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Inflammation and altered immune response are important components of obesity and
contribute greatly to the promotion of obesity-related metabolic complications, especially
cancer development. Adipose tissue expansion is associated with increased infiltration
of various types of immune cells from both the innate and adaptive immune systems.
Thus, adipocytes and infiltrating immune cells secrete pro-inflammatory adipokines and
cytokines providing a microenvironment favorable for tumor growth. Accumulation of B
and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade
inflammation. Phenotypic switching toward M1 macrophages and Th1 T cells constitutes
an important mechanism described in the obese state correlating with increased tumor
growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue
include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress,
and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk
between tumor cell/immune cell/adipocyte. In this sense, future therapies should take
into account the combination of anti-inflammatory approaches that target the tumor
microenvironment with more sophisticated and selective anti-tumoral drugs.
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INTRODUCTION
The incidence of obesity and its associated disorders is increas-
ing at an accelerating and alarming rate worldwide (Flegal et al.,
2012; Frühbeck et al., 2013). Relative to normal weight, obesity is
associated with significantly higher all-cause mortality (Frühbeck,
2010; Flegal et al., 2013). Body mass index (BMI) represents the
most used diagnostic tool in the current classification system of
obesity, frequently used as an indicator of body fat percentage
(BF). The controversy in studies (Hughes, 2013) arises in part
because a wide variety of BMI cutoffs for normal weight has been
applied to correlate with mortality which can yield quite diverse
findings. Furthermore, in spite of its wide use, BMI is only a
surrogate measure of body fat and does not provide an accurate
measure of body composition (Frühbeck, 2012; Gómez-Ambrosi
et al., 2012). Noteworthy, obesity is defined as a surplus of body
fat accumulation, with the excess of adipose tissue really being
a well-established metabolic risk factor for the development of
obesity-related comorbidities such as insulin resistance, type 2
diabetes (T2D), cardiovascular diseases and some common can-
cers (Bray, 2004; Kahn et al., 2006a; Van Gaal et al., 2006; Renehan
et al., 2008; Bardou et al., 2013).

Results from epidemiological studies indicate that overweight
and obesity contribute to the increased incidence and/or death
from quite diverse types of cancers, including colon, breast
(in postmenopausal women), endometrium, kidney (renal cell),
esophagus (adenocarcinoma), stomach, pancreas, gallbladder and
liver, among others (Calle and Kaaks, 2004). The mechanisms
linking excess of adiposity and cancer are unclear but the obesity-
associated low-grade chronic inflammation is widely accepted

as an important factor in cancer pathogenesis (Catalán et al.,
2011d; Hursting and Dunlap, 2013). Chronic hyperinsulinaemia
as well as the alterations in the production of peptide and
steroid hormones associated to obesity are other postulated
mechanisms involved in cancer development (Calle and Thun,
2004). Particular attention is placed on the pro-inflammatory
microenvironment associated with the obese state (Catalán et al.,
2011d; Ribeiro et al., 2012; Hursting and Dunlap, 2013), specif-
ically highlighting the involvement of obesity-associated hor-
mones/growth factors in the cross-talk between macrophages,
adipocytes, and epithelial cells in many cancers. Among the vari-
ous pathophysiological mechanisms postulated to explain the link
between obesity and cancer, the dysfunctional adipose tissue may
be a unifying and underlying factor (van Kruijsdijk et al., 2009).
Understanding the contribution of obesity to growth factor sig-
naling and chronic inflammation provides mechanistic targets for
disrupting the obesity-cancer link (Harvey et al., 2011).

In this regard, obesity prevention is a major part of several
evidence-based cancer prevention guidelines (Kushi et al., 2012).
Recent studies exploring the effect of weight loss, suggest that
severe caloric restriction in humans may confer protection against
invasive breast cancer (Michels and Ekbom, 2004). This protec-
tive effect includes reductions in the initiation and progression
of spontaneous tumors in several tissues (Longo and Fontana,
2010). Moreover, the association between obesity and cancer is
consistent with data from animal models showing that caloric
restriction decreases spontaneous and carcinogen-induced tumor
incidence (Dunn et al., 1997; Yun et al., 2013). Both bariatric
surgery and short-term intentional weight loss have been shown
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to improve insulin sensitivity and inflammatory state, which have
been postulated to contribute to the relationship between obesity
and cancer (Sjöström et al., 2007; Cummings et al., 2012).

THE IMPORTANCE OF OBESITY-INDUCED CHRONIC
INFLAMMATION
Adipocytes, the principal cellular component of adipose tissue,
are surrounded by connective tissue comprising macrophages,
fibroblasts, preadipocytes, and various cell types included in
the stromovascular fraction (Hausman et al., 2001; Nishimura
et al., 2007; Cinti, 2012). Although adipocytes have been con-
sidered primarily as fat-storage depots, in recent years, it has
become clear that together with other metabolically active organs,
adipose tissue is a dynamic endocrine system key in the regula-
tion of whole body energy homeostasis (Frühbeck et al., 2001a;
Ahima, 2006; Sáinz et al., 2009). Indeed, mature adipocytes are
involved in endocrine, paracrine, and autocrine regulatory pro-
cesses (Ahima and Flier, 2000) through the secretion of large
number of cytokines, hormones and other inflammatory mark-
ers, collectively termed adipokines (Lago et al., 2007, 2009;
Lancha et al., 2012). In addition to playing key roles in the reg-
ulation of the lipid and glucose homeostasis, adipokines modify
physiological processes, such as hematopoiesis, reproduction, and
feeding behavior, being also involved in the genesis of the mul-
tiple pathologies associated with an increased fat mass including
cancer development (Rajala and Scherer, 2003). However, adipose
tissue not only secretes adipokines but also functions as a target
of these pro-inflammatory mediators, expressing a wide variety
of receptors for cytokines, chemokines, complement factors, and
growth factors (Frühbeck, 2006a,b; Schäffler and Schölmerich,
2010).

