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Although minutes of a spinning episode may induce vertigo in the healthy human, as
a result of a possible perceptional plasticity, Sufi Whirling Dervishes (SWDs) can spin
continuously for an hour without a vertigo perception.This unique long term vestibular
system stimulation presents a potential human model to clarify the cortical networks
underlying the resistance against vertigo. This study, therefore, aimed to investigate
the potential structural cortical plasticity in SWDs. Magnetic resonance imaging (MRI)
of 10 SWDs and 10 controls were obtained, using a 3T scanner. Cortical thickness
in the whole cortex was calculated. Results demonstrated significantly thinner cortical
areas for SWD subjects compared with the control group in the hubs of the default
mode network (DMN), as well as in the motion perception and discrimination areas
including the right dorsolateral prefrontal cortex (DLPFC), the right lingual gyrus and the
left visual area 5 (V5)/middle temporal (MT) and the left fusiform gyrus. In conclusion, this
is the first report that warrants the potential relationship of the motion/body perception
related cortical networks and the prolonged term of whirling ability without vertigo or
dizziness.
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INTRODUCTION

Most studies to date that have investigated brain networks for vertigo or vestibular system
have used or focused on the sole stimulation of the vestibular system, such as caloric
or galvanic stimulation. However, these methodological approaches lack an engagement of
proprioception and vestibular organ stimulation that would mimic motion perception based
vertigo. To date, there is not a study that has investigated the structural plasticity induced
by a prolonged period of stimulation using both systems, together. The Mevleviye Semazens,

Abbreviations: DLPFC, Dorsolateral Prefrontal Cortex; DMN, Default Mode Network; fMRI, Functional Magnetic
Resonance Imaging; LH, Left hemisphere; MT, Middle Temporal; PCC, posterior cingulate cortex; POI, Patch
of Interest; RH, Right hemisphere; SWDs, Sufi Whirling Dervishes; TAL, Talairach; TMS, Transcranial Magnetic
Stimulation; V5, Visual area 5.
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alternatively known as Sufi Whirling Dervishes (SWDs), have a
unique meditation style that is termed as the Sema Ceremony
which may provide a unique model to investigate cortical
networks of motion perception and balance together with
vestibular and proprioception sensory systems.

The Mevleviye is an ascetic Sufi order founded in 1273 in
Konya, Turkey (Smeets, 2006). In the Sema Ceremony, a SWD
rotates anti-clockwise around the vertical axis of their body, while
also rotating around the other SWDs. Whirling intends to be
a travel of soul awareness and loosening of the material self.
To become trained for the Sema Ceremony so that they can
able to rotate up to 1 h without vertigo or dizziness perception,
Sufis traditionally receive up to 1000 days of training within
the Mevlevi houses. At the end of that time, the Sufis are now
trained as SWD. They re-join their families and return to their
jobs, but gather together for Sema ceremony for several days in
a week (Smeets, 2006). This unique whirling based meditation
style of SWDs achieves extraordinary physiological outcomes
that overcome vertigo and balance impairment, which would be
expected after prolonged times of whirling.

It has been argued that alternating self-localization is caused
by abnormal integration of vestibular signals. Additionally,
it has been shown that vestibular processing is involved in
space perception and locomotion (somatosensory processing) as
well as the cognitive aspects of own-body representations, the
consciousness of the own-body and bistable visual perception
(Lopez et al., 2010, 2012).

The default mode of functioning was initially defined on
particular areas of the brain that decrease activity when subjects
focus on goal-directed tasks in comparison to simply resting
(Raichle and Snyder, 2007). In the following years, the default
mode definition extends to default mode network (DMN; Raichle
and Snyder, 2007). The DMN of the brain has been observed
to be related to self-awareness, consciousness, embodiment and
also unhappiness (Killingsworth and Gilbert, 2010; Brewer et al.,
2011). Therefore, it may also be theorized that prolonged periods
of whirling based meditation of the Sufi dervishes contribute
to structural changes in the networks of the DMN and self-
perception, as well as motion perception related networks. A
recent analysis of research on DMN that included anatomical
connectivity and task-evolved neuroimaging revealed hubs of
the resting state activity, including posterior cingulate cortex
(PCC) and Precuneus areas (Gramann et al., 2006; Andrews-
Hanna, 2012). It is relevant to note that in Kang’s study, the
reported regions of decreased cortical thickness in meditators’
brains were the precuneus and PCC of the DMN (Kang
et al., 2013). Additionally, a study that looked at functional
magnetic resonance imaging (fMRI) scans of all meditation types
but not including SWDs (Brewer et al., 2011) demonstrated
that experienced meditators compared with controls showed
decreased activity in the DMN including themain hub precuneus
(Laird et al., 2009).

