patients, it
has been hypothesized that effective antidepressant treatment
requires an ability to modulate cellular neuroplasticity (Duman
et al., 1999), which may include Arc expression. Furthermore,
if Arc expression is relevant for therapeutic efficacy, then there
should be a similar timeframe for the onset of efficacy in mood
symptoms and Arc expression. In the following section, we will
review the effects of antidepressant drugs on Arc expression in
rodents in order to evaluate these ideas. Table 3 presents data on
the effects of antidepressant drugs on Arc expression.

The available data on selective serotonin reuptake inhibitor
(SSRI) antidepressants suggests that these drugs upregulate
Arc mainly in cortical regions, but also in portions of the
hippocampal formation. However, these changes in Arc
expression are not seen with short term treatments. For example,
De Foubert et al. (2004) found that acute, 4 days, and 7 days
administration of fluoxetine (10mg/kg p.o.) had no effect on Arc
expression in the cingulate gyrus, parietal cortex or orbital cortex,
whereas 14 days treatment increased Arc mRNA expression
in the cingulate and orbital cortices. Similarly, Ferrés-Coy
et al. (2013) demonstrated that short term (in this case 4 days)
treatment with a very high daily dose of fluoxetine (20mg/kg
i.p.) failed to alter Arc mRNA stimulation in any subregion of
the mouse hippocampal formation, but after 15 days fluoxetine
significantly increased Arc mRNA expression selectively within
the dentate gyrus. Interestingly, inhibition of SERT function via
injection of SERT siRNA had an accelerated time course, with
increased Arc expression observed after only 4 days of treatment.
At this time point, Arc mRNA expression was enhanced in
the CA1 as well as the dentate gyrus. Alme et al. (2007) found
that acute 10mg/kg fluoxetine failed to alter Arc expression
in the prefrontal cortex, hippocampus and dentate gyrus, but
after 21 days Arc expression was significantly increased in the
prefrontal cortex and hippocampus. Similarly, several labs have
demonstrated that acute treatment with paroxetine had no
effects on Arc expression in any region studied, which included
the cingulate gyrus, frontal and parietal cortex, striatum and
hippocampus (Castro et al., 2003; Pei et al., 2003; Tordera et al.,
2003).

Moreover, similar themes are observed with norepinephrine
(NE)-centered antidepressant drugs. Chronic dosing (20mg/kg

Frontiers in Neuroscience | www.frontiersin.org 9 August 2015 | Volume 9 | Article 279

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Li et al. Arc in plasticity, cognition, and mood

TA
B
LE

3
|T

he
ef
fe
ct
s
o
f
an

ti
d
ep

re
ss

an
t
d
ru
g
s
o
n
A
rc

ex
p
re
ss

io
n
in

ro
d
en

ts
.

S
p
ec

ie
s/
S
tr
ai
n

S
ex

D
ru
g

D
o
se

(m
g
/k
g
)

R
o
ut
e

T
im

in
g

A
ct
io
n

A
rc

B
ra
in

R
eg

io
ns

R
ef
er
en

ce
s

R
at
/S
D

M
Fl
uo

xe
tin

e
10

i.p
.

A
cu

te
5-
H
TT

in
hi
bi
to
r

–
–

A
lm

e
et

al
.,
20

07

R
at
/S
D

M
P
ar
ox

et
in
e

5
s.
c.

A
cu

te
5-
H
TT

in
hi
bi
to
r

–
–

C
as
tr
o
et

al
.,
20

03

R
at
/S
D

M
P
ar
ox

et
in
e

5
i.p

.
A
cu

te
5-
H
TT

in
hi
bi
to
r

–
–

To
rd
er
a
et

al
.,
20

03

R
at
/S
D

M
P
ar
ox

et
in
e

5
i.p

.
A
cu

te
5-
H
TT

in
hi
bi
to
r

–
–

P
ei
et

al
.,
20

03

R
at
/S
D

M
D
es
ip
ra
m
in
e

5
i.p

.
A
cu

te
N
E
T
in
hi
bi
to
r

–
–

P
ei
et

al
.,
20

03

R
at
/S
D

M
Ve

nl
af
ax
in
e

5
i.p

.
A
cu

te
5-
H
TT

,N
E
T
in
hi
bi
to
r

–
–

P
ei
et

al
.,
20

03

R
at
/S
D

M
Ve

nl
af
ax
in
e

10
i.p

.
A
cu

te
5-
H
TT

,N
E
T
in
hi
bi
to
r

–
–

S
er
re
s
et

al
.,
20

12

R
at
/S
D

M
D
ul
ox

et
in
e

10
p.
o.

