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Myc is an oncogene deregulated inmost—perhaps all—human cancers. EachMyc family

member, c-, L-, and N-Myc, has been connected to tumor progression andmaintenance.

Myc is recognized as a “most wanted” target for cancer therapy, but has for many years

been considered undruggable, mainly due to its nuclear localization, lack of a defined

ligand binding site, and physiological function essential to the maintenance of normal

tissues. The challenge of identifying a pharmacophore capable of overcoming these

hurdles is reflected in the current absence of a clinically-viable Myc inhibitor. The first

attempts to inhibit Myc used antisense technology some three decades ago, followed

by small molecule inhibitors discovered through “classical” compound library screens.

Notable breakthroughs proving the feasibility of systemic Myc inhibition were made

with the Myc dominant negative mutant Omomyc, showing both the great promise

in targeting this infamous oncogene for cancer treatment as well as allaying fears

about the deleterious side effects that Myc inhibition might have on normal proliferating

tissues. During this time many other strategies have appeared in an attempt to drug

the undruggable, including direct and indirect targeting, knockdown, protein/protein and

DNA interaction inhibitors, and translation and expression regulation. The inhibitors range

from traditional small molecules to natural chemicals, to RNA and antisense, to peptides

and miniproteins. Here, we briefly describe the many approaches taken so far, with a

particular focus on their potential clinical applicability.

Keywords: Myc, oncogene, inhibitor, therapy, Omomyc, clinical application

INTRODUCTION

The Myc oncoproteins are a family of pleiotropic transcription factors that control several cellular
functions related to efficient proliferation, growth and metabolism, as well as programs of tissue
remodeling and regeneration (Dang, 2013). In a normal physiological context, the level of Myc
proteins (comprising c-, L-, and N-Myc) is tightly regulated (Meyer and Penn, 2008; Conacci-
Sorrell et al., 2014). Indeed,myc gene expression normally depends on growth factor signaling and
bothmycmRNA and Myc protein have very short half-lives (of 30 and 20 min respectively) (Dang,
2012). In tumor cells however, the cellular levels of Myc become independent from such signaling
and regulation, and the resulting exacerbated Myc function drives intracellular and extracellular
transcription programs that allow tumors to grow and thrive (Soucek and Evan, 2002; Dang, 2012;
Whitfield and Soucek, 2012; Conacci-Sorrell et al., 2014; Fletcher and Prochownik, 2015). In this
pathological condition, Myc deregulation can occur at any given stage of its expression (Meyer and
Penn, 2008; Conacci-Sorrell et al., 2014). First, the myc gene itself is often subject to amplification,
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viral insertional events, or chromosomal translocations that
provoke its exaggerated expression. Second, myc mRNA can
become stabilized through both direct and indirect regulatory
events. Third, the Myc protein turnover rate, which is normally
dependent on Myc’s phosphorylation status and on signaling
from FBW7 to engage the ubiquitin-proteasome system, is also
found altered in cancer. Finally, even when Myc is not itself
mutated, its aberrant expression can occur as a consequence
of upstream oncogenic signals (i.e., Ras, PI3K, Wnt, etc.) that
converge on this central downstream node inside the nucleus
(Meyer and Penn, 2008).

Myc functions within a network of similar proteins, called
bHLH-Zip proteins, that all share a DNA-binding basic region
and a bHLH-Zip dimerization domain. In this network, Myc
forms heterodimers with its natural partner Max, recognizing
DNA binding sites called E-boxes and thereby modulating the
transcription of specific target genes (Meyer and Penn, 2008;
Fletcher and Prochownik, 2015).

Given its crucial role in cancer progression and maintenance
(Meyer and Penn, 2008; Dang, 2012; Hartl, 2016), Myc
constitutes an ideal cancer target. However, no Myc inhibitor
has reached the clinic yet, due in part to the general dogma that
dominated the field for a long time claiming that Myc inhibition
would cause catastrophic side effects in normal tissues, as well
as to various technical issues. These include targeting a nuclear
transcription factor displaying a predominantly intrinsically
disordered structure, and notably, lacking a binding pocket
that has been the typical target for traditional drug discovery
approaches using small molecule inhibitor libraries. These issues
have been addressed in recent years (Soucek et al., 2008;
Prochownik and Vogt, 2010; McKeown and Bradner, 2014;
Fletcher and Prochownik, 2015) and we are now witnessing
a renewed interest in making Myc inhibition soon a reality
for cancer patients. The technical difficulties with targeting
Myc help explain the diversity of strategies that have been
developed.

Recent reviews have focused on particular aspects of Myc
inhibition or specific diseases (Fletcher and Prochownik, 2015;
Li et al., 2015; Abedin et al., 2016; Koh et al., 2016; Posternak
and Cole, 2016; Shalaby and Grotzer, 2016). Here we have given
a concise overview of the strategies employed to inhibit Myc
to date, with a particular focus on their applicability in clinical
practice.

Direct Inhibition of Myc Expression
Direct Myc inhibition can be achieved either by interference
with its production or function. In the first case, one could,
for example, target its transcription—either interfering with
promoter accessibility and/or recruitment of transcription
factors—or translation (Figures 1, 2). In the second case, efforts
would likely be directed instead to preventing Myc interaction
with its “partner in crime” Max or its DNA recognition binding
site (Figure 3). The following section describes direct inhibitors
of Myc production, while indirect inhibitors of its expression are
discussed later. Table 1 provides a summary of the strategies and
molecules discussed in this review.