The connection between inflammation and diabetes was sug-
gested more than a century ago (Williamson, 1901), but the
evidence that inflammation is an important mediator in the
development of insulin resistance came recently. It was described
that the administration of tumor necrosis factor-α (TNF-α) led
to increased serum glucose concentrations (Feingold et al., 1989).
The first study that established the concept of obesity-induced
adipose tissue inflammation was conducted by Hotamisligil et al.
(1993), demonstrating that the pro-inflammatory cytokine TNF-
α mediate insulin resistance in many experimental models of
obesity. Importantly, the development of adipose tissue has been
associated with increased plasma levels of well-known inflam-
matory and acute phase proteins such as C-reactive protein,
interleukin (IL)-6, IL-8, serum amyloid A (SAA) and mono-
cyte chemotactic protein (MCP)-1 in patients and different
animal models of obesity (Frühbeck et al., 1995; Wellen and
Hotamisligil, 2003; Frühbeck, 2005; Gómez-Ambrosi et al., 2006;
Kahn et al., 2006b; Kim et al., 2006; Catalán et al., 2007,
2008), whereas production of the anti-inflammatory and insulin-
sensitizing adipokine adiponectin is reduced with increasing
body weight (Kadowaki et al., 2006). In obesity, the activation
of the c-Jun N-terminal kinase (JNK) and nuclear factor κB
(NF-κB) transduction signals is key in the inflammation pro-
cess of adipose tissue and these pathways could interact with
insulin signaling via serine/threonine inhibitory phosphoryla-
tion of IRS (Bastard et al., 2006; Gil et al., 2007). Genetic or

pharmacological manipulations of these different effectors of the
inflammatory response modulate insulin sensitivity in different
animal models.

Recent data suggest that stromovascular cells also contribute
to the secretion of inflammatory adipokines. In this sense, the
infiltration of adipose tissue by immune cells is a feature of obe-
sity, with adipose tissue macrophage (ATM) accumulation being
directly proportional to measures of adiposity in both mice and
humans (Weisberg et al., 2003). This evidences a role of adipose
tissue as part of the innate immune system.

ADIPOSE TISSUE INFLAMMATION, A MICROENVIRONMENT
FOR TUMORIGENESIS
Analogously to adipose tissue, the tumor microenvironment is
composed by multiple cell types including epithelial cells, fibrob-
lasts, mast cells, and cells of the innate and adaptive immune
system that favor a pro-inflammatory and pro-tumorigenic envi-
ronment (Harvey et al., 2011). These inflammatory cells secrete
cytokines, growth factors, metalloproteinases, and reactive oxy-
gen species, which can induce DNA damage and chromo-
somal instability, thereby favoring carcinogenesis (Khasawneh
et al., 2009). The abundance of leukocytes in neoplasic tissue
was crucial to establish the link between chronic inflamma-
tion and cancer development (Virchow, 1863). Now, inflam-
mation is a well-known hallmark of cancer, and growing
evidence continues to indicate that chronic inflammation is
associated with increased cancer risk (Aggarwal and Gehlot,
2009).

The expanded adipose tissue constitutes an important ini-
tiator of the microenvironment favorable for tumor develop-
ment (Catalán et al., 2011d) due to its ability to produce
and secrete inflammatory cytokines by adipocytes or infiltrat-
ing macrophages (Xu et al., 2003). Noteworthy, novel adipokines
[lipocalin-2 (LCN-2), osteopontin (OPN) and YKL40] related
to inflammation and insulin resistance with emerging roles in
tumor development have been recently described to be increased
in adipose tissue from patients with colon cancer (Catalán et al.,
2011d).