Previous studies demonstrated that long-term meditation
practice is associated with altered resting brain activity which
suggests long lasting activity changes persist in the brain (Lutz
et al., 2004). The following cross-sectional studies demonstrated
that meditation and experience dependent differences are

correlated with cortical thickness (Maguire et al., 2000; Mechelli
et al., 2004; Lazar et al., 2005). Significant positive associations
were also evidenced between the cognitive ability factor and
cortical thickness in most multimodal association areas in a
large sample of healthy children and adults (Karama et al.,
2009). Moreover, a relationship between cortical thickness
and functional activation in the early blind have also been
demonstrated recently (Anurova et al., 2014). A recent research
(Burge et al., 2016) demonstrated that cortical thickness in
human V1 is associated with central vision loss in 10 macular
degeneration patients in comparison to 10 controls in a cross-
sectional study that underlines the functional relationship
with the cortical thickness. Considering the motionless but
embodiment-related meditation study results that demonstrated
a functional depression on cortical hubs of body perception
networks, cortical thickness changes in experienced based cross-
sectional studies and loss of visual input reflections on thinner
relevant cortical areas, we theorized that there might also be a
decrease in cortical thickness of precuneus and PCC of the DMN
in SWDs as a results of the depressed or altered perceptions
of motion and embodiment inputs to induce the cortical
neuronal changes, resulting in the thinning of responsible
cortices. Any additional structural plasticity findings of the
SWDs’ cortical areas may also have the possibility to highlight
the plasticity of the motion related networks that may be
responsible for the alterations of the vertigo perception of SWDs.
Improvement of navigation softwares for non-invasive brain
stimulation techniques like Transcranial Magnetic Stimulation
(TMS) have enabled structural and functional mapping of the
brain and targetted stimulation of the specific cortical areas to
be performed. This study aimed to map the structural cortical
plasticity induced by Sufi whirling meditation as a unique human
model of vestibular system stimulation and plasticity to clarify
a network that may alter vertigo perception in SWDs and it
may also provide a potential cortical map for non-invasive brain
stimulation modalities to alleviate vertigo.

MATERIALS AND METHODS

Participants
It is noted that far fewer SWD ceremonies are performed in
Mevlevi-houses, as a result of secularization policies enforced by
government in the early 20th Century. Although, in the late 20th
Century, the Turkish government did again allow performances,
most of these have been confined to public tourist audiences
and are simplified to meet commercial requirements (Smeets,
2006). Consequently, it is difficult to select SWDs who perform
the whirling ceremony using the traditional physical and spiritual
method.

Ten (8 male, 2 female adults) right-handed traditional SWDs
with greater than 8 years and an average of 10.5 years of
whirling meditation (regular two whirling sessions each week)
and 10 (8 male, 2 female adults) meditation naive right-handed
controls were included into our study. The controls were
case-matched for the country of origin and location (Turkey,
Istanbul), primary language (Turkish) and demographics such
as sex, age, race, education and employment status (SWD mean
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age: 32 years (range: 26–44), 8 male, 2 female. Control group
mean age: 33 years (range: 26–44), 8 male, 2 female). Exclusion
criteria for all subjects were abnormalities in magnetic resonance
imaging (MRI), MRI incompatible implants and implanted
devices and general medical disorders or any clinically relevant
abnormalities. All subjects were free of medical, neurological and
psychiatric disorders.

All procedures of this study were carried according to
the principles and procedures outlined in the Declaration
of Helsinki for Medical Research involving human subjects.
The study was approved by the Ethics Committee (Prof.
Ihsan Solaroglu - Head of the ethical committee for non-
invasive human research. Institutional Review Board) at the
Koç University. Each Participant provided written informed
consent before entering the study and understood that s/he could
discontinue the study at any time.