G-quadruplex Stabilizers
G-quadruplexes (also known as G4-DNA) are tertiary structures
formed in nucleic acids by sequences that are rich in guanine. The
purine-rich strand in the NHE III(1) region of the Myc promoter
forms G-quadruplexes (Simonsson et al., 1998, Figure 1). A
number of small molecule ligands, including cationic porphyrins
(Ou et al., 2007), quindolines (Pivetta et al., 2008), platinum
complexes (Wu et al., 2009), and ellipticine (Brown et al., 2011)
were shown to stabilize such G-quadruplexes in the myc gene,
thus repressing its transcription. Notably, CX-3543 (Quarfloxin)
was initally selected as a binder of the myc G-quadruplex (Chen
et al., 2014) and is the only such G-quadruplex stabilizer to
have reached clinical trials (entering Phase II trials for neuro-
endocrine carcinomas in 2008). However, it was also shown to
function by disrupting nucleolin bound to the G-quadruplexes
in ribosomal DNA (Brooks and Hurley, 2009, 2010; Neidle,
2016). Since nucleolin binds to myc G-quadruplexes, Quarfloxin
thus may also repress myc expression by a more indirect route
(Brooks and Hurley, 2009). Development was discontinued by
Cylene, although Quarfloxin has been licensed to TetraGene so
development may continue.

Whether target specificity can be achieved using this strategy
is not clear yet, although attempts are being made to selectively
target myc (Felsenstein et al., 2016). According to many, total
selectivity may not be necessary as long as the major target is a
driver or provides a required function for the cancer cell, as for
Myc (Neidle, 2016). Of course, as for some of the other types of
inhibitors described here, the extent and severity of off-target side
effects are key.

Antisense Oligonucleotides
With the initial excitement over the promise of antisense
as a tool to promote degradation of target mRNA, myc
was first successfully attacked in vitro in multiple cell lines
(Prochownik et al., 1988; Sklar et al., 1991, Figure 2A). Following
these first successes, INX-3280, a 15-mer phosphorothioate
oligonucleotide against the c-myc oncogene, was in Phase I
and II clinical trials for the treatment of lymphoma and solid
tumors more than a decade ago, but was discontinued in 2002
by Inex. A modified form incorporating a “transmembrane
carrier system,” INXC-6295, was abandoned due to resource
constraints.

With a slightly different strategy, AVI BioPharma (now
Sarepta Therapeutics) developed AVI-4126 (Resten-RG), a
phosphorodiamidatemorpholino antisense oligomer (PMO) that
inhibits Myc expression by preventing ribosomal assembly,
thereby preventing mRNA translation (Arora et al., 2000).
PMO is a modification shown to improve in vivo stability and
bioavailabilty of the compound. A Phase I trial of Resten-NG
carried out by AVI BioPharma enabled the determination of
its bioavailability in solid tumor patients and established the
feasibility of using PMOs in human cancer (Devi et al., 2005).
Moreover, local delivery was feasible and safe in a related
target disease, cardiovascular restenosis that involves neointimal
hyperplasia (Kipshidze et al., 2003, 2004) and a Phase II study
reported positive results following local delivery (Kipshidze et al.,
2007; Philipp et al., 2012).
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FIGURE 1 | Multiple strategies to target Myc: impairing myc transcription. Direct (red) and indirect (orange) inhibitors are shown related to how they interfere

with myc. Some examples of each inhibitor are listed. Figure adapted from Koh et al. (2016).

FIGURE 2 | Multiple strategies to target Myc: interfering with myc mRNA. Direct (red) and indirect (orange) inhibitors are shown related to how they interfere

with myc mRNA. (A) Causing the degradation of myc mRNA. (B) Preventing myc translation. Some examples of each inhibitor strategy are listed. Figure adapted from

Koh et al. (2016).

FIGURE 3 | Multiple strategies to target Myc: reducing Myc stability and function. Direct (red) and indirect (orange) inhibitors are shown related to how they

affect Myc’s stability or binding to its partners or DNA. Other approaches impede Myc-dependent transcription of target genes. Some examples of each inhibitor

strategy are listed. Myc/Max crystal structure is from Nair and Burley (2003) and drawn using the PyMOL Molecular Graphics System (Version 1.8 Schrodinger, LLC.).
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However, none of these drugs was further developed to reach
the market and in fact very few antisense oligonucleotides have
done so (Moreno and Pego, 2014). It is not clear though why
the promising myc antisense approaches were not followed
up, particularly in cancer studies and with newer nanocarrier
delivery systems.

siRNA
Another approach to directly inhibit Myc expression has been
used successfully in vitro by lentiviral delivery of shRNA (Wang
et al., 2008, Figure 2A) and also attempted in clinical trials using
a lipid nanoparticle formulation to deliver myc RNAi (DCR-
MYC). While preliminary trials provided evidence of destruction
of myc RNA in patients and a clinical response (Tolcher et al.,
2015), later trial data did not meet the company’s expectations
for level of knockdown or efficacy, and Dicerna has halted its
development.

As a relatively poor pharmacokinetic profile seems to be a
limiting development factor, many attempts are being made to
overcome the rapid degradation of siRNA by its incorporation
into nanoparticles. For example, gold particles modified with
branched polyethyleneimine have been used as efficient and
non-toxic intracellular delivery agents for c-myc siRNA both
in vitro (Shaat et al., 2016) and in vivo, where they reduced
lung tumor growth after intratracheal instillation (Conde
et al., 2013). Similarly, folate nanoliposomes carrying siRNA
targeting N-myc induce tumor cell apoptosis in a neuroblastoma
model in vivo (Zhu et al., 2013), and lipid/calcium/phosphate
nanoparticles combining c-myc siRNA and gemcitabine into a
single nanovesicle were shown to inhibit lung tumor growth with
little toxicity after systemic administration in xenograft models
(Zhang et al., 2013).