In this line, periprostatic adipose tissue of obese subjects shows
a dysregulated expression of genes encoding molecules involved
in inflammatory processes including antigen presentation, B cell
development, and T helper cell differentiation. Moreover, subjects
with prostate cancer display an altered profile of genes with great
impact on immunity and inflammation in their periprostatic
adipose tissue (Ribeiro et al., 2012). The up-regulation of comple-
ment factor H and its receptor in periprostatic adipose tissue from
patients with prostate cancer has been also described, suggesting
an inhibitory modulation of the complement activity in prostate
tumor cells and evasion to attack. Other altered molecules include
the B lymphocyte antigen CD20 encoded by the MS4A1 gene with
a functional role in B-cell activation and FFAR2 that encodes a
protein reported to modulate the differentiation and/or activation
of leukocytes (Ribeiro et al., 2012). This observation highlights
the bi-directional interactions between periprostatic adipose tis-
sue and tumor cells, which influence adipose tissue function and
may influence prostate cancer progression inducing an environ-
ment favorable to cancer progression.
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Clusters of enlarged adipocytes become distant from the
vasculature in expanding adipose tissue leading to local areas
of hypoxia and eventually necrosis. The reduction in oxygen
pressure associated with adipose tissue hypoxia is considered to
underlie the inflammatory response (Trayhurn et al., 2008; Ye,
2009; Trayhurn, 2013). The master regulator of oxygen homeosta-
sis is the hypoxia-inducible factor (HIF)-1α. HIF-1α is increased
in the adipose tissue of obese patients and its expression is
reduced after surgery-induced weight loss (Cancello et al., 2005).
It is well-documented that HIF-1α also influences both the
innate and the adaptive immunity regulating functions of myeloid
cells, neutrophils, macrophages, mast cells, dendritic cells, natu-
ral killer cells and lymphocytes (Eltzschig and Carmeliet, 2011).
Similarly to what takes place in tumor tissue, adipose tissue
hypoxia is related to the presence of macrophages, which migrate
to the hypoxic regions and alter their expression profile increasing
inflammatory events (Fujisaka et al., 2013). Hypoxia activation
is a critical microenvironmental factor during tumor progres-
sion with oxygen concentrations in solid tumors being frequently
reduced compared with normal tissues (Semenza, 2003; Jiang
et al., 2011). HIF-1α and HIF-2α are overexpressed in certain solid
tumors (Zhong et al., 1999; Talks et al., 2000), with these ele-
vated levels being associated with cancer-related death in specific
tumoral types of the brain (oligodendroglioma), breast, cervix,
oropharynx, ovary, and uterus (endometrial) (Semenza, 2003).
HIF-2α is also strongly expressed by subsets of tumor-associated
macrophages, sometimes in the absence of expression in any
tumor cell (Talks et al., 2000). Overall, hypoxia has effects on the
function of adipocytes and appears to be an important factor in
adipose tissue dysfunction in obesity increasing the risk of cancer
development.

Moreover, hypoxia is a primary physiological signal for angio-
genesis (growth of blood vessels) in both physiological and patho-
logical conditions. Angiogenesis is a physiological response that
regulates adipogenesis representing a hallmark of tumor growth
(Hanahan and Folkman, 1996; Carmeliet and Jain, 2000; Cao,
2007). Adipocytes seem regulate angiogenesis both by cell to cell
contact and by adipokine secretion (Cao, 2007; Lemoine et al.,
2013). In this regard, many cytokines produced by adipose tissue
show angiogenic activities such as leptin, TNF-α, IL-6, IL-8, vas-
cular endothelial growth factor (VEGF) and tumor growth factor
β (TGF-β) (Ferrara and Kerbel, 2005; Ye, 2009; Gómez-Ambrosi
et al., 2010).

The blocking of tumor angiogenesis as an anticancer strat-
egy has shown desirable results across multiple tumor types
(Folkman, 1971; Schneider et al., 2012). The standard chemother-
apy usually results in partial or total resistance after different
cycles of treatment (Kerbel, 1997). Based on the hypothesis that
endothelial cells have a normal complement of chromosomes and
a relative genetic stability, the use of inhibitors of angiogene-
sis may avoid acquired drug resistance (Kerbel, 1997). Current
pharmacotherapeutic options for treating obesity and related
metabolic disorders remain limited and ineffective. Emerging
evidence shows that modulation of angiogenesis is a possible
therapeutic intervention to impair the development of obesity
by regulating the growth and remodeling of the adipose tissue
vasculature (Rupnick et al., 2002; Cao, 2010). Adipose tissue

growth is angiogenesis-dependent (Rupnick et al., 2002) and
the modulation of angiogenesis appears to have the potential to
impair the development of obesity (Lijnen, 2008). Studies in mice
have shown that the administration of anti-angiogenic agents
prevents diet-induced or genetic obesity (Brakenhielm et al.,
2004a). Genetically obese mice treated with different angiogenesis
inhibitors such as TNP-470, angiostatin, endostatin, Bay-129566,
a matrix metalloproteinase inhibitor, or thalidomide showed
reduced body and adipose tissue weights as well as increased
apoptosis in the adipose tissue compared with control mice
(Rupnick et al., 2002). In this regard, targeting a proapoptotic
peptide to prohibitin in the adipose vasculature caused ablation of
white fat in both, diet-induced and age-related obesity (Kolonin
et al., 2004). Recently, the antiangiogenic treatment blocking
VEGFR2 by antibodies but not of VEGFR1 has been described to
limit adipose tissue expansion (Tam et al., 2009). To evaluate the
effects of the different antiangiogenic agents characterized in the
cancer field in obesity models in vivo may be an attractive target
to limit adipose tissue expansion. However, a too strong inhibi-
tion of adipose tissue expansion by impairing angiogenesis may
lead to ectopic lipid storage, increased inflammation, and fur-
ther deterioration of systemic insulin sensitivity (Sun et al., 2012;
Lemoine et al., 2013). Moreover, adipose tissue development is
a multifactorial process and it is unlikely that a single angiogen-
esis inhibitor will allow reduction of obesity without associated
side effects (Lijnen, 2008). Thus, blocking the capacity for angio-
genesis may have different outcomes, depending on the stage of
obesity.