Scanning Sequence
MRI scans of the participants were carried out on a 3T scanner
with an 8-channel head coil (MAGNETOM Verio, Siemens
Healthcare, Erlangen, Germany). The three-dimensional
magnetization prepared rapid acquisition gradient echo
sequence (3D T1-weighted MPRAGE). This was used to acquire
the volume data of the whole brain of all the participants.
3D T1-weighted MP-RAGE protocol (42) was used with
the following parameters: TR = 1670 ms, TE = 2.47 ms,
TI = 900 ms, flip angle 9◦, 176 slices scanned for sagittal plane
with 1.0 mm slice thickness and the scanning matrix was
256 × 256 with a field of view of 250 mm, resulting in a voxel
size of 1.0 mm × 1.0 mm × 1.0 mm. Total scan time for 3D
T1-weighted imaging was 3.47 min.

Anatomical Data Processing
Data Import, Preprocessing and Normalization
Raw MRI data from each subject was provided in DICOM
format. It was then imported and converted into BrainVoyager’s
internal ‘‘VMR’’ data format. Correction for inherent spatial
intensity inhomogeneities was applied according to Vaughan
et al. (2001). The data was then transformed into AC-PC position
and Talairach (TAL) standard space.

Cortex Segmentation
Segmentation of the gray/white matter boundaries was achieved
using the method of Kriegeskorte and Goebel, 2001. This
included automatic segmentation routines, followed by a ‘‘bridge
removal’’ algorithm, which ensured the creation of topologically
correct mesh representations. For the two resulting segmented
subvolumes, borders were tessellated to produce a surface
reconstruction of the left hemisphere (LH) and right hemisphere
(RH; Kriegeskorte and Goebel, 2001). All processing steps for
segmentation as well as cortical thickness calculation have
been thoroughly checked and evaluated by an expert. This
is an important part of the preparation for the cortical
thickness calculation in BrainVoyager, which is not directly
comparable to automated analysis approaches in other analysis
tools.

High-Resolution Intersubject Cortex Alignment
A high-resolution, multiscale cortex alignment procedure was
performed following the method of van Atteveldt et al. (2004).
This procedure substantially increased the statistical power
and spatial specificity of group analyses. Before performing
the group analysis on the basis of the subject-specific cortical
thickness maps, all the single subject maps have been aligned
using transformation matrices generated on the basis of cortical
alignment (Fischl et al., 1999). The Cortex-based alignment
approach (Fischl et al., 1999) has been specifically applied to the
data to allow a proper comparability between cortical structures
between subjects. Taken this into account, smoothing the cortical
thickness data was not necessary. The addition of smoothingmay
even prove to be more harmful than helpful. In this context,
multiple reference articles using BrainVoyager for analyzing
cortical thickness data don’t apply spatial smoothing (Davis et al.,
2008; Geuze et al., 2008; Strenziok et al., 2011; Van Swam et al.,
2012; Thorns et al., 2013).

Cortical Thickness Analysis
The normalized version of each VMR was prepared in the
following way to prepare the calculation of cortical thickness.
First, the VMR data was interpolated to a higher resolution
(0.5mm ∗ 0.5mm ∗ 0.5mm) version using a sinc interpolation. In
this new dataset, the ventricles and subcortical areas were filled,
using a standard intensity value. Using an automatic detection
approach, the cerebellum was removed. By applying a sigma
filtering step, the tissue contrast of the data was enhanced.

Next, the boundary between gray and white matter was
detected using a gradient-based adaptive approach. On the
basis of a dilation procedure, the border between gray matter
and Cerebrospinal fluid was detected. The final result of the
preparatory steps consists of a VMR representing only gray
and white matter in two grayscale/intensity values. To improve
the quality of the procedure, this dataset was compared to
the original VMR file in 0.5 mm resolution and corrected for
potential errors.

To calculate the cortical thickness in the whole cortex, Laplace
equations (Jones et al., 2000) were applied. The volumetric
cortical thickness values were sampled to standardized surface
meshes of the separate hemispheres using trilinear interpolation.

To correct the final result map showing group differences
in cortical thickness, the automated cluster-level thresholding
approach (Forman et al., 1995) was applied. This means that
every patch of interest (POI) exceeding a calculated size (square
mm on the surface mesh) is considered significant. The final
result map has on average a corrected false alarm level of
5%. A cluster defining the threshold (CDT) of p < 0.05 was
utilized. After applying the cluster level thresholding method,
each contiguous regions of interest on the surface reaching a size
beyond the calculated region size threshold (58 square mm for
the left and 65 square mm for the RH) was turned into a POI.
Based on the idea that there was no specific assumption about the
direction of a difference in cortical thickness between groups, a
two-sided t-test was performed to analyze the group differences.