A related approach making use of oncolytic viruses has
also been used to successfully deliver N-myc siRNA in vivo to
inhibit xenograft neuroblastoma tumor growth (Li et al., 2013).
Oncolytic viruses are starting to show great promise in cancer
treatment (Patel and Kratzke, 2013; Andtbacka et al., 2015).

Direct Inhibitors That Act by Interfering
with Protein/Protein Interaction or Binding
to DNA
One reason forMyc’s undruggability is its intrinsically disordered
nature and the fact that protein interactions occur on large,
flat, structurally indistinct interfaces (Prochownik and Vogt,
2010; McKeown and Bradner, 2014). However, binding to
its obligate partner Max and specific DNA recognition were
shown to stabilize folded conformations of Myc’s bHLH-Zip
domain which, despite lacking a genuine binding pocket, could
constitute a relevant target for specific inhibitors. In searching
for such inhibitors, the initial yeast 2-hybrid screens and
subsequent FRET and fluorescence polarization assays enabled
the identification of some useful small molecule compounds that
established the feasibility of inhibiting Myc/Max dimers (Yin
et al., 2003; Prochownik and Vogt, 2010). Since then, though, the
poor bioavailability and lack of selectivity of these for Myc has
limited their use in vivo (Prochownik and Vogt, 2010; Fletcher
and Prochownik, 2015).

More recently, a surface plasmon resonance (SPR) based
technique to quantitate Myc/Max interaction with a DNA probe
revealed that the small molecule inhibitors described below
comprise 2 distinct classes that either inhibit DNA binding by
disrupting Myc/Max interaction, or by distorting the pre-formed
heterodimer (Wang et al., 2015a, Figure 3).

Small Molecule Protein/Protein Interaction Inhibitors
The peptide mimetic compound IIA6B17 was the first identified
small molecule inhibitor of Myc/Max dimerization (Berg et al.,
2002). Unfortunately, the activity of IIA6B17 also extended to c-
Jun (Berg et al., 2002), as did the inhibitory effect of NY2267 (Xu
et al., 2006), likely due to their similar structural features in their
leucine zipper.

Another compound identified early on to affect Myc/Max
interaction was 10058-F4 (Yin et al., 2003). Chemical
modifications of 10058-F4 resulted in improvements in
efficacy in vitro, generally correlating with their ability to disrupt
Myc/Max association and DNA binding. 10058-F4 and its active
analogs bind specifically to monomeric Myc, interacting with
the H2/leucine zipper domain with a KD of 42 µM (Wang et al.,
2007). Another small molecule arising from the same screen,
10074-G5, has a KD of 20 µM in vitro and binds to a distinct
region of Myc, the basic region/H1 domain (Yin et al., 2003).
Binding of both these drugs to intrinsically disordered Myc
limits its ability to adopt a more defined conformation and
prevents interaction with Max (Follis et al., 2008). However, both
10058-F4 and 10074-G5 are rapidly metabolized and showed
poor tumor distribution, limiting their applicability in vivo
(Guo et al., 2009; Clausen et al., 2010; Fletcher and Prochownik,
2015).

In fact, the therapeutic utility of potent small molecule
inhibitors of Myc/Max dimerization has so far been limited by
poor bioavailability, rapid metabolism, and inadequate target site
penetration. Nevertheless, development of these small molecules
continues in the hope of improving their in vivo characteristics
(for a summary, see Fletcher and Prochownik, 2015). For
example, structure-activity relationship studies of 10074-G5 led
to the generation of an analog, JY-3-094, showing higher ability
to disrupt the association between recombinant Myc and Max
protein (Wang et al., 2013; Yap et al., 2013), but did not solve
the issue of poor cell penetration. Esterification of a critical para-
carboxylic acid enhanced cellular uptake, although unfortunately
it impaired the ability to disrupt Myc/Max association in vitro
(Wang et al., 2013).

Also related to 10074-G5 is the small molecule 3jc48-3, a
congener that shows increased potency and stability in cell-based
assays (Chauhan et al., 2014). More exciting still is Mycro3,
for which daily treatment by oral gavage increased survival in
a mouse model of pancreatic ductal carcinoma and orthotopic
xenografts of human pancreatic cancer cells (Stellas et al., 2014).
Finally, KJ-Pyr-9 is a new inhibitor found in a Kröhnke pyridine
library, with a notably lower KD of 6.5 nM (Hart et al., 2014).
In vivo, KJ-Pyr-9 effectively blocks the growth of Myc-amplified
human cancer cell xenografts (Hart et al., 2014). Furthermore,
it penetrates the blood-brain barrier and is not acutely toxic at
doses as high as 10 mg/kg (Hart et al., 2014).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 February 2017 | Volume 5 | Article 10

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Whitfield et al. Strategies toward Clinical Myc Inhibition

T
A
B
L
E
1
|
M
u
lt
ip
le

s
tr
a
te
g
ie
s
to

ta
rg
e
t
M
y
c
in

c
a
n
c
e
r.