IMMUNE CELL TYPES PRESENT IN EXPANDED ADIPOSE
TISSUE
In cases of severe obesity, adipose tissue can constitute up to
50–60% of the total body mass being the expanded adipose tis-
sue a largely uncharacterized immunological organ with distinct
subpopulations of cells of the immune system (Kanneganti and
Dixit, 2012). Furthermore, excess of body fat is accompanied by
altered immune cell function and different expression profile of
genes related to immunity in obese human subjects compared
with healthy-weight individuals (Gómez-Ambrosi et al., 2004).
Discrepancies in leukocyte number, subset, and activity of mono-
cytes between lean and obese individuals have been reported
(Nieman et al., 1999). Adipose tissue has been shown to exhibit a
dynamic infiltration by innate and adaptive cells during the onset
of insulin resistance and diet-induced obesity (Duffaut et al.,
2009). The observation of infiltrated macrophages in the adipose
tissue of obese patients prompted an increased interest in the
interplay between immune cells and metabolism. Recent stud-
ies have revealed a growing list of immune cell types (including
macrophages, lymphocytes, mast cells, eosinophils neutrophils
and foam cells) that infiltrate adipose tissue and have potential
roles in insulin resistance (Olefsky and Glass, 2010; Dalmas et al.,
2011; Wu et al., 2011; Shapiro et al., 2013) (Figure 1).

The role of adaptive immune cells in obesity-induced adi-
pose tissue inflammation has been less characterized than that
of innate immune cells. Based on studies in mouse models,
lymphocyte infiltration in adipose tissue might occur in a chrono-
logical sequence. B and T lymphocytes are recruited during early
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FIGURE 1 | Obesity is associated with a great infiltration of cells from both the innate and adaptive immune systems. The aberrant population
expansion of these cells is related to the onset of obesity-related comorbidities, primarily cancer development.

obesity-induced inflammation by preadipocytes or chemotactic
adipokines like CCL5, CXCL5, CXCL12, or CCL20. Furthermore,
the cytokines derived from Th lymphocytes reportedly modu-
late macrophage phenotype switching, which is directly linked to
insulin resistance (Sell et al., 2012).

To explain the chronological order of how immune cells
infiltrate adipose tissue in obesity, it has been proposed that
T cells may stimulate preadipocytes to induce the recruitment
of macrophages via chemotactic factors such as MCP-1, shed-
ding new light on the importance of chemotaxis in this scenario
(Kintscher et al., 2008).

INNATE IMMUNE SYSTEM IN ADIPOSE TISSUE
Macrophages and monocytes are representative of the innate
immune system and represent a large proportion of the stro-
movascular cell fraction in adipose tissue. Several cell types of the
innate immune system are involved in the development of adipose
tissue inflammation and the most studied cell type among these
is the ATM (Kalupahana et al., 2012). Neutrophils and mast cells,
also members of the innate immune system have been also impli-
cated in promoting inflammation and insulin resistance during
obesity, whereas eosinophils and myeloid-derived suppressor cells
have been suggested to play a protective role (Wu and Van Kaer,
2013).

MONOCYTES AND MACROPHAGES IN ADIPOSE TISSUE
The majority of macrophages found in the adipose tissue of
diet-induced obese mice are originated from blood monocytes
(Weisberg et al., 2003; Dalmas et al., 2011). Monocytes are a
heterogeneous cell population that differ in their migration and
cell fate properties (Saha and Geissmann, 2011). The pheno-
type of macrophages depends on the subset of monocytes upon

arrival at target tissues being probably determined by the local
microenvironment (Dalmas et al., 2011). The number of resi-
dent macrophages present in adipose tissue was found to correlate
positively with obesity in various mouse models and in human
adipose tissue (Weisberg et al., 2003; Xu et al., 2003). Thus, it is
possible to speculate that macrophages might be involved in the
growth of the fat mass in a similar manner to that described in
tumors (Curat et al., 2004).

Based on their cytokine profile secretion and cell surface mark-
ers, ATMs are classified into two main types: the “classical”
macrophages named M1 in contrast to the “alternatively acti-
vated” M2. M1 macrophages are the first line of defense against
intracellular pathogens with high microbicidal activity and are
classically stimulated by interferon (IFN)-γ or by lipopolysaccha-
ride (LPS). M1 induce the secretion of inflammatory cytokines
(IL-1, IL-6, TNF-α, MCP1) and reactive oxygen species, and nitric
oxide (NO) through the stimulation of inducible NO synthase
(iNOS) (Lumeng et al., 2008). Alternative activation, resulting
from induction by the Th2 cytokines interleukin IL-4 and IL-
13 (Gordon, 2003) is associated with tissue repair and humoral
immunity producing immunosuppressive factors, such as IL-
10, IL-1Ra, and arginase (Gordon and Taylor, 2005). Obesity
induces a phenotypic switch from an anti-inflammatory M2-
polarized state to a pro-inflammatory M1 state (Lumeng et al.,
2007). The importance of the M1/M2 ratio has been reported
in macrophage-specific Pparg-deficient mice that show impaired
alternative macrophage activation, increased development of obe-
sity and adipose tissue inflammation as well as glucose intolerance
(Odegaard et al., 2007). The identification of the signaling path-
ways that control macrophage polarization in expanding adipose
tissue remains a challenging issue. In this sense, it has been
described that the local hypoxia in expanding adipose tissue
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may promote the M2 to M1 switching (Ye and McGuinness,
2013). Moreover, a recent study in Trib1-deficient mice has
shown a severe reduction of M2-like macrophages in adipose
tissue highlighting the contribution of Trib1 for adipose tissue
homeostasis by controlling the differentiation of tissue-resident
M2-like macrophages (Satoh et al., 2013).