For the surface-based analysis, a standardized mesh size was
applied to the cortical surface of every subject. The standardized
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mesh has exactly ‘‘40961’’ vertices per hemisphere (identical
for every subject) and thus solves a potential mapping issue
between regions and between subjects. For the group comparison
of the subject-specific cortical thickness surface maps, a simple
subtraction of the cortically aligned thickness values was
performed between two cohorts (Sufi dervishes and a control
cohort). The analysis was performed specifically for each of the
hemispheres based on the standard approach of segmentation
and cortex-based alignment in BrainVoyager QX. The separation
of hemispheres also allows for a more specific evaluation and
analysis of hemisphere-specific effects. The variability within and
between groups was also checked besides just using a t-test to
compare the groups. It is still important to check the details
within globally ‘‘detected’’ regions of interest. We have done
this to perform a ‘‘sanity check’’ of the data included within the
analysis and to explore the variability within and between groups.

RESULTS

Figure 1 shows regional differences in cortical thickness between
Sufi dervishes and control group displayed on the average surface
mesh (after applying the cortex-based alignment procedure
to obtain optimal fitting of cortical structures). An average
difference in cortical thickness of 0.10 mm for the LH and
0.15 mm for the RH was found. We compared the average
cortical thickness within each hemisphere between the groups
and found no significant differences within either of the
hemispheres (LH: t = 1.56, p = 0.14, RH: t = 2.07, p = 0.055).

Table 1 shows the cortical thickness differences between
Sufis and Controls for the whole brain and Table 2 shows the
significant clusters with their t, p values, X,Y,Z coordinates and
areas on both hemispheres.

On the basis of the detected POIs on the surface mesh,
corresponding TAL coordinates were extracted. This is based on
the referential connection between the underlying TALVMR and
the cortical surface meshes created afterwards.

Based on external analysis of the coordinates using the
‘‘Talairach daemon’’ database (Lancaster et al., 1997) was
performed. The results are displayed in Table 2. Figure 1
demonstrates surface maps for the statistically significant
differences of cortical thickness between groups (Sufi–Controls)
in both hemispheres : four POIs for the RH and five POIs for
the LH.

TABLE 1 | The cortical thickness differences between Sufis and Controls
for the whole brain.

Sufis Controls Difference

LH

Average thickness (mm) 2.92 3.02 −0.10
Maximum thickness (mm) 3.11 3.28 −0.17
Standard deviation 0.16 0.15 0.01
RH

Average thickness (mm) 2.90 3.05 −0.15
Maximum thickness (mm) 3.20 3.22 −0.02
Standard deviation 0.19 0.13 0.06

LH, Left hemisphere; RH, Right hemisphere.

DISCUSSION

The present study demonstrates differences in cortical thickness
analysis between the 10 SWDs brain and 10 control cases as
a proof of structural plasticity potentially induced by whirling
meditation of SWDs.

Cortical thickness analysis, as structural plasticity reflection,
is considered one of the best tools to reveal prolonged effects of
meditation on the cerebral cortex. It has been well documented in
the literature that meditation exercises including Zen meditation
induce cortical plasticity in specific cortical zones as thickened
gray matter (Lazar et al., 2005; Pagnoni and Cekic, 2007; Hölzel
et al., 2008, 2010; Luders et al., 2009; Vestergaard-Poulsen
et al., 2009; Grant et al., 2010, 2013). While the study by
Lazar et al. (2005) demonstrated increased cortical thickness
in the insula and prefrontal regions, yet Kang et al. (2013)
demonstrated increased cortical thickness in the frontal and
temporal regions only, and decreased cortical thickness in
the DMN including the main hubs precuneus and PCC with
different type of meditations. These findings are supported by
fMRI studies by Brewer et al. (2011). Brewer et al. (2011)
demonstrated decreased activity in the hubs of the DMN after
numerous types of meditation. Cortical thickness results of the
SWDs in this study showed similar results to Brewer et al.
(2011) and Kang et al. (2013) reports for the DMN plasticity.
There were four thinner cortical areas in the RH, and five
thinner in the LH including the hubs of DMN as precuneus
and PCC. There were no thicker cortical areas compared with
the control group. The thinner cortical zones of SWDs were
the Precuneus, PCC and on both hemispheres and middle
temporal (MT)/visual area 5 (V5) and fusiform gyrus on the
left and Dorsolateral Prefrontal cortex (DLPFC) and lingual
gyrus on the RH. With the SWDs having meditation practice
combined with movement, the results obtained in the left
MT/V5, fusiform gyrus and Right DLPFC and DMN hubs may
all underline the altered vertigo perception in whirling motion
of SWDs.

