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Self-renewing stem cell populations are increasingly considered as resources for cell
therapy and tools for drug discovery. Human pluripotent stem (hPS) cells in particular offer a
virtually unlimited reservoir of homogeneous cells and can be differentiated toward diverse
lineages. Many diseases show impairment in self-renewal or differentiation, abnormal
lineage choice or other aberrant cell behavior in response to chemical or physical cues.
To investigate these responses, there is a growing interest in the development of specific
assays using hPS cells, artificial microenvironments and high content analysis. Several
hurdles need to be overcome that can be grouped into three areas: (i) availability of
robust, homogeneous, and consistent cell populations as a starting point; (ii) appropriate
understanding and use of chemical and physical microenvironments; (iii) development of
assays that dissect the complexity of cell populations in tissues while mirroring specific
aspects of their behavior. Here we review recent progress in the culture of hPS cells and we
detail the importance of the environment surrounding the cells with a focus on synthetic
material and suitable high content analysis approaches. The technologies described, if
properly combined, have the potential to create a paradigm shift in the way diseases are
modeled and drug discovery is performed.
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PLURIPOTENT STEM CELLS AND THEIR CULTURE
HUMAN PLURIPOTENT STEM (hPS) CELLS ARE DERIVED FROM
EMBRYOS OR THROUGH REPROGRAMMING
Stem cells are defined as cells capable of self-renewal, the capac-
ity to generate identical copies of themselves, and differentiation,
the ability to provide cells performing a specific biological func-
tion (Smith, 2006).The capacity to differentiate into all lineages
sufficient to form an entire organism, and not necessarily extra
embryonic tissues, is defined as pluripotency. This property can be
demonstrated by showing differentiation into cells from the three
germ layers (endoderm, mesoderm, and ectoderm). With no test
available for germline transmission of human cells, pluripotency
can be demonstrated in immune-deficient mice by the ability to
form teratomas. In vitro, a number of molecular markers are used
as a surrogate for pluripotency; some of these carry functional
significance, such as Oct4 and Nanog, whereas others are consid-
ered mostly descriptive, such as stage-specific embryonic antigen
(SSEA)-4 and Trafalgar antigen TRA-1-60.

Using diverse culture methods, several types of cells have been
characterized which broadly fit many aspects of the definition of
pluripotency. hPS cells are derived from transient populations of
cells isolated from the embryo such as human embryonic stem
(hES) cells or are artificially reprogrammed from somatic cells
such as human induced pluripotent stem (hiPS) cells. In mice,
several populations of pluripotent cells can be derived from pre-
and post-implantation embryos. The earlier or naïve cells are the
originally described mouse embryonic stem (mES) cells whereas

the post implantation cells (epiblast stem cells or epistem cells) rep-
resent a later stage of development and are thought to be “primed”
to differentiate with potential lineage bias (Nichols and Smith,
2009)

In human, however, hES cells resemble more closely the mouse
epistem cells (Tesar et al., 2007; Greber et al., 2010; Ware et al.,
2014). Moreover, whilst hES cells fall into the “primed” cate-
gory with hiPS cells, the characteristics can vary depending on
somatic source, reprogramming method and culture system. In
recent times, many researchers have attempted to define condi-
tions under which naïve hPS cells can be derived and maintained
(Gafni et al., 2013). Importantly, in the human blastocysts there are
several different cell populations that can give rise to pluripotent
stem cells when explanted and cultured (Niakan and Eggan, 2013).
The extensive crosstalk between stem cells and their niche encom-
passes neighboring cells, soluble cues, and extracellular matrix
(ECM) proteins and is key to the maintenance of pluripotency. It
is also likely that in the early phases, the surrounding environment
plays a major role in instructing cells to enable self-organizing
properties as has been reported in the mouse system (Bedzhov
and Zernicka-Goetz, 2014). Unsurprisingly then, at each step of
the evolution of culture systems, the emphasis has been on reca-
pitulating the “natural” environment, or “niche” (Lutolf and Blau,
2009). Along these lines, the secretion of growth factors by stromal
cells has informed the choice of factors and more recently attention
has been devoted to mimic the structural and mechanical prop-
erties of the natural niche. However, although a tractable model
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system, cell culture is artificial by definition and it is not easy to
pinpoint what the “natural” conditions are in vivo and should be
in vitro.

DEFINING THE CULTURE: FEEDERS AND MEDIA
Irrespective of the biological differences, expansion of homoge-
neous starting populations in self-renewing conditions is key to
realizing the promise of hPS cells for screening and modeling
strategies. hPS cell culture has progressed a long way from the
initial derivation and expansion on mouse feeders in medium
containing bovine serum (Thomson et al., 1998). Nonetheless,
production of large numbers of stable, homogeneous, and undif-
ferentiated cells in standardized protocols is still far from a trivial
matter. Mirroring progress obtained a decade in advance with mES
cell culture, culture of hPS cells has evolved substantially. In fact it
moved from mouse feeders to defined feeder-free systems taking
in human feeders, conditioned medium, and complex substrates
along the way.

There are some disadvantages associated with each of these
variations. The use of feeders brings additional variability to the
culture, particularly crucial if the cells are non-human. It has been
shown that animal products can modify as well as contaminate hPS
cells (Moore, 2006). An important factor for variability in hPS cell
yield and viability is the effect of feeder cell density (Heng et al.,
2004), often inconsistent across laboratories. A comparison of the
literature reveals the use of a large range of seeding densities, from
20,000 to 75,000 cells/cm2 (Zhou et al., 2009). Human feeders
although expensive, hard to maintain and equally variable have
allowed the relatively early establishment of clinical grade hES cell
lines (Tannenbaum et al., 2012).

Using feeder free cell culture has the advantage of removing the
requirement for parallel culture and mitotic inactivation of feeder
lines. Yet, it often involves conditioned medium or xenogenic
complex substrates. The use of xeno-free, defined products can
improve robustness and there are a number of combinations now
available that do not contain animal derived components or com-
plex additives such as sera. As implied above, selected culture
systems will result in subtly different populations. Whilst still fit-
ting the wider definition of hPS cells, these will respond in different
ways to external stimuli. Therefore the lack of consensus about
culture systems does pose a hurdle when comparing data between
laboratories. Also, it is important to stress that established differ-
entiation protocols will not necessarily transition seamlessly to a
different culture system and can therefore represent a high barrier
to progressing culture conditions even when long-term gains are
significant.