A
cu

te
5-
H
TT

,N
E
T
in
hi
bi
to
r

D
ec

re
as
ed

FC
M
ol
te
ni

et
al
.,
20

08

R
at
/S
D

M
D
ul
ox

et
in
e

10
p.
o.

A
cu

te
5-
H
TT

,N
E
T
in
hi
bi
to
r

In
cr
ea

se
d

E
C
,M

B
M
ol
te
ni

et
al
.,
20

08

R
at
/S
D

M
Fl
uo

xe
tin

e
10

p.
o.

4
da

ys
5-
H
TT

in
hi
bi
to
r

–
–

D
e
Fo

ub
er
te

ta
l.,

20
04

M
ou

se
/C

57
B
L/
6J

M
Fl
uo

xe
tin

e
20

i.p
.

4
da

ys
5-
H
TT

in
hi
bi
to
r

–
–

Fe
rr
és
-C

oy
et

al
.,
20

13

R
at
/S
D

M
Fl
uo

xe
tin

e
10

p.
o.

1
w
ee

k
5-
H
TT

in
hi
bi
to
r

–
–

D
e
Fo

ub
er
te

ta
l.,

20
04

R
at
/S
D

M
Ve

nl
af
ax
in
e

10
i.p

.
1
w
ee

k
5-
H
TT

,N
E
T
in
hi
bi
to
r

–
–

S
er
re
s
et

al
.,
20

12

R
at
/S
D

M
Fl
uo

xe
tin

e
10

p.
o.

2
w
ee

ks
5-
H
TT

in
hi
bi
to
r

In
cr
ea

se
d

C
C
,O

FC
D
e
Fo

ub
er
te

ta
l.,

20
04

M
ou

se
/C

57
B
L/
6J

M
Fl
uo

xe
tin

e
20

i.p
.

2
w
ee

ks
5-
H
TT

in
hi
bi
to
r

In
cr
ea

se
d

D
G

Fe
rr
és
-C

oy
et

al
.,
20

13

R
at
/S
D

M
P
ar
ox

et
in
e

5;
b.
i.d

.
i.p

.
2
w
ee

ks
5-
H
TT

in
hi
bi
to
r

In
cr
ea

se
d

FC
,O

FC
,P

C
,C

A
1

P
ei
et

al
.,
20

03

R
at
/S
D

M
D
es
ip
ra
m
in
e

5;
b.
i.d

.
i.p

.
2
w
ee

ks
N
E
T
in
hi
bi
to
r

In
cr
ea

se
d

FC
,C

C
,O

FC
,P

C
,C

A
1

P
ei
et

al
.,
20

03

R
at
/S
D

M
Ve

nl
af
ax
in
e

5;
b.
i.d

.
i.p

.
2
w
ee

ks
5-
H
TT

,N
E
T
in
hi
bi
to
r

In
cr
ea

se
d

P
C
,C

A
1

P
ei
et

al
.,
20

03

R
at
/S
D

M
Ve

nl
af
ax
in
e

10
i.p

.
2
w
ee

ks
5-
H
TT

,N
E
T
in
hi
bi
to
r

In
cr
ea

se
d

C
C
,P

C
S
er
re
s
et

al
.,
20

12

R
at
/S
D

M
Fl
uo

xe
tin

e
10

i.p
.

3
w
ee

ks
5-
H
TT

in
hi
bi
to
r

In
cr
ea

se
d

H
C

A
lm

e
et

al
.,
20

07

R
at
/F
S
L

M
E
sc
ita
lo
pr
am

33
0
m
g
dr
ug

/k
g
fo
od

p.
o.

3
w
ee

ks
5-
H
TT

in
hi
bi
to
r

In
cr
ea

se
d

C
A
1,

D
G

E
rik
ss
on

et
al
.,
20

12

R
at
/F
S
L

M
N
or
tr
ip
ty
lin
e

33
0
m
g
dr
ug

/k
g
fo
od

p.
o.

3
w
ee

ks
5-
H
TT

,N
E
T
in
hi
bi
to
r

–
–

E
rik
ss
on

et
al
.,
20

12

R
at
/S
D

M
D
ul
ox

et
in
e

10
p.
o.