FIGURE 1 | Thinner Cortical areas in Sufi Dervishes (Sufi > Controls).
All regions are based on cluster thresholding.
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TABLE 2 | The significant clusters with their t, p values, X, Y, Z coordinates and areas on both hemispheres.

Cortical area TAL X TAL Y TAL Z t p Square mm

Left hemisphere

POI 1 Fusiform gyrus, temporal lobe −42 −48 −10 −3.9369 0.0010 76.90
POI 2 Fusiform gyrus, occipital lobe −27 −66 −5 −3.9400 0.0010 111.90
POI 3 MT/V5 −48 −50 5 −4.6672 0.0002 61.15
POI 4 PCC −12 −19 43 −4.0061 0.0008 92.80
POI 5 Precuneus, PCC −8 −35 33 −3.8878 0.0011 65.33
Right hemisphere

POI 1 Lingual gyrus 14 −53 −2 −4.2423 0.0005 80.88
POI 2 precuneus, parieto-occipital sulcus 11 −66 19 −3.8815 0.0011 74.91
POI 3 PCC, precuneus 5 −33 36 −4.6599 0.0002 88.32
POI 4 DLPFC 39 35 20 −3.9253 0.0010 76.8

Altered Perception of Motion and Vertigo
Left MT/V5
Our results demonstrated a thinner Left MT/V5 in the LH of the
SWDs. In previous studies that have explored V5/MT, the left
MT/V5 was shown to have more robust involvement in motion
detection (Beckers andHömberg, 1992; Stewart et al., 1999; Antal
et al., 2004; Schwarzkopf et al., 2011; Tadin et al., 2011; Murd
et al., 2012).

The dominance of left V5/MT may explain the thinner
V5/MT on the LH of the SWDs. With the depressed function
of left V5/MT, the perception of the movement during whirling
meditation may be depressed and as a consequence, the
possible physiological and motor responses to whirling motion
perception may be inhibited. In addition to robust function of
left V5/MT onmotion perception, discrimination function is also
found to be related with the left V5/MT rather than the right
V5/MT (Cornette et al., 1998).

Fusiform Gyrus, Right DLPFC and Change Detection
Fusiform gyrus is well known for its face detection function but it
also discriminates between places; particularly in the medial and
anterior portions of the fusiform gyrus. Conscious detection of
visual changes including face and place changes mostly relies on
regions of the ventral visual cortex including the fusiform gyrus,
but also the right DLPFC (Beck et al., 2001). The left fusiform
gyrus is also found to be related with the non-face related visual
changes (Rangarajan et al., 2014). Further, left fusiform gyrus
showed greater activity when participants attended to changes in
face parts than to changes in whole face. The opposite pattern was
demonstrated in the right FFA (Rossion et al., 2000).

The role of right DLPFC in visual change awareness has
been demonstrated by fMRI and TMS studies (Beck et al., 2001;
Turatto et al., 2004). The right DLPFC is activated with place
changes and it has been shown to be non-active in the cases
of change blindness by fMRI and TMS studies (Beck et al.,
2001). Additionally, it is demonstrated that activation of ventral
occipitotemporal cortex, including lingual gyrus, is also related to
the processing of visual information for human faces (McCarthy
et al., 1991).

Our analyses showed that in the SWDs cortex, the fusiform
gyrus were thinner on the left and lingual gyrus and DLPFC were
thinner only on the right side. By doing so, SWDs may also have

an altered state of place change perception, especially important
for keeping the body stability in the case of a whirling meditation
which includes a continuous place change stimulation for the
place change detection areas of fusiform gyrus, lingual gyrus and
right DLPFC.