Different media used for the different systems have been thor-
oughly and recently reviewed elsewhere (Chen et al., 2014). Here,
we will briefly describe selected defined media for feeder free cul-
ture. A number of defined media for hPS cells are commercially
available such as mTeSR1/2 (STEMCELL Technologies), StemPro
(Invitrogen), Pluripro (Cell Guidance Systems), PluriSTEM (Mil-
lipore), Stemline (Sigma), and Nutristem (Stemgent). Most of
these contain bovine serum albumin (BSA) along with a com-
plex mixture of amino acids, trace elements, hormones, and
growth factors. Human serum albumin (HSA) is present in TeSR2
whereas derived from it, the more recent Essential 8 (Invitrogen)

medium does not contain HSA or BSA and can perhaps be con-
sidered a truly defined medium. Most commercially available and
homemade media contain both fibroblast growth factor 2 (FGF2)
and transforming growth factor β(TGFβ)/Activin A/NODAL at
varying concentrations. Some of these media require higher con-
centrations of FGF2 to maintain the cells, further adding to the
cost of culture.

DEFINING THE PHYSICAL CONDITIONS: CELL–CELL CONTACT AND
HYPOXIA
Unlike their murine equivalents, hPS cells poorly tolerate being
separated to single cells and have historically therefore been prop-
agated as clusters using mechanical or enzymatic methods or a
combination of the two. Mechanical passaging methods are least
favored when considering the scalability of the culture process. It is
difficult to accurately determine cell-seeding densities, as hPS cells
are kept in large clumps or colonies, using this technique. Consis-
tent seeding densities are essential to reduce variability in hPS cell
culture as they result in higher quality cells and more predictable
yield.

Apoptosis induced by dissociation to single cells can be modu-
lated by pharmacological inhibition of specific pathways involved
in cell–cell adhesion. For example, the Ras homolog gene family
member A (RhoA) acts on its downstream effector, Rho-associated
protein kinase (ROCK) and ROCK inhibitors (ROCKi) can be
added to the culture just at time of passage or throughout cell
maintenance to counteract the stress induced by dissociation into
single cells (Watanabe et al., 2007). Preparation of hPS cells as
single cells, in the presence of ROCKi allows for more homoge-
neous populations and these are more amenable to automation.
It has been suggested that enzymatic passaging or ROCKi can
cause chromosomal abnormalities in hPS cells (Mitalipova et al.,
2005). Despite initial discordances, a number of reports have now
shown that normal karyotypes can be maintained after prolonged
single cell passage demonstrating that single cell passage per se
does not lead to chromosomal abnormalities (Mitalipova et al.,
2005).

Various enzymes are currently used in hPS cell culture, includ-
ing dispase II, collagenase IV, accutase, TrypLE Express (Invitro-
gen). Dispase and collagenase allow cells to remain as clusters,
whereas accutase and TrypLE Expresss dissociate hPS cells into
a single cell suspension. It should be noted, however, that these
methods often still require manual removal of differentiated cells
prior to enzyme addition which creates an obvious barrier to
automation (discussed below). An alternative to enzymatic dis-
sociation is the use of EDTA, which allows the dissociation of
colonies to small clusters and works in conjunction with E8
medium on a defined substrate (Beers et al., 2012).

The normal atmospheric oxygen tension, at which hPS cells
are generally cultured is 21%. In vivo, mammalian oxygen tension
on the other hand ranges from 1.5 to 5.3% (Fischer and Bavis-
ter, 1993). As for other cell types (Parrinello et al., 2003) there
have been attempts to evaluate the biological effect of hypoxia on
hPS cells, for example through hypoxia-inducible factors (Math-
ieu et al., 2013). Low oxygen enhanced clonal recovery of hES
cells and reduced the incidence of chromosomal aberrations with-
out altering hES cell pluripotency marker expression (Forsyth
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et al., 2006).Moreover, it can improve pluripotency maintenance
while reducing the incidence of chromosomal aberrations and
reduce the occurrence of spontaneous differentiation (Forristal
et al., 2010; Zachar et al., 2010). Despite these interesting findings,
logistical problems severely limit the use of low oxygen in most
laboratories and dedicated culture chambers have been proposed
(e.g., biospherix).

QUALITY BY DESIGN, SCALE-OUT, AND SCALE-UP
The choice of the culture system has severe consequences for the
potential use in different applications and a significant impact on
optimization of downstream differentiation protocols. Considera-
tions of required cell number and batch size should be addressed at
an early stage to facilitate the efficient translation of protocols and
avoid population drift, which will introduce variability (Figure 1).
These problems can be minimized by establishing master- and
working cell banks with limits imposed on the number of pas-
sages. Nonetheless, current bench-scale methods described above
show intrinsic limitations in terms of variability and yield (Veraitch
et al., 2008). Two diverse approaches can be considered to produce
large numbers of cells: scale-up and scale-out.

Most 2D culture, providing manual removal of differentiated
cells is not required, can be relatively easily scaled out, at least to a
degree (e.g., larger or multilayer or stacked flasks) and this may be
sufficient to meet certain requirements. Scaled-out systems may
be especially useful for culturing multiple different cell lines at
once though with high labor costs and variability. This can be
addressed in part through the use of automation. Automation has
been used in several steps of hPS cells expansion processes often
improving consistency although not necessarily reducing process
time. The first use of automation to aid hPS cells expansion was

based on dissection of hPS cell colonies (Joannides et al., 2006).
Subsequently studies were published in which automation was
used to monitor hPS cell cultures (Narkilahti et al., 2007), to seed
hPS cells and change media (Terstegge et al., 2007), to harvest
hPS cells (Haupt et al., 2012) and to carry out high throughput
screening as discussed below. To date, only two systems have been
described that automate the full PSC expansion process. These are
the CompacT SelecT (TAP Biosystems; Thomas et al., 2009) and a
custom-built platform which has been tested for mES cells (Hus-
sain et al., 2013) and is currently used to expand and differentiate
hPS cells.

Scale-up methods on the other hand commonly use specialized
systems such as stirred-tank reactors (STRs), spinner flasks, per-
fusion systems or wave bioreactors. Due to the adherent nature
of hPS cell culture, cells in these systems require a surface to
attach to. The use of coated beads in bioreactors can be con-
sidered as 2D culture and may not differ significantly from the
output of traditional 2D culture. However, the media change
dynamics are likely to have an impact on the culture conditions.
STRs can contain large volumes, where culture conditions such
as pH, oxygen levels, and metabolite concentrations are precisely
and carefully controlled in a uniform environment with ade-
quate nutrient levels and oxygenation (Chen et al., 2010a). To
circumvent some of these problems, cells can also be microen-
capsulated in hydrogels in 1.1% calcium alginate capsules, which
allow for the cells to remain pluripotent and proliferate for more
than 8 months (Siti-Ismail et al., 2008). True 3D expansion of
hPS cells in defined medium has also been reported (Zweigerdt
et al., 2011) demonstrating the potential of this approach for scale-
up. However, aggregated pluripotent culture pose problems and
cell damage can be attributed to shear force (Serra et al., 2012).