3
w
ee

ks
5-
H
TT

,N
E
T
in
hi
bi
to
r

In
cr
ea

se
d

FC
,E

C
,M

B
M
ol
te
ni

et
al
.,
20

08

R
at
/S
D

N
R

Ve
nl
af
ax
in
e

10
i.p

.
3
w
ee

ks
5-
H
TT

,N
E
T
in
hi
bi
to
r

In
cr
ea

se
d

H
C

C
al
ab

re
se

et
al
.,
20

11

R
at
/S
D

N
R

Ve
nl
af
ax
in
e

10
i.p

.
3
w
ee

ks
5-
H
TT

,N
E
T
in
hi
bi
to
r

D
ec

re
as
ed

FC
C
al
ab

re
se

et
al
.,
20

11

R
at
/S
D

N
R

A
go

m
el
at
in
e

40
i.p

.
3
w
ee

ks
M
el
at
on

in
1
re
ce

pt
or

ag
on

is
t,

m
el
at
on

in
2
re
ce

pt
or

ag
on

is
t,
5-
H
T 2

C
re
ce

pt
or

an
ta
go

ni
st

In
cr
ea

se
d

H
C

C
al
ab

re
se

et
al
.,
20

11

R
at
/W

is
ta
r

M
Im

ip
ra
m
in
e

20
p.
o.

7
w
ee

ks
5-
H
TT

,N
E
T
in
hi
bi
to
r

In
cr
ea

se
d

FC
,D

G
W
ib
ra
nd

et
al
.,
20

13

R
at
/W

is
ta
r

F
Im

ip
ra
m
in
e

20
p.
o.

7
w
ee

ks
5-
H
TT

,N
E
T
in
hi
bi
to
r

In
cr
ea

se
d

D
G

W
ib
ra
nd

et
al
.,
20

13

5-
H
TT
,5
-H
T
tr
an
sp
or
te
r;
b.
i.d
.,
bi
s
in
di
e;
C
A
1,
co
rn
u
am

m
on
is
ar
ea

1;
C
C
,c
in
gu
la
te
co
rt
ex
;D

G
,d
en
ta
te
gy
ru
s;
EC

,e
nt
or
hi
na
lc
or
te
x;
F,
fe
m
al
e;
FC

,f
ro
nt
al
co
rt
ex
;F
S
L,
Fl
in
de
rs
S
en
si
tiv
e
Li
ne
;H

C
,h
ip
po
ca
m
pu
s;
M
,m

al
e;
M
B
,m

id
br
ai
n;

N
ET
,n
or
ep
in
ep
hr
in
e
tr
an
sp
or
te
r;
N
R
,n
ot
re
po
rt
ed
;O

FC
,o
rb
ito
fro
nt
al
co
rt
ex
;P

C
,p
ar
ie
ta
lc
or
te
x;
S
D
,S

pr
ag
ue

D
aw

le
y.

Frontiers in Neuroscience | www.frontiersin.org 10 August 2015 | Volume 9 | Article 279

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Li et al. Arc in plasticity, cognition, and mood

p.o. for 7 weeks) of the tricyclic antidepressant (TCA)
imipramine, a balanced serotonin and NE transporter inhibitor,
increased BDNF and Arc mRNA expression significantly in the
dentate gyrus in male and female rats, whereas in the prefrontal
cortex imipramine only increased BDNF and Arc mRNA
expression in male rats (Owens et al., 1997; Wibrand et al.,
2013). The TCA desimipramine (5mg/kg b.i.d. for 2 weeks),
which is over 400-fold more selective for the NE transporter
than the serotonin (5-HT) transporter (Owens et al., 1997),
increased Arc expression in the cingulate gyrus, frontal, orbital,
and parietal cortices, as well as the hippocampal CA1 region,
whereas there were no effects in the striatum and the dentate
gyrus (Pei et al., 2003). However, a study by Eriksson et al.
(2012) of nortriptyline, a TCA with approximately 60-fold
selectivity for NE transporter over the 5-HT transporter (Owens
et al., 1997) in Flinders Sensitive Line rats failed to alter Arc
expression in any of the brain regions studied (CA1, DG,
parahippocampal region, sensorimotor cortex, and amygdala),
although escitalopram treatment significantly elevated Arc
expression in the CA1 and DG hippocampal subregions.
Since there are no exposure data available for nortriptyline in
this study, it is hard to evaluate the impact of these findings.
In addition, other antidepressants increased Arc expression
after chronic dosing, including serotonin-norepinephrine
reuptake inhibitors (SNRI) duloxetine and venlafaxine, and the
melatonin/serotonin receptor modulator agomelatine (Molteni
et al., 2008; Calabrese et al., 2011; Serres et al., 2012).

Taken together, these data suggest that Arc expression
is upregulated by treatment with monoamine-centered
antidepressants. The increase in Arc expression induced by
these treatments generally required chronic administration
before any effect on Arc expression is observed, which appears to
mimic the therapeutic lag observed with these compounds in the
clinic. Interestingly, treatments that have putatively fast-acting
antidepressant efficacy, such as ketamine administration and
electroconvulsive therapy also acutely increase Arc expression
(Larsen et al., 2005; Dyrvig et al., 2012; de Bartolomeis et al.,
2013). Thus, induction of cortical Arc expression may have use
as a heuristic for onset of antidepressant therapeutic efficacy in
preclinical models of MDD, although more studies are needed to
develop and fully evaluate this idea.