INVOLVEMENT OF NEUTROPHILS, EOSINOPHILS, AND MAST CELLS IN
OBESITY
The notion that a transient “acute inflammatory infiltrate” pre-
cedes the “chronic inflammatory infiltrate” in obesity and that
neutrophils play a key role (Wagner and Roth, 2000) produc-
ing chemokines and cytokines, thereby facilitating macrophage
infiltration has been proposed (Talukdar et al., 2012). In this
line, adipose tissue neutrophils could have a role in initiating the
inflammatory cascade in response to obesity based on the fact
that mice fed with a high-fat diet show an increase in neutrophil
recruitment to adipose tissue peaking at 3–7 days and subsid-
ing thereafter (Elgazar-Carmon et al., 2008). The treatment of
hepatocytes with neutrophil elastase causes cellular insulin resis-
tance while deletion of neutrophil elastase in obese mice leads to
reduced inflammation (Talukdar et al., 2012).

Although eosinophils are associated with allergic diseases and
helmintic infections (Rothenberg and Hogan, 2006), the biologic
role of these cells in adipose tissue remains incompletely defined
(Maizels and Allen, 2011). It has been shown that eosinophils are
the main source of IL-4 and IL-13 in white adipose tissues of
mice, and, in their absence, M2 macrophages are greatly atten-
uated (Wu et al., 2011). Moreover, in the absence of eosinophils,
mice which were fed a high-fat diet develop increased body fat and
insulin resistance (Wu et al., 2011). The promotion of eosinophil
responses can protect against metabolic syndrome (Wu et al.,
2011).

Mast cells, like macrophages, are inflammatory cells, but the
exact mechanisms of mast cells in the pathogenesis of obesity
are not fully understood. In this regard, increased mast cells in
adipose tissue from obese subjects compared with those of lean
subjects have been reported. Obese subjects also had significantly
higher tryptase concentrations in their serum than lean indi-
viduals. Mast cells may contribute to inflammation through the
secretion of IL-6 and IFN-γ (Stienstra et al., 2011). Moreover,
mast cell number is related to fibrosis, macrophage inflamma-
tion and endothelial activation of adipose tissue in human obesity
(Divoux et al., 2012). These observations suggest a possible asso-
ciation between mast cells and obesity-associated inflammation
(Liu et al., 2009; Zhang and Shi, 2012).

ADAPTIVE IMMUNE SYSTEM IN ADIPOSE TISSUE
Recent advances in the field of adipose tissue biology reveal a
prominent role of different types of lymphocytes (T-lymphocytes,
B-lymphocytes, and natural-killer cells) in adipose tissue inflam-
mation depending on the obese state in parallel to macrophages
(Sell and Eckel, 2010).

T-LYMPHOCYTES IN ADIPOSE TISSUE
CD4+ T cells along with CD8+ T cells constitute the majority
of T-lymphocytes. Experimental data suggest that T-lymphocytes

might play a role in the development of insulin resistance dur-
ing obesity. In this sense, T-lymphocytes are described in visceral
and subcutaneous adipose tissue of obese mice and humans
(Bornstein et al., 2000) but the role of different subtypes of lym-
phocytes, CD4+, and CD8+ cells, in adipose tissue inflammation
remains largely unexplored. The increase in the number of T
cells in adipose tissue from diet-induced obesity mice is gender-
dependent, with higher numbers of T cells in obese males than in
females or lean males (Wu et al., 2007). Based on studies in mouse
models, lymphocyte infiltration in adipose tissue might occur
in a chronological sequence with T lymphocytes being recruited
during early obesity-induced inflammation by chemokines like
RANTES, a T-cell specific chemokine also known as CCL5 (Sell
et al., 2012). In this regard, the expression of RANTES and its
respective receptor CCR5 in visceral adipose tissue of morbidly
obese patients have been described (Wu et al., 2007).

CD4+ T cells are crucial in achieving a regulated effective
immune response to pathogens. In adipose tissue, CD4+ T
cells are mainly classified into the classical T-helper 1 (Th1)
and T-helper 2 (Th2) although new subsets have been identi-
fied including T-helper 17 (Th17), induced T-regulatory cells
(iTreg), and the regulatory type 1 cells (Tr1), among others
(Luckheeram et al., 2012). The roles for CD4+ T lymphocytes
in adipose tissue are related to the regulation of body weight,
adipocyte hypertrophy, insulin-resistance, and glucose tolerance.
Thus, CD4+ cells are key in the control of disease progression
in diet-induced obesity (Winer et al., 2009). Th1 cells show
a pro-inflammatory profile, secreting IFN-γ, which elicits the
production of macrophage mediators, induces leukocyte adhe-
sion molecules and chemokines, as well as increases antigen-
presenting capacity by macrophages and endothelial cells (Geng
and Hansson, 1992; Tellides et al., 2000). Interestingly, T cells
extracted from fat tissue of obese mice and stimulated in vitro
produced higher amounts of IFN-γ than those extracted from
lean animals. This finding suggests that obesity primes T cells
from adipose tissue toward a Th1 switch (Rocha et al., 2008).
Winer et al. (Winer et al., 2009) reported that the increase of
CD4+ T cells with obesity in mice is largely due to the accu-
mulation of IFNγ produced by Th1 cells. The elevated levels of
IFNγ also contribute to the classical activation of adipose tissue
macrophages, resulting in increased inflammation in adipose tis-
sue. On the other hand, Th2 are anti-inflammatory cells and are
a source of IL-4 and IL-13. In this regard, T cells may orchestrate
an inflammatory cascade, depending on the set of cytokines they
predominantly produce (Hansson and Libby, 2006). A dramatic
increase in the number of Th1 cells has been described in diet-
induced obesity states, whereas the number of Th2 cells remained
unchanged (Sell and Eckel, 2010).