Precuneus, Egocentric Framework and Default
Network Hubs
In three dimensional spaces, humans navigate themselves with
the aid of spatial relationship references. Two different type
of spatial reference coding frameworks (or frame of reference)
are allocentric and egocentric abilities. While the allocentric
ability depends on object to object positional references and is
independent from self-position, the egocentric ability depends
on self to object positional references (Vogeley and Fink,
2003; Gramann et al., 2006). Research on the cortical regions
related to these two distinct frameworks has revealed that
egocentric conditions have activations exclusively within the
precuneus in comparison to allocentric conditions (Gramann
et al., 2006). The precuneus as a location of the egocentric
representation does the updating during self-motion and it
is demonstrated that it is the only region for working
memory of directional updating (Land, 2014). The precuneus
is considered as a machinery of self-perception that builds
a conscious self-perception by providing continous data of
external space to maintain a synchronous relationship with
the body in the move and the objects in the environment
(Land, 2014). In this study, bilateral thinner precuneus in
SWDs was shown. Thinner precuneus may underline the role
of egocentric framework depression to aid the extraordinary
whirling ability of SWDs in addition to the role of depressed
activations of left MT/V5 and fusiform gyrus and right DLPC
and lingual gyrus. The last but not the least, it has been
shown that the electrical cortical stimulation of the precuneus
produce vestibular sensations and implicating the role of
precuneus for vestibular information processing (Wiest et al.,
2004).

The Default Mode and Subsystems
A recent analysis of the DMN neuroimaging studies suggests
the precuneus is the core node or the hub of the DMN
(Andrews-Hanna, 2012). Activation of both the DMN core hub
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precuneus and prefrontal cortex has been found to be related
to self-perception and mind wandering (Kjaer and Lou, 2000;
Kjaer et al., 2002). Imaging studies have shown that these areas
are deactivated in the case of altered states of consciousness
including vegetative state, hypnosis and sleeping (Maquet et al.,
1997, 1999; Laureys et al., 1999; Hobson et al., 2000; Maquet,
2000). It has also been observed that the precuneus is one of
the first zones to be reactivated in the case of a reconsciousness
(Laureys et al., 2004, 2006).

In addition to bilateral thinner precuneus in SWDs, the
posterior cingulate gyrus was thinner. In the context of thinner
precuneus and posterior cingulate gyrus in SWDs’s brains, it
has been shown that these becomes progressively deactivated
in anesthetic sedation states (Alkire et al., 1999; Fiset et al.,
1999). Additionally, independent researchers have observed that
coactivation of precuneus and PCC occurs when processing
intentions related to self (Vogeley and Fink, 2003; den Ouden
et al., 2005).

The outcomes of the present study may open a new era in
the field of vertigo therapy. This is because if whirling based
movement achieves inhibition of the self-perception and motion
related regions such as left V5/MT, fusiform gyrus, right DLPFC
precuneus and PCC and the DMN hub, then this may underline
the cortical plasticity for a network of resistance to vertigo
perception. Targeting these areas to inhibit by interventional
non-invasive brain stimulation tools may achievemaintenance of
balance when conditions of extreme spatial and proprioception
information occur in addition to pathological conditions that
trigger vertigo.

Mood
A possible mood enhancing effect of the defined structurally
plastinated cortical areas in the present study is worth to give an
attention.

In the theory of mind, the DMN activity as a self-awareness
state is correlated with the neuronal representation of
mind-wandering (Kjaer and Lou, 2000; Kjaer et al., 2002).
This DMN is active at all times except when suppressed by other
networks, stimulated by other states, and its activity is correlated
with lower levels of Happiness (Killingsworth and Gilbert, 2010;
Brewer et al., 2011). Gusnard and Raichle (2001) demonstrated
that the goal-directed cognitive process can decrease the activity
of precuneus, the core hub of the DMN or mind-wandering
network of the brain. Therefore, it is theorized that prolonged
periods of goal-directed cognitive processes may decrease
the mind-wandering activity in the SWD’s brain because the
precuneus activity has been decreased. fMRI data results from
the Brewer et al. (2011) study on the DMN of the experienced
meditators showed that the DMN main nodes, including medial
prefrontal cortex and PCC areas extending to precuneus were
relatively deactivated. Further, precuneus and PCC have been
observed as thinner and concluded to be so as a response to
meditation (Kang et al., 2013). In line with these results, the
structural cortical thickness analysis of the two cohorts in this
study showed that the experienced SWDs had bilateral thinner
PCC and precuneus zones. It can be therefore be theorized
that the prolonged period of decreased activity in the PCC and

precuneus may result in the thinner zones in the SWDs. As
the DMN activity presented thinner in the SWDs, this is likely
related to suppressed mind wandering, and as a consequence,
this plasticity may improve the happiness level in SWDs. These
results justify further studies to clarify the potential effects of
SWDs’s unique meditation on their moods and depression levels.