Effects of Selective Serotonin Receptor
Mechanisms on Arc Expression

The requirement for chronic SSRI treatment in order to
induce Arc expression could indicate that desensitization of
some serotonergic receptor mechanisms, e.g., 5-HT1A receptors,
is required in order to effectively stimulate Arc expression.
This idea is supported by the observation that although acute
paroxetine administration at 5mg/kg s.c. does not alter Arc
expression, acute paroxetine in combination with the selective
5-HT1A receptor antagonist WAY-100635 significantly increased
ArcmRNA expression in the cingulate gyrus, as well as the frontal
and parietal cortices without altering Arc stimulation in the
striatum or in the CA1 subregion of the hippocampal formation

(Castro et al., 2003). The ability of WAY-100635 as well as
other 5-HT1A receptor antagonists such as NAD-299 to increase
paroxetine-induced Arc expression was replicated in a separate
study (Tordera et al., 2003), although the Arc stimulatory effects
observed by Castro et al. (2003) were not replicated in every brain
region.

One potential explanation for these data could be that 5-HT1A
receptor activation secondary to 5-HT transporter inhibition
reduces the firing rate of raphe serotonergic neurons, thereby
limiting extracellular 5-HT output and reducing the ability of
the serotonergic system to activate other serotonergic targets.
In order to understand this idea further, the following section
will review the available data on the effects of selective 5-HT
receptor ligands on Arc expression and discuss the relevance
of these receptor targets for cognitive function. Unfortunately,
there is limited or no information in the literature for most 5-
HT receptor subtypes, and mainly the role of 5-HT1A and 5-
HT2 receptor-mediated effects has been subject to investigation.
The relationship between 5-HT receptor activation and Arc
expression is represented in Figure 1.

5-HT1A Receptors
5-HT1A receptors are inhibitory serotonergic receptor targets
that can operate through a variety of mechanisms. Perhaps
the most well-understood function of the 5-HT1A receptor is
as an inhibitory G-protein coupled autoreceptor expressed on
serotonergic cell bodies of the brainstem raphe nuclei. Activation
of these autoreceptors limits the firing rate of these cells and
therefore also the amount of 5-HT released in target regions
(Blier and Ward, 2003). However, it is important to consider
that 5-HT1A receptors do not exist uniformly as serotonergic
autoreceptors. A subset of 5-HT1A receptors also exist as
postsynaptic heteroreceptors, which have fast inhibitory effects
mediated by inwardly rectifying potassium channels (reviewed
in Pehrson and Sanchez, 2015). Given the fact that 5-HT1A
heteroreceptors are present in glutamatergic pyramidal cells and
GABAergic interneurons in the cortex and hippocampus, as well
as the complex inter-relationship between these cell types in
the cortical and hippocampal circuits (reviewed in Pehrson and
Sanchez, 2014, 2015), activation of 5-HT1A heteroreceptors can
be expected to produce mixed excitatory and inhibitory effects on
glutamatergic neurotransmission (for example, see Llado-Pelfort
et al., 2012b).

Selective 5-HT1A receptor activation induces a small but
significant increase in Arc expression in the medial prefrontal
cortex (Bruins Slot et al., 2009), a region where 5-HT1A receptors
can be found on both GABAergic interneurons and pyramidal
cells (Celada et al., 2013), without having an effect on striatal
Arc expression. Moreover, the absence of 5-HT1A receptor-
stimulated Arc expression in the striatum may be expected,
given the relative absence of this receptor in the striatum
(Aznar et al., 2003), and the mixed excitatory and inhibitory
effects 5-HT1A receptor agonists have in striatal input regions
such as the cortex (Llado-Pelfort et al., 2012b). Data on the
effects of 5-HT1A receptor antagonism on Arc expression is
somewhat contradictory. At least two groups have demonstrated
that WAY-100635 has no effect on Arc expression alone in
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the cortex or hippocampus (Castro et al., 2003; Tordera et al.,
2003). However, the 5-HT1A receptor antagonist NAD-299 had
equivocal effects in these brain regions. Tordera et al. (2003)
found that NAD-299 had no effect on Arc expression in the
cortex or hippocampus, while Eriksson et al. (2012) found that
NAD-299 significantly increases Arc stimulation in the CA1 and
dentate gyrus subregions of the hippocampus.