T regulatory (Treg) cells are a small subset of T lympho-
cytes constituting normally 5–20% of the CD4+ compartment.
Tregs are critical in the defense against inappropriate immune
responses such as inflammation and tumorigenesis (Sakaguchi
et al., 2008) because they control the behavior of other T cell
populations and influence the activities of the innate immune sys-
tem cells (Maloy et al., 2003). Treg cells regulate the activities of
macrophages and adipocytes probably secreting IL-10, given their
association with improved insulin sensitivity in both rodents and
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humans (Scarpelli et al., 2006). It has been recently described that
the accumulation of Tregs in visceral adipose tissue is mediated
by the nuclear receptor peroxisome proliferator-activated recep-
tor (PPAR)-γ (Cipolletta et al., 2012). PPAR-γ tended to impose
the transcriptional characteristics of visceral adipose tissue Tregs
on naïve CD4+ T cells (Cipolletta et al., 2012). Tregs may be reg-
ulated by local hypoxia, increased adipocyte death and adipocyte
stress (Feuerer et al., 2009). The diminished Treg cells in obesity
could promote the infiltration of macrophages in adipose tissue
and, thereby, increase the production of inflammatory cytokines.

CD8+ T cells are involved in the initiation and propagation of
inflammatory cascades in obese adipose tissue (Nishimura et al.,
2009). CD8+ cells are required for adipose tissue inflammation
and have major roles in macrophage differentiation, activation
and migration (Nishimura et al., 2009). A study in mice reported
mainly CD8+ lymphocyte infiltration in hypoxic areas of epi-
didymal adipose tissue in mice fed a high-fat diet, whereas the
numbers of CD4+ and regulatory T cells were reduced (Rausch
et al., 2008). The infiltration by CD8+ T cells precedes the recruit-
ment of macrophages. Indeed, immunological and genetic deple-
tion of CD8+ T cells lowered macrophage infiltration and adipose
tissue inflammation as well as ameliorated systemic insulin resis-
tance (Rausch et al., 2008). Another study also demonstrates an
early T lymphocyte infiltration during the development of insulin
resistance in a mouse model of high fat diet-induced obesity as
well as a correlation of T cells with waist circumference in dia-
betic patients (Kintscher et al., 2008), highlighting the association
of insulin resistance with adipose tissue lymphocyte infiltration.
Oppositely, most of these cells were CD4+ with only a few CD8+
cells.

Recent studies have focused on another regulatory T cell
subset, natural killer T (NKT) cells, in the development of
obesity-associated inflammation and comorbidities (Lukens and
Kanneganti, 2012; Lynch et al., 2012). NKT cells are abun-
dant in metabolically active organs such as liver and adipose
tissue (Emoto and Kaufmann, 2003; Lynch et al., 2009) and
show the capacity to produce a variety of both pro- and
anti-inflammatory cytokines (Wu and Van Kaer, 2013). NKT
cells exert their effects in the development of inflammation
and metabolic diseases in response to nutritional lipid excess
(Wu and Van Kaer, 2013).

B-LYMPHOCYTE ACCUMULATION IN DYSFUNCTIONAL ADIPOSE
TISSUE
A fundamental pathogenic role for B cells in the development
of metabolic abnormalities has been described (Winer et al.,
2011; DeFuria et al., 2013). In mice, B-lymphocytes accumulate
in adipose tissue before T cells, shortly after the initiation of a
high-fat diet (Duffaut et al., 2009). The early recruitment of B
cells promotes T cell activation and pro-inflammatory cytokine
production, which potentiates M1 macrophage polarization and
insulin resistance (Winer et al., 2011).

Moreover, an impaired function of toll-like receptors in
B cells from patients with T2D that increases inflammation
by the elevation of pro-inflammatory IL-8 and lack of anti-
inflammatory/protective IL-10 production has been described
(Jagannathan et al., 2010).

ADIPOKINE DYSREGULATION AND CANCER
A growing body of evidence suggests that the inflammatory
milieu of the obese state is linked to the development of can-
cer through different mechanisms (Grivennikov et al., 2010).
Infiltrating immune cells in adipose tissue regulates the local
immune response, inducing increased levels of pro-inflammatory
cytokines and adipokines and providing a major link to the
obesity-associated tumor development (van Kruijsdijk et al.,
2009). Critical molecules involved in the promotion of tumor cell
proliferation include inflammatory transcription factors [such
as NF-κB and signal transducer and activator of transcription 3
(STAT3)], adipokines (leptin and adiponectin) as well as inflam-
matory cytokines and enzymes (TNF-α, IL-6, MCP-1, SAA) and
matrix metalloproteases (Gómez-Ambrosi et al., 2006; Aggarwal,
2009). Among all these molecules, perhaps the transcription fac-
tor NF-κB is the central mediator of inflammation (Aggarwal,
2004).