S
tr
a
te
g
y

M
e
c
h
a
n
is
m

E
x
a
m
p
le
s

P
re
c
li
n
ic
a
l/
C
li
n
ic
a
l
s
ta
g
e

R
e
fe
re
n
c
e
s

D
ire

c
t
in
h
ib
iti
o
n
o
f
M
yc

e
xp

re
ss
io
n

G
-q
u
a
d
ru
p
le
x
st
a
b
ili
ze
rs

(p
re
ve
n
t
m
yc

tr
a
n
sc

rip
tio

n
)

C
X
-3
5
4
3
(Q
u
a
rfl
o
xi
n
)

P
h
a
se

II
in

2
0
0
8

B
ro
o
ks

a
n
d
H
u
rle

y,
2
0
1
0
;
D
ry
g
in
e
t
a
l.,

2
0
1
1

c
a
tio

n
ic
p
o
rp
h
yr
in
s,

q
u
in
d
o
lin
e
s,

p
la
tin

u
m

c
o
m
p
le
xe

s,
e
lli
p
tic
in
e

E
ff
e
c
tiv
e
in
c
e
lls

O
u
e
t
a
l.,

2
0
0
7
;
P
iv
e
tt
a
e
t
a
l.,

2
0
0
8
;
W
u
e
t
a
l.,

2
0
0
9
;
B
ro
w
n

e
t
a
l.,

2
0
1
1

A
n
tis
e
n
se

o
lig
o
n
u
c
le
o
tid

e
s
(p
re
ve
n
t
m
yc

tr
a
n
sl
a
tio

n
)

IN
X
-3
2
8
0

P
h
a
se

I/
II
(d
is
c
o
n
tin

u
e
d
)

W
e
b
b
e
t
a
l.,

2
0
0
4

A
V
I-
4
1
2
6
(R
e
st
e
n
-N

G
)

P
h
a
se

I/
II
p
o
si
tiv
e
d
a
ta

D
e
vi
e
t
a
l.,

2
0
0
5
;
K
ip
sh

id
ze

e
t
a
l.,

2
0
0
3
,
2
0
0
4
,
2
0
0
7

si
R
N
A
,
m
ic
ro
R
N
A
(p
re
ve
n
t
m
yc

tr
a
n
sl
a
tio

n
)

D
C
R
-M

Y
C

P
h
a
se

I/
II
(d
is
c
o
n
tin

u
e
d
)

To
lc
h
e
r
e
t
a
l.,

2
0
1
5

si
R
N
A
in
c
o
rp
o
ra
te
d
in
to

n
a
n
o
p
a
rt
ic
le
s

E
ff
e
c
tiv
e
in
m
o
u
se

m
o
d
e
ls

C
o
n
d
e
e
t
a
l.,

2
0
1
3
;
Z
h
u
e
t
a
l.,

2
0
1
3
;
Z
h
a
n
g
e
t
a
l.,

2
0
1
3

si
R
N
A
in

o
n
c
o
ly
tic

vi
ru
se

s
E
ff
e
c
tiv
e
in
m
o
u
se

m
o
d
e
ls

L
ie
t
a
l.,

2
0
1
3

D
ire

c
t
in
h
ib
ito

rs
o
f
M
yc

th
a
t
a
c
t
b
y
in
te
rf
e
rin

g

w
ith

p
ro
te
in
/p
ro
te
in

in
te
ra
c
tio

n
o
r
b
in
d
in
g
to

D
N
A

S
m
a
ll
m
o
le
c
u
le
p
ro
te
in
/p
ro
te
in

in
te
ra
c
tio

n

in
h
ib
ito

rs
(in
te
rf
e
re

w
ith

M
yc

tr
a
n
sc

ip
tio

n
a
l

a
c
tiv
a
tio

n
)

1
0
0
5
8
-F
4
,
1
0
0
7
4
-G

5
,
JY
-3
-0
9
4
,
3
jc
4
8
-3

E
ff
e
c
tiv
e
in
c
e
lls

Y
in

e
t
a
l.,

2
0
0
3
;
Y
a
p
e
t
a
l.,

2
0
1
3
;
W
a
n
g
e
t
a
l.,

2
0
1
3
;
C
h
a
u
h
a
n

e
t
a
l.,

2
0
1
4

M
yc
ro
3
,
K
J-
P
yr
-9
,
M
I1
-P

D
E
ff
e
c
tiv
e
in
m
o
u
se

m
o
d
e
ls

S
te
lla
s
e
t
a
l.,

2
0
1
4
;
H
a
rt
e
t
a
l.,

2
0
1
4
;
S
o
o
d
g
u
p
ta

e
t
a
l.,

2
0
1
5

C
o
m
p
o
u
n
d
s
th
a
t
sp

e
c
ifi
c
a
lly

in
h
ib
it
M
yc

b
in
d
in
g
to

D
N
A
(in
te
rf
e
re

w
ith

M
yc

tr
a
n
sc

ip
tio

n
a
la
c
tiv
a
tio

n
)

K
S
I-
3
7
1
6

E
ff
e
c
tiv
e
in
m
o
u
se

m
o
d
e
ls

Je
o
n
g
e
t
a
l.,

2
0
1
4
;
S
e
o
e
t
a
l.,

2
0
1
4

M
in
ip
ro
te
in
s
o
r
p
ro
te
in

d
o
m
a
in
s
(in
te
rf
e
re

w
ith

M
yc

fu
n
c
tio

n
)

O
m
o
m
yc

P
re
c
lin
ic
a
l

S
o
u
c
e
k
e
t
a
l.,

2
0
0
4
,
2
0
0
8
;
S
o
d
ir
e
t
a
l.,

2
0
1
1
;
S
o
u
c
e
k
e
t
a
l.,

2
0
1
3
;
A
n
n
ib
a
li
e
t
a
l.,

2
0
1
4
;
G
a
la
rd
ie
t
a
l.,

2
0
1
6

H
1
p
e
p
tid

e
E
ff
e
c
tiv
e
in
m
o
u
se

m
o
d
e
ls

L
ie
t
a
l.,

2
0
1
6
;
B
id
w
e
ll
e
t
a
l.,

2
0
1
2
,
2
0
1
3

In
d
ire

c
t
in
h
ib
iti
o
n
o
f
M
yc

B
E
T
b
ro
m
o
d
o
m
a
in

a
n
d
e
xt
ra
-t
e
rm

in
a
l

d
o
m
a
in

in
h
ib
ito

rs
(m

a
y
p
re
ve
n
t
m
yc

tr
a
n
sc

rip
tio

n
)