Thus, it appears that selective 5-HT1A receptor modulation
in either direction may have some limited and regionally-
dependent effects on Arc expression. However, if one considers
the information that 5-HT1Areceptor antagonism combined
with acute SSRI administration increased Arc expression, then
there may be two competing hypotheses on the relationship
between 5-HT1A receptor activation and Arc expression. On
the one hand, stimulation of 5-HT1A autoreceptors in the
midbrain raphe nuclei may attenuate the release of 5-HT into
the synaptic and extrasynaptic spaces, thereby abrogating the
effects of 5-HT on stimulatory serotonergic receptors such as 5-
HT2, 5-HT4, and 5-HT6. However, an alternative hypothesis may
be that postsynaptic 5-HT1A heteroreceptors directly attenuate
the expression of Arc by reducing neuronal depolarization.
The fact that acute treatment with SSRI antidepressants can
generate significant increases in extracellular 5-HT in multiple
brain regions (e.g., Pehrson et al., 2013) while still being
unable to drive increases in Arc expression may favor the
latter hypothesis.

In terms of cognitive function, the available data suggest
that 5-HT1A receptor stimulation has mixed but overall negative
effects on cognitive function (Table 4). For example, although
low doses of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-
propylamino)tetralin (8-OH-DPAT) are neutral in terms of their
effects on water maze performance (Riekkinen et al., 1994), while
higher doses of 8-OH-DPAT or the 5-HT1A receptor agonist
buspirone tend to impair water maze performance (Kant et al.,
1998; Meijer et al., 1998). Similarly, 8-OH-DPAT administration
impairs performance in novel object recognition (Pitsikas et al.,
2005) and in putative spatial working memory tasks such as
spontaneous alternation (Seibell et al., 2003; Ulloa et al., 2004).
Although it is important to note that there may be sex-dependent
effects of 8-OH-DPAT, given that Ulloa et al. (2004) found that
this ligand had no effect on spontaneous alternation performance
in female rats. It is not known whether these sex differences are
due to altered pharmacokinetics or pharmacodynamics, and thus
more studies are required.

5-HT1A receptor agonists alter performance in learning
and memory tasks such as autoshaping in a seemingly
dose-dependent manner. Meneses and colleagues have found
that 8-OH-DPAT significantly improves performance in the
autoshaping task at doses below 0.25mg/kg (Meneses et al.,
1997; Meneses and Hong, 1999), while doses ranging from
0.25 to 0.5mg/kg impair performance (Meneses and Hong,
1999; Meneses, 2007), and 1mg/kg seems to have no effect
on autoshaping performance (Meneses and Hong, 1999;
Meneses, 2007). Interestingly, 5-HT1A receptor partial agonists
such as S15535 seem to have more beneficial effects on
cognitive performance. This compound engenders significant
improvements in social recognition memory as well as working

memory performance in a delayed non-match to sample task
(Millan et al., 2004).

When administered alone, 5-HT1A receptor antagonists
such as WAY100635 generally have no effect on performance
in recognition memory (Pitsikas et al., 2003, 2005), or in
autoshaping tasks (Meneses and Hong, 1999).

Moreover, we have not been able to identify any studies
that have directly investigated the relationship between
Arc stimulation and performance in these cognitive tasks.
Additionally, there is a relative paucity of information on the
regional effects of selective 5-HT1A receptor agonists on Arc
expression, for example in the hippocampus. However, the fact
that selective 5-HT1A receptor agonists alone lack the ability to
substantially increase cortical Arc expression appears to be in
line with the mixed effects this class of ligands have on cortical
glutamate neurotransmission (Llado-Pelfort et al., 2012a). This
likely reflects the fact that 5-HT1A receptors have a wide-ranging
and complex expression pattern featuring opposite directed
activities (Celada et al., 2013). Moreover, based on the theory that
beneficial effects on learning and memory require stimulation of
the neuronal plasticity machinery, and the potentially inhibitory
influence 5-HT1A receptors have on Arc expression, it is perhaps
unsurprising that 5-HT1A receptor agonists have an overall
negative influence on cognitive function.

5-HT2 Receptors
5-HT2 receptors are G-protein coupled receptors that have a
stimulatory effect on cellular membranes via the activation of
Gq/11 and the associated increase in intracellular Ca2+. 5-HT2
receptors have a relatively strong somatodendritic expression
pattern in the neocortex and hippocampus, where they are
associated with pyramidal neurons and several subclasses of
GABAergic interneuron (Cornea-Hébert et al., 1999; Puig et al.,
2010; Bombardi, 2012; Celada et al., 2013). As a result, agonists
at 5-HT2 receptors such as 2,5-dimethoxy-4-iodoamphetamine
(DOI) have mixed effects on glutamate neurotransmission that
are regionally-dependent. Within the medial PFC, Puig et al.
(2003) demonstrated that acute DOI administration increases
the firing rate in approximately 37% of putative pyramidal cells
and reduced firing in another 30%, however the overall effect
was excitatory (a 2.4-fold increase in population firing over
baseline). Within the orbital frontal cortex the overall effect of
acute DOI administration was inhibitory (Wood et al., 2012), and
similarly 5-HT2A receptors seem to have an overall inhibitory
effect in the hippocampus (Shen and Andrade, 1998; Wang
and Arvanov, 1998). These differences in the overall effect of
DOI administration likely reflect differences in the proportion
of pyramidal cells and GABAergic interneurons that express
5-HT2A heteroreceptors.