FIGURE 1 | Choosing the right cell culture conditions for hPS cells.

The number of cells required for a screening campaign is typically
less substantial than for cell therapies. Nonetheless, it is of
paramount importance to choose the appropriate cell culture conditions

beforehand, with a clear view of the route and the end-points to
achieve. Adapting culture protocols at a later stage may be
problematic as cells may respond distinctly to established
differentiation protocols.
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Overall, the use of scale-up systems brings considerable advan-
tages for culture control; pH and dissolved oxygen tension can be
monitored and controlled throughout the cell expansion process,
which cannot be done in static culture. Perfusion systems per-
mit the removal of waste products and addition of fresh media as
required.

For feeder-free culture of hPS cells (including on microcar-
rier beads) the most commonly used substrates are gelatinous
extracts such as Matrigel (BD Biosciences) or Geltrex (Life tech-
nologies). These are undefined extracellular matrices derived
from Engelbreth–Holm–Swarm (EHS) sarcoma and are suscep-
tible to high batch-to batch variability. Although the use of these
substrates can eliminate feeders from the culture system, cer-
tain components remain unknown. More defined substrates that
can support single cell passage are fibronectin, vitronectin, and
laminin. Laminin-521 (Rodin et al., 2014) or laminin-511 E8 frag-
ment (Nagakawa et al., 2014) have also been proposed. Alternative
xeno-free substrates, such as CellStart (Invitrogen) and Synthemax
(Corning), are also available albeit at a high cost.

THE ROLE OF THE MICROENVIRONMENT AND SYNTHETIC
SUBSTRATES
Culture conditions (density of surrounding cells, soluble factors,
substrates) should be considered as a whole to capture the com-
plexity of soluble signals and the surrounding environment. Solu-
ble factors such as Wnts and FGFs regulate stem cells self-renewal,
some membrane-associated proteins such as cadherins form
adherens junctions involved in cell positioning and anchoring
(Lutolf et al., 2009) while integrins, bind to other components of
the ECM, including fibronectin, vitronectin, laminin, and collagen
to promote cell adhesion and differentiation (Fuchs et al., 2004).

Several lines of research have recently attempted to focus on
the effect of substrates on the proliferative behavior of stem cells.
In tissue stem cells, previous studies have reported that engi-
neered surfaces with precise ligand affinity, density, and tethering,
spatial arrangement of surface chemistry, topologies, and matrix
stiffness can elicit cell responses ranging from self-renewal to dif-
ferentiation(McBeath et al., 2004; Engler et al., 2006; Dalby et al.,
2007; Khetan and Burdick, 2010; Unadkat et al., 2011; Kilian and
Mrksich, 2012; Trappmann et al., 2012; Viswanathan et al., 2012).
Such synthetic substrates are valuable tools to dissect cell matrix
interactions in vitro.

These design principles can be extended to determine sub-
strates that contribute to optimal self-renewing conditions as well
as materials that direct hPS cells into specific lineage differentia-
tion. In this section we describe the main components of cell–cell
and cell–ECM interactions that may guide the design of new syn-
thetic materials. Moreover we discuss matrix properties that can
affect hPS cell self-renewal and differentiation and mechanotrans-
duction pathways that are important in these processes. Finally,
we review synthetic tools to study cell material interactions, with
a view on the potential application for screening materials using
hPS and image analysis (Figure 2).

MIMICKING THE EXTRACELLULAR MATRIX (ECM)
Cell–cell and cell–ECM interactions are mediated by integrins,
cadherins, or polysaccharides such as glycosaminoglycans (GAGs).

These molecules transmit biophysical cues and environmental
cues across the cell membrane to intracellular signaling pathways
involved in cell fate decisions. Integrins are heterodimeric pro-
teins involved in adhesion and bi-directional signaling containing
α and βsubunits. Combinations of these (24 have been described)
may take place, determining the ligand specificity and affinity
for specific ECM motifs such as the tri-peptide RGD (Arginin–
Glycin–Aspartic acid).Their adhesion strength is modulated by
activation or clustering, which anchors stem cells to their niche
(Ellis and Tanentzapf, 2010). hPS cells have been shown to express
a range of integrin chains including α3, α5, α6, and β1. Fur-
thermore hES cells also express α2, α11, αV (Braam et al., 2008;
Meng et al., 2010), and hiPS cells, α7, αV, and β5 (Rowland et al.,
2010; Jin et al., 2012). GAGs are long unbranched polysaccharides
whose chemical functionality determines the type such as heparin,
chondroitin or others. GAGs are other mediators of adhesion to
the ECM and are abundant on the surface of hPS (Sun and Fu,
2013). Peptide sequences derived from vitronectin (Klim et al.,
2010) that bind to heparin have been used as synthetic feeder-
free substrates for the maintenance of hPS cell pluripotency and
like other ECM components can be readily conjugated to any syn-
thetic surface that are now commercially available (Synthemax,
Corning).

CELL–CELL INTERACTION, CELL SHAPE, CYTOSKELETAL TENSION, AND
TOPOGRAPHICAL CUES
Important mediators of cell–cell interactions are proteins from the
cadherin family. Cadherins play many roles in cell recognition, cell
sorting and strengthening of cell–cell adhesions. They also operate
as signaling receptors that modulate cell behavior or drive cell-
upon-cell locomotion because they are force-resistant (Niessen
et al., 2011). There are three classical types of cadherins that
have been most extensively studied: the epithelial (E-cadherins),
vascular endothelial (VE-cadherins), and neural (N-cadherins).
E-cadherins are involved in calcium-dependent cell–cell adhesion
in both epithelial and embryonic stem cells, and are integral for
hES cell self-renewal and survival (Xu et al., 2010). E-cadherins
are also utilized to identify hES cells as markers of undifferen-
tiated state (Li et al., 2012). They also interact with ROCKs to
regulate the function of the actin-cytoskeleton and promote hES
cell clonogenicity (Li et al., 2010).