T
E
N
-0
1
0

P
h
a
se

I/
II

S
h
a
p
iro

,
2
0
1
5

O
T
X
0
1
5

P
h
a
se

I/
II

B
e
rt
h
o
n
e
t
a
l.,

2
0
1
6

C
P
I-
0
1
6
0
,
A
B
B
V
-0
7
5
,
IN
C
B
0
5
4
3
2
9
,

G
S
K
5
2
5
7
6
2
,
F
T-
1
1
0
1

M
u
lti
p
le
P
h
a
se

I/
II

A
b
e
d
in

e
t
a
l.,

2
0
1
6

B
lo
c
k
m
yc

tr
a
n
sc

rip
tio

n
T
H
Z
1
a
n
d
2
(C
D
K
7
in
h
ib
ito

rs
)

E
ff
e
c
tiv
e
in
m
o
u
se

m
o
d
e
ls

C
h
ip
u
m
u
ro

e
t
a
l.,

2
0
1
4
;
W
a
n
g
e
t
a
l.,

2
0
1
5
c

B
lo
c
k
m
yc

m
R
N
A
tr
a
n
sl
a
tio

n
sa

ra
c
a
tin

ib
(S
rc

ki
n
a
se

in
h
ib
ito

r)
P
h
a
se

II
Ja

in
e
t
a
l.,

2
0
1
5

m
T
O
R
/m

T
O
R
C
l/
2
ki
n
a
se

in
h
ib
ito

rs
A
p
p
ro
ve
d
fo
r
u
se

P
o
liv
ka

a
n
d
Ja

n
ku

,
2
0
1
4
;
R
o
o
h
ia
n
d
H
o
jja
t-
F
a
rs
a
n
g
i,
2
0
1
6

Ta
rg
e
t
re
g
u
la
to
rs

o
f
M
yc

p
ro
te
in

st
a
b
ili
ty

M
L
N
8
2
3
7
(A
u
ro
ra
-A

in
h
ib
ito

r)
P
h
a
se

II/
III

M
a
c
a
ru
lla

e
t
a
l.,

2
0
1
0
;
B
ro
c
km

a
n
n
e
t
a
l.,

2
0
1
3

S
E
T
&
C
IP
2
A
in
h
ib
ito

rs
P
re
c
lin
ic
a
l

F
a
rr
e
ll
e
t
a
l.,

2
0
1
4
;
Ja

n
g
h
o
rb
a
n
e
t
a
l.,

2
0
1
4

In
d
ire

c
t
ta
rg
e
tin

g
b
y

sy
n
th
e
tic

le
th
a
lit
y

Ta
rg
e
t
p
ro
te
in
s
a
n
d
p
a
th
w
a
ys

n
o
t
d
ire

c
tly

re
la
te
d
to

M
yc

th
a
t
a
re

le
th
a
lw

h
e
n

c
o
m
b
in
e
d
w
ith

d
e
re
g
u
la
te
d
M
yc

e
.g
.
C
H
K
1
/2
,
P
IM

a
n
d
A
u
ro
ra

ki
n
a
se

in
h
ib
ito

rs
,
C
D
K
in
h
ib
ito

rs
,
S
A
E
,
P
o
lI
e
tc
.

N
u
m
e
ro
u
s
tr
ia
ls

L
ie
t
a
l.,

2
0
1
5
;
C
e
rm

e
lli
e
t
a
l.,

2
0
1
4

In
d
ire

c
t
ta
rg
e
tin

g
b
y

im
m
u
n
o
th
e
ra
p
y

Ta
rg
e
t
im

m
u
n
e
c
o
m
p
o
n
e
n
ts

re
q
u
ire

d
fo
r

M
yc
-d
riv
e
n
tu
m
o
rs

P
C
I-
3
2
7
6
5
(lb

ru
tin

ib
)

M
u
lti
p
le
P
h
a
se

I/
II

S
m
ith

,
2
0
1
5
;
M
a
ss
ó
-V
a
llé
s
e
t
a
l.,

2
0
1
6

Ta
rg
e
t
im

m
u
n
e
c
h
e
c
kp

o
in
ts

th
a
t
a
re

a
lte
re
d
in

M
yc
-d
riv
e
n
tu
m
o
rs

P
D
-L
1
/C

D
4
7
in
h
ib
ito

rs
N
u
m
e
ro
u
s
tr
ia
ls
a
n
d
a
p
p
ro
ve
d

d
ru
g
s

C
a
se

y
e
t
a
l.,

2
0
1
6

In
d
ir
e
c
t
in
h
ib
it
o
rs
a
re
th
o
s
e
th
a
t
a
c
t
o
n
a
p
ro
te
in
in
vo
lv
e
d
in
M
yc

e
xp
re
s
s
io
n
o
r
fu
n
c
ti
o
n
,
w
h
ile

d
ir
e
c
t
in
h
ib
it
o
rs
a
c
t
d
ir
e
c
tl
y
o
n
M
yc

it
s
e
lf.
T
h
e
in
h
ib
it
o
rs
o
f
m
yc

tr
a
n
s
la
ti
o
n
o
r
tr
a
n
s
c
ri
p
ti
o
n
,
fo
r
e
xa
m
p
le
,
c
a
n
b
e
d
ir
e
c
t
(a
c
ti
n
g
o
n
m
yc

m
R
N
A
)

o
r
in
d
ir
e
c
t
(a
c
ti
n
g
o
n
p
ro
te
in
s
th
a
t
re
g
u
la
te
th
e
tr
a
n
s
la
ti
o
n
o
r
tr
a
n
s
c
ri
p
ti
o
n
o
f
m
yc
).
T
h
e
m
e
c
h
a
n
is
m
o
f
e
a
c
h
s
tr
a
te
g
y
is
b
ri
e
fly

d
e
s
c
ri
b
e
d
a
n
d
e
xa
m
p
le
s
a
re
p
ro
vi
d
e
d
a
lo
n
g
w
it
h
th
e
s
ta
g
e
o
f
c
lin
ic
a
ld
e
ve
lo
p
m
e
n
t,
if
kn
o
w
n
.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 February 2017 | Volume 5 | Article 10