The effects of 5-HT2 receptors are one of the more studied
aspects of 5-HT neurotransmission’s effects on Arc expression.
Pei et al. (2000) demonstrated that combined administration
of the monoamine oxidase inhibitor tranylcypromine (5mg/kg
i.p.) and L-tryptophan (100mg/kg i.p.) increased Arc expression
in the cingulate, orbital, frontal and parietal cortices, and the
striatum, while reducing Arc expression in the hippocampus.
Furthermore, these authors found that cortical Arc mRNA
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expression induced by this treatment was blocked by the 5-
HT2 receptor antagonist ketanserin in the cortical regions.
However, ketanserin was only able to partially block the effects
of the tranylcypromine/L-tryptophan treatment in the striatum
and had no effect in the CA1 subregion of the hippocampal
formation. Further supporting a role for 5-HT2A receptors
in serotonin-stimulated Arc expression, Hirani et al. (2003)
found that Arc mRNA expression induced by fenfluramine
administration in the frontal and piriform cortices could be
blocked by administration of the 5-HT2A receptor selective
antagonist M100907 (0.2mg/kg).

Taken together, these data suggest that cortical Arc mRNA
expression is sensitive to 5-HT2A receptor stimulation. This
hypothesis was confirmed by Pei et al. (2000), who demonstrated
that the 5-HT2A/2C receptor agonist DOI dose-dependently
increased cortical Arc mRNA expression, with significant
increases in most cortical regions at 1 and 2mg/kg, and more
limited effects at 0.2mg/kg. Importantly, this effect was blocked
by the 5-HT2 receptor antagonist ketanserin. The regionally-
specific effects of 5-HT2A receptor stimulation are once again
demonstrated by the fact that DOI administration only weakly
affected Arc mRNA expression in the striatum, and had no effect
within the hippocampal formation (Pei et al., 2000). These data
were replicated by the same group in a later experiment (Pei et al.,
2004). These results were extended by the demonstration that the
5-HT2A receptor selective antagonist M100907, but not the 5-
HT2B/2C receptor antagonist SB-206553, was able to reverse the
effects of DOI on cortical Arc expression.

Interestingly, this study also demonstrated that DOI-induced
Arc mRNA expression could be blocked by a high dose (1mg/kg)
of the non-competitive NMDA receptor antagonist MK-801
or the competitive AMPA receptor antagonist GYKI52466
(25mg/kg i.p.) These data could suggest that 5-HT2A receptor
activation-induced increases in Arc induction are mediated
in part by ionotropic glutamate receptors, and is in line
with the proposed interrelation between Arc stimulation
and glutamate neurotransmission. However, this mechanistic
relationship should not necessarily be taken to suggest that 5-
HT2A receptor activation-induced increases in Arc stimulation
in cortical regions are related to an overall increase in the output
of cortical pyramidal neurons. Many cellular subtypes within the
cortex express AMPA andNMDA receptors, including pyramidal
neurons but also GABAergic interneurons (e.g., Cox and Racca,
2013; Le Magueresse and Monyer, 2013), and thus the effects
that such an increase in ionotropic glutamate neurotransmission
would have on the overall behavior of frontal cortex output cells
remains unknown. Moreover, the cellular subtypes that express
Arc mRNA after stress, in relation to a cognitive task or after
5-HT2A receptor activation have not yet been determined.

Another mechanistic study demonstrated that administration
of 8mg/kg DOI significantly increased cortical expression in rats
or wild type mice, but not in mice with a conditional knockout
of the gene encoding for BDNF (Benekareddy et al., 2013).
These data could indicate that BDNF signaling through TrkB
receptors is necessary for Arc expression stimulated by 5-HT2
receptor activation. However, another possibility is that the
attenuation of TrkB receptor activation suppresses a common

intracellular signaling pathway. Given that 5-HT2 receptors
and TrkB receptors both act to increase intracellular Ca2+
concentrations, it is possible that the attenuated Arc expression
seen in BDNF KO mice is due to a reduction in intracellular
Ca2+ signaling cascades. If true, then it is also possible that
reduction of BDNF signaling through TrkB receptors would also
abrogate Arc expression stimulated through AMPA, NMDA, or
group 1mGlu receptors.