Human mesenchymal stem cells (hMSCs) provided early proof
demonstrating that the shape of the substrate used to culture
cells could strongly influence cell fate and tissue architecture.
A decrease in plating density (or larger fibronectin islands)
increased cell spreading and area and induced osteogenic differ-
entiation; conversely an increase in plating density (or smaller
fibronectin islands) generated rounded less spread cells and
induced adipogenesis. The RhoA-ROCK signaling pathway was
implicated in the adipogenic–osteogenic switch. Pharmacolog-
ical inhibition of RhoA and its effector ROCK has shown to
disrupt the cytoskeleton and affect hMSC differentiation medi-
ated by the matrix (McBeath et al., 2004). A more recent study
demonstrated that cell shape and cytoskeletal tension rather
than the area, dictated hMSC lineage commitment (Kilian et al.,
2010). For example, micro-patterned islands with the same
area but of different shapes exhibited high or low cytoskeletal
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FIGURE 2 | Microenvironments and their impact on hPS cells. Cells
respond to the surrounding microenvironment via cell–cell contacts and
cell–matrix contacts. The ECM provides structural and chemical cues.
Synthetic ECM niches can recapitulate aspects of ECM properties to
regulate cell behavior. (A) Human embryonic stem cells that are Oct4+
and Oct4− respond differently to PDMS micro-posts with varied
stiffness. (B) hES cells grown on larger adhesive islands of 400 μm
have greater levels of Oct4 expression via Smad1 signaling. Nuclei
depicted in blue, Oct4 in green and pSmad1 in red. (C) Micro-grooved
substrates (left) can alter epithelial cell morphology by contact guidance
compared to flat surfaces (right). (D) Symmetry of nanoscale topography
with semi-random geometry induces osteogenesis of hMSCs compared
to hexagonal geometry. Immunofluorescence represents cytoskeleton in
red and osteopontin in green. High content analysis can be applied to
screen a wide array of biomaterials to associate specific properties with
biological response. Platforms such as (E) PEG based hydrogel arrays of

protein concentration gradients and PEG stiffness. FITC- and rhodamine
labeled BSA gradients are represented in green and magenta,
respectively. (F) The Topochip platform can be used to vary surface
topography of the same material chemistry. (G) Spotted polymer arrays
of varied substrate mechanical properties for long term culturing of hES
cells. (A) Image adapted from Sun et al. (2012b). (B) Peerani et al.
(2007), image adapted with permission from John Wiley and Sons,
Copyright 2007. (C) Teixeira et al. (2003), image reproduced with
permission from Journal of Cell Science, Copyright 2003. (D) Dalby et al.
(2007), image reprinted with permission from Macmillan Publishers Ltd.:
Nature Materials, Copyright 2007. (E) Gobaa et al. (2011), image reprinted
with permission from Macmillan Publishers Ltd.: Nature Methods,
Copyright 2011. (F) Unadkat et al. (2011), image adapted with permission
from the National Academy of Sciences, Copyright 2011. (G) Zhang et al.
(2013) image reprinted with permission from Macmillan Publishers Ltd.:
Nature Communications, Copyright 2013.

contractility resulting in osteogenesis or adipogenesis, respec-
tively.

Though much of what we understand of cell-shape induced
differentiation has come from adult stem cells, similarities with
hPS cells are beginning to emerge. By patterning Matrigel islands
of 200, 400, and 800 μm, bone morphogenic protein (BMP) medi-
ated small body size/mothers against decapentaplegic (Smad1)
signaling maintained hES cell pluripotency on the largest islands
that supported large, densely packed colonies (Peerani et al.,
2007).The dependence of pluripotency on the size of the niche
highlights in this case the role of soluble factors secreted by the
hPS cells. Mechanotransduction was here not implicated, yet the
biophysical signals of the microenvironment in controlling cell
shape can be affected by the colony size. UV/ozone patterned
vitronectin substrates have been used to study hPS cell shape
and morphology at the single cell level both in the presence and

absence of ROCKi (Pryzhkova et al., 2013). Patterns that can
stimulate cell polarity are crucial to dissect phenomena such as
cell shape induced epithelial to mesenchymal transition (EMT),
which is a key step in hPS cells differentiation. EMT has also
been involved in a study showing that fibroblasts cultured using
parallel microgrooves or aligned nanofibers on poly(dimethyl
siloxane; PDMS) present an increase in reprogramming efficiency
(Downing et al., 2013).

Stem cell growth and differentiation can also be affected by
micro- and nano-topographic cues such as grooves, ridges or
pits. Grooved and ridged topographies for example, can induce
cell alignment and elongation through contact guidance (Teixeira
et al., 2003) for a number of specialized cells including differentia-
tion of hES cells (Chan et al., 2013) and hiPS cells toward neuronal
lineages (Pan et al., 2013). hES cells cultured on PDMS grat-
ings with 600 nm feature-height and spacing also generated cell
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alignment in the presence of soluble factors (Gerecht et al., 2007).
The polarization of gamma-tubulin complexes (GTCs) on nan-
otopographies may play a role in mediating topography-induced
changes in cell morphology, as GTCs can govern cytoskeletal func-
tion and assembly of filamentous actin. However, changes in hES
cell shape and morphology governed by actin assembly directing
eventual cell fate was not investigated.

Apart from contact guidance, the size, spacing, and orienta-
tion of nanotopographies can directly affect cell response resulting
from topographies. Surface topography can also alter cell behavior
indirectly from changes in the conformation of surface adsorbed
proteins. Nanoscale topographies for example, arranged in a
square planar geometry induced hES cell differentiation toward
the mesenchymal lineage in the absence of growth factors (King-
ham et al., 2013). Unlike ECM patterned islands that promote
cytoskeletal tension mediated differentiation, it has been suggested
that stem cell adhesion to surface topographies is mediated by the
modulation of integrin clustering and focal adhesion formation
(Biggs et al., 2010; Sun et al., 2012a).

Cell adhesion to the ECM can result in the recruitment,
organization, and clustering of integrins and the formation
of focal complexes maturing into focal adhesions and provid-
ing direct anchorage (via vinculin, talin, and paxillin) to the
actin cytoskeleton. Furthermore, integrin mediated adhesion
can activate tyrosine kinase and phosphatase signaling to mod-
ulate downstream signals that determine cell fate (Vogel and
Sheetz, 2006). For example in hES cells cultured on nano-
roughened and smooth glass substrates (Chen et al., 2012)
maintenance of pluripotency was found to depend on an inter-
play between focal adhesion formation, cell–cell contacts and
cytoskeletal rearrangements mediated by non-muscle myosin IIa
(NMMIIa) on flat surfaces. On the other hand, nanotopo-
graphic pillars of hexagonal versus honeycomb arrangements
(Kong et al., 2013) and nanopillar gradients of varied spac-
ing (Bae et al., 2014) supported Oct4+ cells and maintained
E-cadherin expression. Moreover, focal adhesion kinase (FAK)
inactivation led to a more dynamic reorganization of the cytoskele-
ton on the topographies of the lowest diameters. Thus, only
nascent focal complexes or disrupted focal adhesions rather than
mature focal adhesions were observed. These latter studies sug-
gest that selected nanotopographies can be used to maintain
pluripotency.