Leptin, the product of the ob gene, is an adipocyte-derived
hormone that is a central mediator in regulating body weight by
signaling the size of the adipose tissue mass (Zhang et al., 1994).
Leptin levels are closely correlated with adiposity in obese rodents
and humans (Maffei et al., 1995; Frühbeck et al., 1998, 2001b;
Muruzábal et al., 2002). Subsequent studies have suggested that
this hormone may be linked to the increased incidence of cancer
in obesity (Khandekar et al., 2011). Leptin has attracted atten-
tion due to its potential function as an antiapoptotic, mitogenic,
proangiogenic, and prometastatic agent, as observed in numerous
in vitro studies (Frühbeck, 2006a,b; Park et al., 2011). Circulating
levels of leptin have been investigated to determine the corre-
lation with cancer and progressive disease. A strong association
between leptin levels and colorectal and endometrial cancer has
been reported (Petridou et al., 2002; Koda et al., 2007a). However,
the findings of clinical studies of the relationship between leptin
and breast cancer are inconsistent (van Kruijsdijk et al., 2009).
Interestingly, many colorectal, breast, and endometrial cancers
overexpress the leptin receptor OB-R (Koda et al., 2007a,b).
Leptin produced by adjacent adipose tissue might promote the
growth of colorectal cancer enhancing the proliferation of colon
cancer cells although other factors released by adipocytes are also
likely to be involved in the process. It suggests that the pres-
ence of tumor-associated adipose tissue represents an important
microenvironmental influence (Amemori et al., 2007; Vansaun,
2013).

It has now been extensively documented that adiponectin
expression is inversely correlated with obesity (Scherer et al., 1995;
Hu et al., 1996). Adiponectin may influence cancer risk through
its well-recognized effects on insulin resistance, but it is also plau-
sible that adiponectin acts on tumor cells directly (Yamauchi et al.,
2001; Barb et al., 2007). Interestingly, several cancer cell types
express the adiponectin receptors AdipoR1 and AdipoR2 that may
mediate the inhibitory effects of adiponectin on cellular prolifera-
tion (Kim et al., 2010). Epidemiologic studies show that low levels
of adiponectin have an inverse association with the risk for the
development of multiple cancers as well as advanced progression
of disease (Wei et al., 2005; Barb et al., 2007; Bao et al., 2013). In a
prospective analysis, adiponectin levels were inversely associated
with endometrial (Dal Maso et al., 2004) and breast cancer risk
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FIGURE 2 | Adipose tissue constitutes an active endocrine organ. In the
lean state, adipose tissue exhibits resident macrophages polarized toward an
M2 status and Treg cells involved in support a metabolic homeostasis.
Moreover, the inflammation is controlled through the eosinophil-derived
interleukin (IL)-4 and IL-13 as well as the IL-10 secreted by Treg cells and M2
macrophages. With a progression of obesity, adipocytes undergo

hypertrophy and release adipokines that promotes the acquisition of an M1
macrophage phenotype with increased production of pro-inflammatory
factors such as tumor necrosis factor-α, (TNF-α), monocyte chemotactic
protein (MCP)-1, and IL-6. This is accompanied by the infiltration of mast cells
and T lymphocytes contributing to the dysregulation of adipose tissue and
favoring and perpetuating an inflammatory state.

in postmenopausal women (Tworoger et al., 2007). Adiponectin
also inhibits prostate and colon cancer cell growth (Bub et al.,
2006). In a mouse tumor model, adiponectin markedly induced
a cascade activation of caspase−8, −9, and −3, which leads to
cell death inhibiting primary tumor growth (Brakenhielm et al.,
2004b).

TNF-α, a cytokine originally identified as mediating
endotoxin-induced tumor necrosis (Carswell et al., 1975),
has been shown to be involved in the development of a number
of cancers through the promotion of vessel growth and tumor
destruction by direct cytotoxicity angiogenesis (Leibovich
et al., 1987) as well as the metastatic potential of circulating
tumor cells (Orosz et al., 1993). However, although TNF-α is
the most potent activator of NF-κB, elevated levels of TNF-α
in tissue or serum are not very common in cancer patients
(Aggarwal and Gehlot, 2009). The increased circulating levels
of TNF-α of both obese rodents and obese humans, suggest a
possible link between obesity and tumorigenesis (Khandekar
et al., 2011). In this regard, obesity-promoted hepatocellular
carcinoma development was dependent on increased produc-
tion of the cytokines TNF-α and IL-6, which cause hepatic
inflammation and activation of the oncogenic transcription
factor STAT3 (Park et al., 2010). Diet-induced obesity produces
an elevation in colonic TNF-α giving rise to a number of
alterations including the dysregulation of the Wnt signaling
pathway, with an important involvement in colorectal cancer
(Liu et al., 2012).

Another pro-inflammatory molecule produced in adipose tis-
sue is IL-6. The circulating levels of IL-6 are higher in subjects

with obesity-related insulin resistance (Kern et al., 2001). IL-6
is a pleiotropic cytokine with a significant role in growth and
differentiation (Ghosh and Ashcraft, 2013) that signals to the
nucleus through STAT3, an oncoprotein that is activated in many
human cancers and transformed cell lines (Bromberg et al., 1999).
Interestingly, STAT3 is activated by leptin (Vaisse et al., 1996) and
probably may have a role in the pro-tumorigenic effects of this
adipokine. Moreover, different studies indicate that serum IL-6
levels are a negative indicator of the development of breast cancer
in overweight or obese patients with prominent insulin resistance
(Gonullu et al., 2005; Knupfer and Preiss, 2007).