Unfortunately, the effects of 5-HT2 receptor mechanisms
on cognitive functions are not as well studied (Table 4). The
available evidence paints a mixed picture of the effects of 5-
HT2 receptor biologies on cognitive performance. Performance
in the spontaneous alternation task is not altered by DOI
administration at 1mg/kg (Seibell et al., 2003), which is a
dose that significantly increases Arc expression on its own
in cortical regions (Pei et al., 2004). Similarly, performance
in a modified version of the water maze was not altered
by DOI administration at 0.1–0.25mg/kg (Kant et al., 1998).
Evidence on the effect of 5-HT2A/2C receptor stimulation
on autoshaping performance is also mixed, with one study
showing a DOI-induced impairment at doses ranging from
0.1 to 1mg/kg (Meneses, 2007), and another showing a DOI-
induced improvement at 0.1mg/kg (Meneses et al., 1997).
Similarly, the effects of 5-HT2 receptor antagonists on cognitive
function seem to be mixed. The non-selective 5-HT2 receptor
antagonist ketanserin was found to improve autoshaping
performance at an extremely low dose of 0.001mg/kg, which is
likely not related to 5-HT2 receptors considering the binding
affinity for this receptor, while the 5-HT2A receptor selective
antagonist M100907 had no effect at doses up to 3mg/kg
(Meneses et al., 1997). Additionally, M100907 at 0.08mg/kg
and the 5-HT2C receptor selective antagonist SB242084 at
0.5mg/kg had no effect on performance in the delayed
alternation task (Papakosta et al., 2013), although it is not
clear that these doses should be considered pharmacologically
active.

Taken together, the available data suggest that there is some
dissonance between the consistent 5-HT2 receptor-mediated
increases in Arc expression, and the mixed effects of similar
doses on cognitive function. Some of this variance may be due
to the regionally selective nature of 5-HT2A receptor-stimulated
Arc expression, which was most strongly present in the cortex,
whereas some of the cognitive tasks evaluated in these studies
were dependent on hippocampal function, where DOI had no
effects on Arc expression. Unfortunately, we were not able to
identify any studies that investigated clearly cortex-dependent
cognitive tasks, such as the attentional set shifting task, and thus
it is difficult to clearly evaluate the relationship between 5-HT2
receptor effects on Arc expression and cognitive function.

Other Serotonergic Receptors
Unfortunately, there is a paucity of information on the
manner with which other serotonergic receptors modulate Arc
expression. Due to the limited scope of the available data, we have
chosen to briefly review the effects of these serotonin targets in a
single section and not to examine the effects of these receptors on
cognitive function.
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5-HT4 receptors are stimulatory GPCRs for which there is
generally little accumulated knowledge. Activation of 5-HT4
receptors increases neuronal activity via Gs-mediated increases
in protein kinase A (PKA) activity (reviewed in Pehrson and
Sanchez, 2015). A study by Eriksson et al. (2012) in Flinders
Sensitive Line rats demonstrated that acute administration
of 1mg/kg of the 5-HT4 receptor partial agonist RS67333
induced a significant increase in Arc mRNA expression that
was observed selectively in the CA1 and DG subregions of the
hippocampus, where 5-HT4 receptors are thought to be strongly
expressed (Vilaró et al., 2005). Importantly, in this region 5-
HT4 receptors are selectively expressed in excitatory pyramidal
neurons and granule cells, and are not present in GABAergic
interneurons (Peñas-Cazorla and Vilaró, 2014). Therefore, once
again these increases in Arc expression probably reflect increased
glutamatergic neurotransmission.

No changes in Arc expression were observed due to RS67333
administration in the parahippocampal regions, somatosensory
cortex or amygdala (Eriksson et al., 2012). These changes were
blocked by administration of the MEK inhibitor PD184161.
Whether these effects on Arc expression are truly due to 5-HT4
receptor activation is somewhat questionable, given that RS67333
is a partial agonist at these receptors, and importantly has a
similar affinity for sigma 1 and 2 receptor sites (Eglen et al.,
1995). Importantly, Eriksson et al. made no attempt to block the
effects of RS67333 with a selective 5-HT4 receptor antagonist.
However, a role for 5-HT4 receptor activation in Arc expression is
supported by data suggesting that Gs-mediated increases in PKA
activation also drive increased Arc expression (Bloomer et al.,
2008).