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Whitfield et al. Strategies toward Clinical Myc Inhibition

New small molecules that target Myc are also being generated
thanks to novel computational techniques able to virtually
screen binding to different intrinsically disordered protein
conformations, maximizing the chances of structure-based drug
discovery. Four compounds (with the prefix PKUMDL) show
micromolar affinity for Myc and activity in cell-based assays (Yu
et al., 2016).

An additional “reverse” approach involves stabilizing
instead the Max/Max homodimers, thus preventing Myc/Max
transactivating dimers from forming. A virtual ligand screen
identified a potent stabilizer of the homodimer (NSC13728) that
interferes with Myc-induced transformation and transcriptional
activation (Jiang et al., 2009).

In addition, attempts are being made to incorporate the
small molecules into nanoparticles for increased stability
and targeted delivery. For example, an Sn2 lipase-labile
pro-drug inhibitor (MI1-PD) conjugated to integrin-targeted
nanoparticles extended survival in a mouse model of multiple
myeloma (Soodgupta et al., 2015).

A more extensive review of these small molecule inhibitors is
provided elsewhere (Chen et al., 2014). Such inhibitors have been
an intense focus in Myc inhibition research for many years, and
we hope that further preclinical development of promising leads
is ongoing.

Compounds That Specifically Inhibit Myc Binding to

DNA
Other small molecule inhibitors such as MYRA-A and
NSC308848 have achieved high selectivity in targeting the
DNA-binding domain of Myc/Max, and preventing specific
interaction with DNA (Mo and Henriksson, 2006; Mo et al.,
2006, Figure 3).

Some naturally-occurring molecules have also been shown
to directly interact with Myc/Max heterodimers. Celastrol and
celastrol-inspired triterpenoids bind to and alter the quaternary
structure of the pre-formed dimer and abrogate its DNA binding
(Wang et al., 2015b).

KSI-3716 also blocksMyc/Max binding to DNA, and inhibited
orthotopic tumor formation after local instillation to the bladder
(Jeong et al., 2014)—the typical treatment route for this cancer
type—even in gemcitabine-resistant tumors (Seo et al., 2014).

As mentioned above, though, small molecules, despite good
affinity for their target in vitro, often display lack of selectivity in
cells or in vivo. In order to try to overcome this issue, synthetic α-
Helix “mimetics” based on biphenyl were developed (Jung et al.,
2015). These have an increased interaction surface and recognize
Myc/Max dimers (not free Myc) and disrupt DNA binding.
However, their KD was not increased (13µM) and specificity was
not enhanced: similar activity was observed in non-cancer cells
lacking Myc overexpression (Jung et al., 2015).

Miniproteins or Protein Domains
Miniproteins or protein domains comprise a group of
structurally-related molecules based on domains from Myc
family members (Figure 3). The best characterized so far and
especially notable for its in vivo use, is Omomyc. Omomyc
has been well validated as a gene therapy, providing the proof

of concept for the feasibility of systemic Myc inhibition.
It comprises the bHLH-Zip domain of Myc carrying four
aminoacidic substitutions that alter its dimerization specificity,
such that in addition to bindingMyc’s natural partner Max, it can
also heterodimerize with Myc as well as homodimerize (Soucek
et al., 1998, 2002; Savino et al., 2011). As a result, Omomyc
acts as a dominant negative of Myc transcriptional function,
being able to disrupt Myc/Max interaction, sequester Myc away
from DNA and occupy the E-box with transcriptionally inactive
dimers (Omomyc/Omomyc and/or Omomyc/Max). Notably, in
doing so, it antagonizes all Myc family members (Soucek et al.,
2008; Savino et al., 2011; Fiorentino et al., 2016). Multiple studies
in mouse models of cancer demonstrated Omomyc’s therapeutic
impact in different types of cancer, independently of their driving
mutation or tissue of origin, pointing to the key role of Myc
in tumorigenesis downstream of the diverse oncogenic lesions
(Soucek et al., 2004, 2008, 2013; Sodir et al., 2011; Annibali
et al., 2014; Galardi et al., 2016). Importantly, in each model
Omomyc showed only minimal side effects, suggesting its safety
and potential applicability in patients. Work to translate its use
from gene therapy to pharmacological application is currently
ongoing (Peptomyc S.L.).

Another modified Myc peptide, this time a 14 amino acid
sequence from the helix 1 (H1) carboxylic region of Myc
harboring 2 changes, was shown to be active against breast cancer
cells in culture when fused to a fragment from Antennapedia
to enable cellular uptake (Giorello et al., 1998). This has
not performed well in vivo, at least partly because it does
not efficiently cross the nuclear envelope. However, recently a
staggered, “dual-strike” strategy was employed, whereby a first
treatment with docetaxel arrested the cells in G2/M, prolonging
the period of nuclear envelope disassembly, followed by a second
treatment, this time with the H1 peptide (Li et al., 2016). In vivo,
this procedure reduced the growth of subcutaneously-inoculated
HeLa cells and prolonged animal survival (Li et al., 2016). The
peptide was delivered in the macromolecular carrier HPMA.