Behavior
In addition to potential mood enhancing effects by Whirling
Meditation as achieved with decreased mind wandering, or
by DMN activity as achieved with other types of meditation,
decreased activity in the DLPFCmay contribute to the behavioral
attribute of honesty. As the precuneus stands as a core hub
for the DMN, the DLPFC stands as a core hub for the
executive network (Beaty et al., 2015). It has been shown that
to achieve creative idea production, there is a coupling of the
PCC and precuneus of the DMN with the right DLPFC of the
executive network (Beaty et al., 2015). It has also been shown
that increased task complexity or increased rule complexity is
accompanied by increased activation in the right DLPFC and
precuneus (Jia et al., 2015). In the case of lying, we need a
creative idea production process and to consider long-term
benefits. It has been shown that disruption of the right DLPFC
leads to a greater selection of both gains and losses that have
better immediate but worse long-term alternatives (Essex et al.,
2012). It has also been shown that when the right DLPFC
activity was disrupted using TMS, subjects were statistically
less inclined to lie about the subject matter tested (Karton and
Bachmann, 2011). Regarding the decreased thickness in the right
DLPFC in SWDs, it may be theorized that this contributes to
improve their behavioral attitude of honesty. It may also be
speculated that the decrease in the thickness of fusiform and
right DLPFC contributes to decreased discrimination of places
and faces, and that such an altered perception of the world
and people is also a result of SWDs’s meditations. Further
studies are needed to investigate whether the suppression of
cortical areas related with discriminational perception leads
to less selfish, egocentric behavior and increased level of
happiness.

Neuroprotection
The DMN activity is also found to be related to Alzheimer’s
disease (Bero et al., 2011). Bero et al. (2011) demonstrated
that increased amyloid-β deposition overlaps with the DMN,
including the core hub, precuneus and PCC regions. This
overlapping is attributed to the higher metabolic activity of the
DMN. The decreased thicknesses of these regions in SWDs
cortex that are shown in the present study may underline a
possible whirling meditation protective effect of over Alzheimer
disease by its possible effect of decreasing the amyloid-β
deposition in these regions because of their decreased activity in
SWDs.

Limitations
The current study used a cross-sectional design and it is
performed on a small group of SWDs. As a result of the cross-
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sectional character of the study, the results are correlational
and an absolute relationship between the cortical thinning
and whirling experience can not be suggested. In addition, it
may also be argued that individuals who have such cortical
properties are more likely becoming a Sufi whirling Dervish.
On the other hand, it is worth to note that there are numerous
factors to consider that relate the outcomes of the present study
to whirling experience. This is a cross-sectional study in a
very unique (and rare) group who had traditional training for
whirling (approximately 1 year in most of the cases) and each
of them reported that they were falling down when they try
to whirl in the first months of the whirling training sessions.
This indicates that they did not have a unique previous ability
that was superior to the predisposition of the control group.
After the long-term training, they gained an ability to whirl
without vertigo. The present cross-sectional study focused on
experienced Sufis that passed through the same traditional
whirling training that enabled them to whirl for an hour without
falling. In this context, the detected structural differences are
more likely to be specific to motion perception and body
perception networks. As the analyses were performed without
visual input, the outcomes of these areas are free of bias. Analyses
within the article were almost not separated but discussed
in the context of relevant networks. The structural cortical
plasticity that was demonstrated in SWDs were distributed over
the body/motion perception areas, therefore the discussion was
focused on the possible relationships of the structural plasticity
of the body/motion perception areas and their potential role to

alter vertigo perception. In sum, we only explained the results on
the basis of the previous work which was the most fitting way
for the data obtained in this cross-sectional article. Longitudinal
studies are needed to clarify the role of these areas in vertigo
perception.

The outcomes of this cross-sectional study in a rare and
unique group (whirling Sufi dervishes) warrants cortical zones
which may have significant roles to alter vertigo/dizziness and
address those areas for future studies. In conclusion, this is
the first report that demonstrates correlations of the structural
cortical plasticity and the prolonged period of vestibular system
stimulation in humans.
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