Despite the fact that there is inconsistency in discerning which
subset of surface topographical or chemical features eventually
dictates hPS cell response, there are early indications that inte-
grins may play a role in hPS cell fate decisions. Moreover, it has
been widely demonstrated that integrin-mediated adhesion to the
ECM is crucial for hPS cell survival. However, it is still unclear if
and how initial adhesion events activate downstream signaling cas-
cades involved in EMT and lineage commitment. FAK activation
has been suggested to act upstream of the Rho/ROCK (Bhadri-
raju et al., 2007) and mitogen-activated protein kinase (MAPK;
Salasznyk et al., 2007) signaling pathways, both of which have
been implicated in cell shape induced differentiation. Thus, the
perturbation of FAK or other focal adhesion complexes or anchor
proteins will need to be further explored, in particular its effect on
E-cadherin expression and pluripotency.

hPSC MECHANOSENSING AND SUBSTRATE RIGIDITY
The inherent sensitivity of hPS cells arises from the relatively
poor understanding of cell–cell and cell–substrate interactions
underlying the maintenance of pluripotency. It is now known
that hPS cells undergo dissociation-associated apoptosis and
inhibiting RhoA/ROCK mediated, NMMII-dependent cytoskele-
tal tension enhances hPS cell survival (Ohgushi et al., 2010). As
RhoA/ROCK mediated cytoskeletal tension is an important factor
in mechanotransduction (McBeath et al., 2004) the cytoskeletal
hyperactivation of hPS cells upon dissociation and in conjunc-
tion with loss of cell–cell contacts (through loss of E-cadherin
expression) suggests that the mechanical properties of the stem
cell environment may indeed be key to determining cell fate
decisions. P120 catenin, an Armadillo-domain protein impli-
cated in cell–cell adhesion is stabilized by NMMII and this
process has been shown to be necessary for E-cadherin depen-
dent mechanical tension and maintenance of pluripotency in
hESCs (Li et al., 2010). When cultured on polyacrylamide (PA)
gels of 8.5 kPa, continued inhibition of NMMIIa by blebbis-
tatin markedly down-regulated E-Cadherin expression. In another
study, hES cells pluripotency was maintained when hES cells
were cultured on shorter, stiffer vitronectin coated PDMS micro-
posts and the expression of Oct4 paralleled that of E-cadherin
(Sun et al., 2012a). Cell–cell contacts alone, however, may not
be involved in sensing matrix rigidity. For example, GAG medi-
ated hES cell adhesion (Klim et al., 2010) to PAgels (Musah et al.,
2012) also showed that hES cells preferred adhering to stiffer gels
(10 kPa) and when cultured on softer gels (0.7–3 kPa) no longer
expressed the pluripotency markers Oct-4 and SSEA-4. Here it was
proposed that only the stiff PA gels promotedYAP/TAZ (Yes associ-
ated protein/transcriptional coactivator with PDZ binding motif)
localization in the nucleus while cells cultured on softer gels exhib-
ited low levels of cytoplasmic (i.e., inactive and the degraded form
of) YAP/TAZ. YAP and TAZ serve as mechanosensors and tran-
scriptional regulators required for cell differentiation influenced
by substrate stiffness (DuFort et al., 2011) though others have sug-
gested that TAZ functions in hES cell self-renewal (Varelas et al.,
2008). The precise mechanisms of YAP/TAZ mechanotransduc-
tion in hPS cells is still unknown and more work will be required
to unravel a potential role in hPS cell mechanosensing. Adhe-
sion to ECM proteins is highly dependent on integrin-mediated
adhesion. It is unclear whether the latter can convey mechanical
signals.

PATHWAYS REGULATING hPSC PROLIFERATIVE BEHAVIOR
Generally, MAPK, protein kinase B (PKB), and nuclear factor
κ-light-chain-enhancer of activated B cells (NFκβ) signaling are
involved in supporting viability and pluripotency of hPS cells. PKB
can cascade through the MAPK signaling pathway resulting in hES
cell differentiation. The NFκβ signaling cascade is also involved in
cell survival (Armstrong et al., 2006). As mentioned above, inhibi-
tion of the ROCK pathway can prevent anoikis of hPS cells when
dissociated to single cells; however, manipulation of this pathway
has been utilized in other settings. Differentiation can be initi-
ated by RhoA and ROCK activation of myosin light chain kinase
(MLCK) controlling the processes of cytoskeletal tension and stress
fiber development. This phenomenon has been widely studied in
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hMSC differentiation. RhoA/ROCK can induce cells to undergo
fluid-flow-induced osteogenesis, while on the contrary, the inhi-
bition of this pathway triggers adipogenesis and chondrogenesis
(Arnsdorf et al., 2009). The Wnt/β Catenin signaling pathway is
needed to preserve and support the pluripotency of hES cells. The
actions of Wnts are growth-factor like, and can control asymmetric
cell division, cell proliferation, migration, and polarity. Wnts have
the ability to enhance the process of somatic cell reprogramming to
generate iPS cells. The interaction of β Catenin with transcription
factors Sox2, Klf4, and Oct4 can only occur via the Wnt pathway,
triggering the upregulation of Nanog, which demonstrates the
involvement of this pathway in cell reprogramming, maintenance
of the cell in a pluripotent state, and ability for self-renewal (Kuhl
and Kuhl, 2013).The Wnt pathway also promotes pluripotency
and can be activated by the addition of lithium chloride as in the
mTeSR medium formulation. Other signaling pathways involved
in pluripotency and self-renewal are transforming growth factor-β
(TGF-β), which signals through Smad2/3/4, and FGF2 which sig-
nals to its receptor, FGFR to activate the MAPK and PKB pathways
(James et al., 2005; Vallier et al., 2005).

TOOLS TO STUDY SUBSTRATE EFFECTS ON CELL BEHAVIOR
Advances in synthesis and fabrication techniques have allowed for
a wide range of materials suitable for applications in cell biology.
Fabrication of synthetic matrices may be produced from either
“top-down” or “bottom-up” approaches. As this encompasses a
large body of work, the reader is directed to several reviews that
summarize the types of materials used in matrix mediated stem
cell differentiation (Stevens and George, 2005; Sands and Mooney,
2007; Lutolf, 2009). The most common of these materials and
fabrication techniques used in cell biology for exploring the cell–
materials interface are briefly discussed here.