The H1 peptide was also used for an in vivo study by fusing
it to both a cell-penetrating peptide sequence and an elastin-like
polypeptide (ELP) that is thermally stable and allows targeted
delivery to particular tissues by local hyperthermia (Bidwell et al.,
2013). This multi-functional peptide reduced tumor growth in
rodent orthotopic models of glioma and breast cancer (Bidwell
et al., 2012, 2013).

Another protein domain that could be used to inhibit Myc is
the bHLH-Zip of Max (Montagne et al., 2012). This truncated
protein spontaneously transduces into cells and inhibits Myc
transcription. The idea behind this strategy would be to
provide excess homodimeric Max to out-compete Myc/Max
heterodimers binding to DNA.

Indirect Inhibition of Myc
Targeting Myc itself has often proven very challenging. Because
of that, many researchers have instead opted for an indirect
approach, focusing on Myc transcriptional regulation or
modulation of stability and activity, by inhibiting more tractable
targets and not directly hitting Myc itself. Here is an overview
of these alternative approaches, once again encompassing the
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transcription, translation and stability of Myc, as well as
controlling its activity as a transcription factor.

Blocking myc Transcription
The BET bromodomain and extra-terminal domain inhibitors
are a significant area of focus at the moment and were originally
described to target Myc expression. A selective small molecule
inhibitor (JQ1) of BET bromodomains was unexpectedly found
to downregulate Myc (Delmore et al., 2011). JQ1 displaces
the bromodomain chromatin regulators from the large super-
enhancers of genes connected with multiple myeloma, notably
myc (Delmore et al., 2011; Loven et al., 2013, Figure 1). JQ1
preferentially impacts on myc transcription, causing cell-cycle
arrest, and cellular senescence, as well as resulting in significant
anti-tumor activity in mouse models of multiple myeloma, and
xenograft models of Burkitt’s lymphoma and acute myeloid
leukemia, diseases in which the myc gene is amplified (Delmore
et al., 2011; Mertz et al., 2011).

After the initial excitement about their potential for Myc
inhibition, it is now becoming clear that JQ1—and other BET
inhibitors—may function by inhibiting additional oncogenic
factors besides Myc (Andrieu et al., 2016), whose levels remain
unaffected in some cellular contexts (Ambrosini et al., 2015; Yao
et al., 2015; Bid et al., 2016; Garcia et al., 2016; Hogg et al.,
2016; Donato et al., 2017). Moreover, compensatory mutations
have been identified that can prevent Myc downregulation by
BET inhibitors and/or their therapeutic efficacy (Shimamura
et al., 2013; Fong et al., 2015; Rathert et al., 2015; Shi et al.,
2016). Nevertheless, several BET inhibitors are currently in early-
phase clinical trials in various hematologic malignancies (Abedin
et al., 2016). Some patients in dose-escalation Phase I studies
have shown complete or partial remission of acute leukemia
after treatment with OTX015 (Berthon et al., 2016), and data is
currently available for 3 patients treated with TEN-010 in a study
of NUT-midline carcinoma showing clinical responses in both
patients receiving the higher dose (Shapiro, 2015). It remains to
be seen how much of the effect in patients is actually due to Myc
inhibition.

An unrelated approach to blocking myc transcription targets
CDK7, a catalytic subunit involved in the transcriptional
initiation complex that phosphorylates serine-5 of RNA pol II
(Nilson et al., 2015). A covalent inhibitor (THZ1) was developed
that showed selectivity for CDK7, and specifically downregulated
Myc in neuroblastoma (Chipumuro et al., 2014; Kwiatkowski
et al., 2014). While THZ1 selectivity for Myc is unclear and it
is possible that its therapeutic impact is due to other targets as
well, it is effective at treating lung cancer (Christensen et al., 2014)
and triple-negative breast cancer cell lines (Wang et al., 2015c) as
well as N-Myc driven neuroblastoma in mice (Chipumuro et al.,
2014). Furthermore, the analog THZ2 was developed that has
improved pharmacokinetics (Wang et al., 2015c).

Blocking myc mRNA Translation
Another approach to interfere with Myc protein expression
is to block its translation (Figure 2). myc mRNA can be
translated both by 5′ cap- and internal ribosome entry site
(IRES)- dependentmechanisms (Nanbru et al., 1997). The central

role of mTOR in mediating the translation of mRNAs such
as myc via these mechanisms suggests that targeting mTOR
or upstream controllers of its activity (PI3K/PTEN/AKT and
Ras/Raf/MEK/ERK) could be a fruitful strategy, and there are
multiple inhibitors of these pathways.

While inhibition of mTOR alone in a mouse model of
colorectal tumorigenesis failed to inhibit translation of myc, a
small molecule inhibitor of eIF4A, silvestrol, effectively reduced
myc translation, inhibiting tumor growth (Wiegering et al., 2015).
Multiple mTOR and mTORC1/2 kinase inhibitors are currently
approved for clinical use, and there is a significant focus on
targeting many members of these signaling pathways (Polivka
and Janku, 2014; Roohi and Hojjat-Farsangi, 2016).

Again though, inhibitors of such targets will have effects not
limited tomyc alone.