MCP-1 is a member of the CC chemokine superfamily (Panee,
2012) that plays a crucial role in recruitment and activation of
monocytes during acute inflammation and angiogenesis (Charo
and Taubman, 2004). Circulating levels of MCP-1 are generally
increased in obese patients compared to lean controls (Catalán
et al., 2007). Gene expression levels in adipose tissue follow the
same trend, being higher in the visceral and subcutaneous adi-
pose tissue of obese patients compared to lean volunteers (Huber
et al., 2008). There is emerging evidence that MCP-1 induces
tumor cell proliferation via activation of the phosphatidylinositol
3-kinase/protein kinase B (PI3K/Akt) pathway in various cancer
types (Loberg et al., 2006). Moreover, MCP-1 promotes cancer
tumorigenesis indirectly via its effects on macrophage infiltra-
tion (Walter et al., 1991). It has been described that MCP-1 is
highly expressed by breast tumor cells and has causative roles in
breast malignancy and metastasis (Soria and Ben-Baruch, 2008).
The pleiotropic roles of CCL2 in the development of cancer are
mediated through its receptor, CCR2 (Lu et al., 2007).
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Novel adipokines involved in obesity-associated inflammation
have emerged as important players of tumor growth (Catalán
et al., 2011d). OPN is a secreted glycoprotein expressed by dif-
ferent cellular types (Brown et al., 1992). Recently, several studies
have highlighted the expression of OPN in adipose tissue of both
humans and mice and its involvement in obesity and obesity-
associated T2D promoting inflammation and the accumulation
of macrophages in adipose tissue (Gómez-Ambrosi et al., 2007;
Nomiyama et al., 2007). High OPN expression in the primary
tumor is associated with early metastasis and poor outcome in
human breast and other cancers (Denhardt et al., 2001). LCN-
2 also known as neutrophil gelatinase associated lipocalin is a
component of the innate immune system with a key role in the
acute-phase response to infection (Flo et al., 2004). Increased
levels of LCN-2 in visceral adipose tissue in human obesity
and a relationship with pro-inflammatory markers has also been
described (Catalán et al., 2009, 2013). In addition to inhibiting
invasion and metastasis, LCN-2 also appears to be a negative
regulator of angiogenesis in cancer cells (Chakraborty et al.,
2012). Tenascin-C (TNC) is an extracellular matrix glycopro-
tein specifically induced during acute inflammation and persis-
tently expressed in chronic inflammation (Chiquet-Ehrismann
and Chiquet, 2003; Udalova et al., 2011). Increased expression of
TNC has been described in most solid cancers, playing important
roles in enhancing proliferation, invasion and angiogenesis dur-
ing tumorigenesis and metastasis (Midwood and Orend, 2009;
Midwood et al., 2011). In this line, elevated expression levels
of TNC have been found in visceral adipose tissue in obesity
with a tight association of genes being involved in maintaining
the chronic inflammatory response associated to obesity (Catalán
et al., 2011c). YKL-40 is another adipokine involved in inflamma-
tion and cancer cell proliferation. YKL-40 is a growth factor with
elevated gene and protein expression levels in visceral adipose
tissue in human obesity-associated T2D (Catalán et al., 2011b).
Moreover, circulating levels of this cytokine are described as an
obesity-independent marker of T2D (Nielsen et al., 2008). On
the other hand, elevated levels of YKL-40 were found in patients
with different types of solid tumors, including several types of

adenocarcinomas, small cell lung carcinoma, glioblastoma, and
melanoma (Johansen et al., 2006). Calprotectin is a member of
the S100 protein family released by activated phagocytes and rec-
ognized by TLR4 on monocytes (Vogl et al., 2007). Calprotectin
is not only involved in differentiation and cell migration but has
also been identified as an important regulator of inflammation in
cancer development and tumor spreading (Hiratsuka et al., 2008;
Ehrchen et al., 2009). The increased levels of calprotectin in obe-
sity and obesity-associated T2D have been shown decrease after
weight loss achieved by RYGB (Catalán et al., 2011a).

CONCLUSIONS
The prevalence of obesity has risen steadily for the past several
decades. Excess of adiposity is associated with increased death
rates for all cancers combined and for cancers at multiple specific
sites with the strongest evidence for endometrial cancer, post-
menopausal breast cancer, colon cancer, renal cell carcinoma of
the kidney, liver, gallbladder, esophageal, and pancreatic cancer.
The mechanisms linking obesity and cancer are unclear but low-
grade chronic inflammation, dysregulation of growth signaling
pathways, chronic hyperinsulinemia, and hypoxia associated to
obesity are widely accepted as important factors in cancer patho-
genesis. Particular attention is placed on the pro-inflammatory
environment associated with the obese state, specifically high-
lighting the involvement of infiltrated immune cells into adipose
tissue. In this sense, the understanding of the regulatory mech-
anisms that lead to polarization of macrophages or lympocytes
in adipose tissue toward a pro-inflammatory phenotype will pro-
vide new ways to control adipose tissue inflammation (Figure 2).
A better understanding of the mechanistic links between obesity
and cancer will help to identify intervention targets and strategies
to avoid the pro-tumorigenic effects of obesity.
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