Hydrogels are polymer networks mimicking many aspects of
the native ECM and are readily hydrated. They can be easily man-
ufactured and can be tuned to the desired elastic and viscous
moduli, making them attractive for studying mechanotransduc-
tion. Most hydrogels are often composed of cell/protein inert
chemistries, for example poly(ethylene glycol; PEG) and require
functionalization to promote cell–material interactions. The sur-
face functionality of PEG or PEG macromer hydrogels, can be
modified by conjugating peptides or proteins to the backbone
of PEG for example, via Michael-type additions requiring PEG
macromers end functionalized for example with acrylate or vinyl
sulfone groups that readily react with thiols (Metters and Hubbell,
2005). Other methods of conjugation may also be implemented
(Liu et al., 2010). Such hydrogels can also be modulated in stiff-
ness by tuning the cross-linking density or the molecular weight
of the PEG macromer. In general, hydrogels offer an easy start-
ing point for developing defined synthetic niches. For example,
the covalent attachment of peptides such as the integrin binding
sequence RGD or GAGs (Klim et al., 2010; Musah et al., 2012)
or matrix metalloproteinases (MMPs; Jang et al., 2013) to result
in 2D or 3D scaffolds have been used for hPS cell propaga-
tion. Other hydrogels based on hyaluronic acid (Gerecht et al.,
2007) that can bind to cells via CD44 surface receptors have also
been used to culture hES cells albeit using feeder conditioned
medium.

Topographical features have been fabricated using a range
of lithographic techniques such as electron beam-, photo/UV-
or dip-pen lithography or through microcontact printing. The
advantages of these methods are that features can be fabricated
in a highly reproducible manner and can be highly ordered spa-
tially. Microcontact printing (μ-CP) utilizes an elastomeric PDMS
stamp consisting of the desired features, which is then used to
transfer “inked” material onto a substrate. In this way, many mate-
rials such as individual ECM proteins are patterned for single cell
studies (Mrksich and Whitesides, 1995; Ruiz and Chen, 2007).
Photo/UV- and electron beam-lithographies on the other hand
can be used to produce topographical features such as grooves,
pits, and islands in the micro- and nano-meter length scales that
can be ordered or disordered over large areas providing a plethora
of tools for studying fundamental cell biology.

FINDING THE RIGHT NICHE: SCREENING BIOMATERIALS USING hPS
CELLS
As hinted above, it is now increasingly accepted that biophys-
ical cues arise not only from surface chemistry but also from
topography. In combination with soluble factors, these can have
a profound influence on determining cell fate of hPS cells. Engi-
neered biomaterials are therefore studied to recapitulate biological
complexity (i.e., combining key components of matrix properties,
heterogeneity, and complexity) and understand the relationships
between the physical and chemical properties of the material
and its interaction with cells. To this end, screening approaches
with materials in high throughput or “materi-omics” (Cran-
ford et al., 2013) have been attempted such as the “Topochip”
platform (Unadkat et al., 2011). In this study, photolithography
techniques were used to generate more than 2000 unique micro-
scale topographies (though the possibilities are far greater) by
combining the primitive shapes; circles, rectangles, and trian-
gles. Here, surfaces that promoted osteogenic differentiation of
cultured hMSCs in the absence of soluble growth factors were
investigated. Protein-based microarrays by robotically spotting
various ECM proteins have been previously used to study hES
cell–matrix interactions (Flaim et al., 2005). Additionally, oth-
ers (Gobaa et al., 2011) have developed a hydrogel microwell
array that combines both and physical properties to encapsu-
late both adherent and non-adherent cells. Such platforms have
been used to probe cell–cell interactions and cell–materials inter-
actions that drive osteo- and adipogenic differentiation of hMSCs
and may be adapted to the study of microenvironments affect-
ing hPS. The first progress in this direction involves the use
of polymer arrays with inkjet printing to combine acrylate and
acrylamide monomers and generate thermo-responsive hydrogels
(Zhang et al., 2013). Such stimuli responsive matrices were used to
mechanically disperse cells as an alternative to enzymatic dissoci-
ation while supporting hES cell proliferation and pluripotency in
culture.

The increased throughput and the development of compre-
hensive structure–function methodologies in these cutting edge
studies will allow quicker identification of the most relevant syn-
thetic substrates for specific responses (Mei et al., 2010; Saha
et al., 2011). Although many materials technologies have advanced
to produce a vast selection of topographies, chemistries, and
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combinations, a challenge currently faced is how to predict and
quantify stem cell responses at the single cell levelusing engineered
microenvironments (Treiser et al., 2010; Vega et al., 2012).

STRATEGIES FOR HIGH CONTENT ANALYSIS AND DISEASE
MODELING
Together with cell culture and liquid handling, the technolo-
gies available for microscopy, image analysis, and computing
have undergone an extremely rapid progress in recent times.
Collectively, the confluence of outputs from such distinct fields
has brought to life the discipline of high content analysis
(HCA). Cells can be readily examined in real time or in cyto-
chemistry endpoint assays. Acquired images are processed and
groups of pixels are computationally segmented into defined
“objects”capturing imaged cells, nuclei, or subcellular organelles
(Figure 3).This allows quantification of proliferative behavior,
morphology changes, and expression of proteins such as lineage
or functional markers. Importantly this can now happen upon
exposure to up to several thousands conditions per week so that
the term high throughput can be appropriately used for HCA
approaches as well. Complex datasets are acquired and interro-
gated using proprietary or open source computational tools as
detailed elsewhere (Singh et al., 2014). The value of these meth-
ods in discovering new chemical entities has been demonstrated
(Swinney and Anthony, 2011).

Biologically significant assays may help ensure that toxic or
non-effective drugs fail in vitro, in the pre-clinical phases and
not in the clinic, with huge benefits for the cost of the discovery
process and for the patients. The field has developed substan-
tially using cancer cell lines, typically well suited for cell based
assays but of unclear biological relevance (Wilding and Bodmer,
2014). On the other hand, more relevant primary cells are often
not suitable due to phenomena such as replicative senescence,
differentiation, spontaneous immortalization or transformation
in culture. The focus on identification of optimal cell types for

HCA has highlighted hPS cells and their derivatives as an attrac-
tive alternative for a number of reasons. First, the capability to
self-renew and generate a consistent starting population of cells
over a number of passages reduces variability of the starting
population. Secondly, together with robust differentiation pro-
tocols, hPS cells can be used to produce the high number of
progenitors or differentiated cells required for screening. Addi-
tionally, patient-derived iPS cells offer unique tools to study the
range of physio-pathological mechanisms involved in selected
diseases at the cellular level and to identify drugs that bene-
fit specific cohorts of patients. It is also worth to note that in
some cases, diseases can present with a block of differentia-
tion (Kuhlmann et al., 2008). Assays that are built around the
specific differentiation protocols may in principle be used to
screen for drugs that bypass the differentiation blocks to develop
therapeutics.