Like 5-HT4 receptors, 5-HT6 receptors are stimulatory GPCRs
that increase neuronal activity via Gs-mediated increases in
PKA activity. 5-HT6 receptors are not well understood but are
expressed in the neocortex by glia cells or pyramidal neurons,
depending on the cortical layer in question (Marazziti et al.,
2013). Administration of the putatively 5-HT6 receptor selective
agonist LY586713 significantly increased the expression of Arc
mRNA in the parietal cortex, cingulate, hippocampus, and
dentate gyrus after acute administration (de Foubert et al.,
2007). In addition, acute 5-HT6 receptor stimulation significantly
increased the mRNA expression of BDNF in the hippocampus
and dentate gyrus. The 5-HT6 receptor antagonist SB271046
had no effects on Arc expression in the hippocampus, dentate
gyrus or parietal cortex on its own but significantly increased
expression in the cingulate and orbital cortices (de Foubert
et al., 2007). Interestingly, the acute effects of LY586713 in
the hippocampus and parietal cortex were blocked by 5-HT6
receptor antagonism, but the increases observed in the cingulate
and orbital cortices were maintained under these conditions (de
Foubert et al., 2007).

Taken together, these data suggest that activation of 5-
HT4 or 5-HT6 receptors, both of which are Gs-mediated
stimulatory receptors, are capable of producing regional
increases in Arc expression, although more work is
necessary to replicate and confirm these data. However,
especially in the case of 5-HT4 receptors, the available
data appears to support the idea that Arc expression

is associated with increased postsynaptic glutamate
neurotransmission.

Conclusion

This review has demonstrated that Arc is an effector IEG
that plays an important role in dendritic plasticity and is
closely associated with glutamate neurotransmission. This
association with glutamate neurotransmission is bidirectional,
since postsynaptic activation of stimulatory glutamate
neurotransmission activates Arc expression, but Arc also
plays a role in the trafficking and surface expression of AMPA
receptors. Given recent data hinting at altered neuroplasticity in
MDD, as well as data tying ketamine’s fast-acting antidepressant
effects to glutamate-dependent changes in dendritic plasticity (Li
et al., 2010, 2011), Arc may represent an important mechanism
for study in preclinical models of depression.

The data that are currently available from preclinical
MDD models suggests that experimental treatments capable of
producing a depression-like phenotype, such as chronic stress,
induces an altered balance of Arc expression featuring suppressed
expression in cortical regions and increases in the amygdala.
Importantly, these changes in Arc stimulation appear to
mirror stress-induced changes in glutamate neurotransmission.
Additionally, known antidepressant treatments act to increase
Arc expression, especially in cortical regions, and these
antidepressant-induced effects on Arc expression share a similar
timeline with the efficacy lag observed with these treatments.
Furthermore, regional changes in Arc expression appear to
predict the effects that experimental manipulations such as stress
will have on cognitive function, with the general theme that
increased Arc expression in a given area is associated with
improved performance in cognitive tasks dependent on that area.

However, there are some caveats to consider. There is
a host of clinical and preclinical evidence highlighting an
important role for hippocampal neuroplasticity in MDD, but
Arc expression generally does not appear to be altered in
the hippocampus after either chronic stress or antidepressant
treatments. These data would suggest that if hippocampal
neuroplasticity is altered in these models, then it may be through
Arc-independent mechanisms. Additionally, it is not possible at
this time to conduct a complete evaluation of the relationship
between cognitive function and pharmacological strategies for
increasing Arc expression, which could include activation of
5-HT2A, 5-HT4, and 5-HT6 receptors, given the paucity of
data available either for the effects of these receptor systems
on Arc expression or cognitive function. However, the data
that is available on these relationships does not universally
support the simplistic notion that increased Arc expression
is tied to improved cognitive function. Moreover, this idea is
reinforced by observations that some effective treatments for
mood symptoms that are known to increase Arc expression,
for example NMDA receptor antagonists like ketamine or
electroconvulsive stimulation (Larsen et al., 2005; Dyrvig et al.,
2012; de Bartolomeis et al., 2013), are also known to impair
cognitive function (Moscrip et al., 2004; Nikiforuk and Popik,
2014).
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Thus, Arc appears to be a molecular target of some
interest for the study of MDD and MDD-associated cognitive
dysfunction. However there is much that remains to be done.
Speaking generally, there has been little detailed study of how
stress or antidepressants alter Arc expression in cellular sub-
compartments such as the dendritic and nuclear regions. Given
information on the role of nuclear translocation of Arc in reduced
AMPA receptor expression, it is possible that Arc is in part
responsible for some of the reductions in postsynaptic glutamate
neurotransmission observed after chronic stress, and thus could

play a role in driving cognitive impairment. Additionally,
there has been essentially no work done to investigate what
kind of cells, for example cortical pyramidal neurons vs.
GABAergic interneurons, express Arc after manipulations such
as stress or antidepressant treatment. Moreover, increasing the
depth of our understanding of Arc expression in experimental
contexts such as these may provide more clues on how the
behavior of neural networks in the cortex and amygdala
are altered in MDD, and how Arc expression is related to
cognitive function.
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