HIGH CONTENT ANALYSIS APPROACHES USING HUMAN
PLURIPOTENT STEM CELLS
We will not discuss further studies aimed at isolating compounds
that improve reprogramming as these are discussed elsewhere
(Chen et al., 2010b; Yang et al., 2011; Li and Rana, 2012). In
reviewing HCA screens using hPS cells with a reasonable through-
put we will start by focusing on survival and self-renewal (Table 1).
Distinguishing between effects that are limited to prolonged
survival or true long-term maintenance of self-renewal can be
difficult. Visualizing hPS cell colonies formed on feeders, TRA-
1-60 staining and DNA dyes were chosen as a suitable marker
of pluripotency (Barbaric et al., 2010a,b). Imaging pipelines were
here used to “erode” and “dilate” in parallel the segmented nuclei
in order to accurately quantify on one hand the percentage of
undifferentiated cells and to remove on the other from the anal-
ysis confusing data regarding feeder cells (Barbaric et al., 2011).
This strategy isolated the antihypertensive drug pinacidil as a pro-
moter of hES cells survival. Independently, the same molecule

FIGURE 3 | High content analysis. High content analysis involves a
series of steps to convert images into data. Cells in different conditions
are imaged via microscopy. Images are then processed (for example in
contrast) and then analyzed using computer algorithms. Segmentation
refers to the definition based on pixels intensity of “objects” such as
cells, nuclei, or other subcellular structures. Via cytochemistry, the
expression of specific markers can be elicited and the levels quantified.

These measures can be combined with morphological parameters and
objects can be included or excluded from further analysis. This approach
is now increasingly applied to the use of new artificial micro-
environments to develop specific conditions allowing self-renewal or
differentiation. This is likely to synergize with the advances in the
understanding of human pluripotent stem cells culture and bring fast
and substantial contribution to disease modeling and drug discovery.
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Table 1 | High content analysis chemical screens using human pluripotent stem cells.

Source of

cells

Culture conditions Number of

cells

Read out Imaging

device

Number of

conditions

Proposed

pathways

Reference

hES (SA461) Single cells, fibronectin,

FF, MEF-CM

5000 per 96

well

“Percent Activation”

from DAPI

InCell 1000 1200+,

4100+, 15000

ROCK Andrews et al.

(2010)

hES (Shef4) Colonies on MEFs 6000 per 96

well

Tra 1-60, Hoechst InCell 1000 1040 ROCK Barbaric et al.

(2010b)

hES (HSF1,

H9)

Single cells on MEFs,

gelatin, DM

Approx 5000

per 384 well

Oct4, Hoechst Image Xpress

micro

1280+, 504 ROCK and

PKB

Damoiseaux

et al. (2009)

hES (H9) Single cells on Matrigel,

MEF-CM, automation

6000 per 384

well

Oct4, Hoechst Incell 3000 2880 TGFβ, wnt,

FGF2

Desbordes

et al. (2008)

hES (BG01,

WIBR3)

Single cells on polymer,

MEF-CM

Low density,

40 cells mm−2

Oct 4, SSEA-4 iCys laser

scanning, AFM

496

(materials)

– Mei et al.

(2010)

hES (HEUS9) Single cells on Matrigel,

DM

4000 per 384

well

ALP, compact colony

morphology

Inverted

micro-scope

50,000 E-cadherin Xu et al. (2010)

Abbreviations: PKC, protein kinase C; AP, alkaline phosphatase; MEF, mouse embryonic fibroblast; CM, conditioned medium; FF, feeder free; DM, defined medium;
FGF-2, fibroblast growth factor 2.

was found using hES cells feeder free with conditioned medium;
here the authors showed pinacidil as well as other compounds to
be structurally related to classic ROCK inhibitors (Andrews et al.,
2010). Similar approaches have been tried elsewhere and identi-
fied compounds that improved survival by inhibiting ROCK or
protein kinase C (Damoiseaux et al., 2009; Sherman et al., 2011).
Notably, automation and culture in 384 wells was applied to
hES cell culture in a single-cell dissociation protocol using con-
ditioned medium and quantitation of the pluripotency marker
Oct4 together with a nuclear dye to isolate compounds promoting
differentiation or expansion (Desbordes et al., 2008; Desbordes
and Studer, 2013).In line with the importance of cell–cell contacts
and cell–ECM contacts described above, it is interesting to note
that a central role for signaling involving E-cadherin, RhoA/ROCK
pathway and integrins in survival has also been proposed based on
HCA screening (Xu et al., 2010). A different angle was taken in
(Ben-David et al., 2013) to use HCA to identify compounds that
selectively eliminate hPS over differentiated cells for future cell
therapeutic application to mitigate the risk of teratomas. Over
50,000 compounds were screened against undifferentiated hES on
matrigel with mTeSR1. Cytotoxic compounds were then tested on
nine different cell types with very stringent criteria. A selective
inhibitor, PluriSIn #1 was identified this way. Very few attempts
have been reported to challenge hPS against a substantial number
of materials as screening conditions. Among these, in Mei et al.
(2010), combinations of monomers were screened on a primary
array for colony formation using transgenic Oct4-GFP hES cells
flow sorted and seeded in near-clonal density. The results were
then compared with an analysis of physical characteristics of the
materials. Surface roughness, indentation, elastic modulus, and
wettability were included. Self-renewal ability of cells was showed

to be dependent on adsorbed proteins, surface chemistry and the
geometry of the spot the cells were occupying. Several hit poly-
mers coated with vitronectin in mTeSR1 were suggested as the
most advanced culture conditions. It is likely that future studies
will include chemistries and materials as it has been attempted
for MSC. Altogether, the majority of these studies use end-point
assays that require fixation and staining of cells. An alternative or
complementary HCA tool is live imaging. This has proved effec-
tive in iPS-derived neural cells (Danovi et al., 2010) and also as a
tool to distinguish cells that are genuinely reprogrammed (Chan
et al., 2009). Because of the substantial improvement in the field
and its power, we predict that live imaging will raise in importance
using hPS cells for screening and will be applied in synergy with
end-point assays and the use of artificial microenvironments to
model diseases.

HCA, hPS CELLS, DISEASE MODELING, AND DRUG DISCOVERY
Disease modeling is possibly the most immediate potential appli-
cation of hPS cells to therapy. The majority of studies have used
selected small number of compounds in hypothesis testing exper-
iments. We will cover selected cases and refer the reader to recent
reviews for a more exhaustive perspectives (Maury et al., 2012;
Robinton and Daley, 2012) and for neural diseases (Xu and Zhong,
2013; Imaizumi and Okano, 2014).

Seminal studies on Spinal Muscular Atrophy (Ebert et al.,
2009) offered the proof of principle that it is possible to obtain
reprogrammed cells from patients suffering a specific disease.
The authors also reported a disease phenotype: patients-derived
cells proved impaired in their neuronal differentiation and gave
rise to neurons that were smaller in size, lacking the SMN pro-
tein and specific nuclear gems structures. Selected compounds,
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valproic acid and tobramycin could rescue this phenotype. Ectopic
expression of SMN was later shown to rescue a similar phe-
notype (Chang et al., 2011). Amyotrophic Lateral Sclerosis was
also the subject of recent attention. Screens using motoneurons
from both wild-type and mutant SOD1 mouse model allowed
the isolation of hits compounds. Kenpaullone was then vali-
dated using cells differentiated from patients-derived iPS cells and
improved the survival of motoneurons more than compounds
that recently failed in ALS clinical trials (Yang et al., 2013; see also
Makhortova et al., 2011; Burkhardt et al., 2013; Chestkov et al.,
2014).

Alzheimer has also been modeled (Yagi et al., 2011) and drug
screening platforms have been proposed (Yahata et al., 2011;
Xu et al., 2013). A recent study pointed toward the limitation
of classic HCA assays in 2D for this disease. Neurons from
iPS-derived neuroepithelial cells were derived. From these, the
detection of canonical features of the disease was possible in
3D but not in classic assays (Zhang et al., 2014). Schizophrenia
has been investigated extensively in terms of its genetic etiol-
ogy with no conclusive consensus. A number of differences in
phenotype and gene expression were observed in cells derived
from patients versus healthy individuals (Brennand et al., 2011).
Importantly, key cellular and molecular traits were shown to ame-
liorate with an antipsychotic, loxapine. Other important studies
were reported for dementia (Almeida et al., 2012) and familial
dysautonomia (Lee et al., 2009, 2012). Parkinson’s disease (PD)
is particularly difficult to model using current hiPS cells. Cells
reprogrammed from a patient that showed triplication of the
alpha-synuclein locus and their comparison with those derived
from an unaffected first-degree relative represent a significant
step forward (Devine et al., 2011). The pathological aggregation
of alpha-synuclein present in PD-affected neurons was recapit-
ulated in iPS-derived cells. Then the authors turned to yeast to
identify early pathogenic phenotypes and showed that a small
molecule (NAB2) and its target Nedd4 could rescue the disease
phenotype (Chung et al., 2013). Another important study focus-
ing on PD offers a fascinating insight in the differences and
similarities between senescence and aging while proposing an
interesting option to model late-onset diseases overcoming the
“rejuvenation” that is triggered with reprogramming (Miller et al.,
2013).

Beside neurological diseases, several attempts modeling car-
diac diseases were undertaken. Cardiomyocytes derived from
patients carrying LEOPARD syndrome, an autosomal dominant
developmental disorder (Carvajal-Vergara et al., 2010) showed
larger higher sarcomeric organization and preferential nuclear
localization of NFATC4 in the nucleus when compared with car-
diomyocytes derived from hES cells or hiPS cells from healthy
sibling donors. Congenital long QT syndrome is a familiar arrhyth-
mia. Cardiomyocytes derived from hiPS from type 2 long QT
syndrome patients showed significant prolongation of the action-
potential duration and were used to evaluate the effects of channel
blocker drugs (Itzhaki et al., 2011) reviewed in (Friedrichs et al.,
2013). In some cases gene abnormalities have been corrected in
hiPS cells opening interesting prospects for both cell therapy and
disease modeling (Yusa et al., 2011; see also Choi et al., 2013).
Despite the impressive progress in the field, very few studies

have successfully recreated features of the disease in a cell-based
assay robust enough to be screened with a substantial number of
conditions on hiPS-derived cells.

CONNECTING THE DOTS
In order to allow HCA, several requisites are necessary as sum-
marized in (Engle and Vincent, 2014). Cell robustness and
reproducibility, in vitro differentiation, reasonable throughput,
relevance, assay characteristics, screening cascade design are all
of paramount importance to achieve meaningful disease model-
ing. We envision that in the near future, synthetic materials and
sophisticated HCA analysis including bright field label free live
imaging will enrich the palette of tools available. There is a grow-
ing awareness that the understanding of pluripotent stem cells, the
definition of culture conditions, the engineering of optimal sub-
strates and the development of appropriate HCA pipelines can be
combined toward disease modeling.

Recently, several projects have been launched aimed at estab-
lishing multidisciplinary frameworks to characterize several hun-
dreds lines derived from patients and/or healthy individuals.
Some examples include the California Institute for Regenera-
tive Medicine (CIRM), the New York Stem Cell Foundation
(NYSCF), the Harvard Stem Cell Institute iPS Core Facility, the
hPS cell database at the National Institute of Health (StemCellDB
NIH), all based in the United States. In Asia, the China IPSCs
program and the Japan Science and Technology (JST) agency
among others also hold stem cells programs. European initia-
tives include the European Bank for induced pluripotent stem
cells (EBiSC), The Innovative Medicine Initative (IMI)-funded
StemBancc, and the hiPS cells initiative (HipSci). Combined
these programs will generate hiPS cell lines from approximately
10,000 individuals. HipSci was established in November 2012,
headed by Prof. Fiona Watt (London) and Prof. Richard Durbin
(Cambridge). Engagement of the clinical genetics community,
open access model of data sharing and collaborative cell phe-
notyping are key features of the project. A bank of several
hundred iPS cell lines is being generated and extensive genome,
epigenome, proteome, and phenotype analysis is being carried
out at the partnering centers. The project aims to develop a base-
line analysis for iPS lines from healthy individuals and valuable
assays for rare diseases for which calls for proposals have been
launched.

In conclusion, the knowledge required to capture the com-
plexity of the field is broad in spectrum; the technology needs to
remain focused on the development of relevant complementary
tools while exploring the synergies between these. Our goal in this
review is to transmit a sense of the diverse backgrounds required
for this purpose. An impressive set of resources is being devoted
through innovative platforms and bridging between governmen-
tal, academic, and commercial partners to expand the core of
competencies around stem cells, artificial microenvironments, and
HCA. Our hope is this will soon allow to harness the full potential
of hPS cells to model diseases and to develop therapeutics.
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