Recent data also indicate that concomitant targeting of HDAC
and PI3K would be beneficial to the treatment of Myc-driven
tumors. In particular the use of CUDC-907, a small molecule
inhibitor of both HDACs and class I PI3Ks, was shown to be
effective in reducing the growth and survival ofMyc-transformed
cancer cells and demonstrated therapeutic impact in multiple
mouse models of Myc-dependent tumors (Sun et al., 2016).
CUDC-907 is currently in Phase II clinical trials to study and
evaluate its efficacy and safety (alone or in combination with
Rituximab) in patients with Relapsed/Refractory (RR) Myc-
altered Diffuse Large B-Cell Lymphoma (DLBCL), including
patients with Myc alterations.

Another recent translation inhibition approach made use of
Src kinase blockade with the small molecule inhibitor saracatinib
in preclinical studies in premalignant breast cells and tissue.
Among other effects, saracatinib inhibited the ERK1/2-MNK1-
eIF4E-mediated cap-dependent translation of myc (Jain et al.,
2015).

Targeting Regulators of Myc Protein Stability
The regulation of Myc stability is complex. Numerous studies
propose the targeting of ubiquitinases or phosphatases for the
degradation of Myc in cancer cells. Clearly, whether these can be
specific for Myc and/or have sufficiently minimal side effects is
still unclear.

Myc is ubiquitinated by a number of E3 ligases, such as SCF
(FBW7) and SCF (Skp2). One approach is therefore to inhibit the
deubiquitinases that help stabilize Myc, such as USP28, USP38,
and USP36 (Sun et al., 2015). On the other hand, proteasomal
degradation could be triggered, for example by oridonin, a
natural plant diterpenoid that induces FBW7-mediated Myc
breakdown (Huang et al., 2012). Oridonin derivatives are in
clinical trials (e.g., HAO472 for leukemia treatment), although
such anticancer drugs (and ubiquitin/deubiquitinases) have
numerous other potential mechanisms of action and targets, not
solely limited to Myc inhibition.

It has been shown that N-Myc complexes with the Aurora-A
kinase and is thus protected from proteasomal degradation (Otto
et al., 2009). Aurora-A inhibitors (MLN8054 and MLN8237)
disrupt the complex and promote N-Myc degradation by
FBW7 ubiquitin ligase (Brockmann et al., 2013). While clinical
development of MLN8054 was terminated by Millenium in 2008
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due to side effects (Macarulla et al., 2010), the more potent,
selective, second generation inhibitor MLN8237 (Alisertib) is
currently being evaluated in multiple Phase II and III studies
(based on the obligate role of Aurora kinases in mitosis). Since
N-Myc is a critical target of this class of Aurora-A inhibitors,
perhaps it is possible to design allosteric inhibitors that more
strongly distort Aurora-A and thereby more effectively disrupt
the Aurora-A/N-Myc complex, while retaining the ability of
Aurora-A to promote mitotic entry, thus finding a more specific
inhibitor (Brockmann et al., 2013). Notably, the Aurora kinases
have turned up in multiple screens for Myc synthetic lethal
targets (see later section).

Another ubiquitin ligase—HUWE1 (HECTH9, ARF-BP1,
MULE)—has also been targeted by small molecule inhibitors.
These reduceMyc-dependent transactivation in colorectal cancer
cells, but not in stem and normal colon epithelial cells, by
influencing Myc and Miz1 degradation (Peter et al., 2014).

Alternatively, the tumor suppressor protein phosphatase 2A
(PP2A) targets serine 62 of Myc and causes its inactivation and
destabilization (Sears, 2004). Cellular inhibitors of PP2A (the
SET oncoprotein and CIP2A, the cancerous inhibitor of PP2A)
are increased in human cancers and lead to overexpression of
Myc (Westermarck and Hahn, 2008). Thus, inhibitors of SET
and CIP2A were used to reduce Myc expression and activity,
decreasing the tumorigenic potential of cancer cells (Farrell
et al., 2014; Janghorban et al., 2014). Inhibitors are in preclinical
development; the effects of PP2A activation though would likely
not be limited to Myc degradation alone, since other pathways
would be targeted as well.

Indirect Targeting by Synthetic Lethality
Described as “using a back door to target Myc” (Evan, 2012), in
this indirect approach, the targets are the cellular changes that
arise as a consequence of oncogene activation of proteins and
pathways required for survival of the oncogene-addicted cells
(Wang et al., 2004). Myc-mediated synthetic lethality was first
described to be induced by TRAIL and DR5-agonists, taking
advantage of Myc’s intrinsic ability to prime cells to apoptotic
stimuli (Wang et al., 2004).

More recently, SAE1/2 was identified in a genome-wide RNA
interference screen to search for Myc synthetic lethal genes.
This SUMOylation enzyme is required for proper mitotic spindle
function, and proved necessary for Myc-driven tumorigenesis
as its inhibition caused mitotic catastrophe in Myc hyperactive
cells (Kessler et al., 2012). Identification of SUMO inhibitors is
ongoing (Kumar et al., 2016).

A number of studies demonstrate that inhibition of CDKs
is also synthetic lethal with Myc. Pharmacological inhibition
of CDK2 forces embryonic fibroblasts with deregulated Myc
into senescence (Hydbring et al., 2010), while CDK2 ablation
induces senescence in B-cells after Myc activation, delaying
lymphomagenesis (Campaner et al., 2010). Since the function of
CDK2 is compensated by other CDKs in normal cells (Ortega
et al., 2003), this suggests that its selective targeting could be used
therapeutically, at least in Myc-driven tumors.

CDK1 inhibition is also beneficial for treating Myc-
overexpressing tumors: the CDK1 inhibitor purvalanol A induces
substantial apoptosis in cells overexpressing Myc, but not in

cells expressing other oncogenes (Goga et al., 2007). It prolongs
survival in Eµ-myc transgenic mice and lymphoma allograft
models (Goga et al., 2007).

Finally, synthetic lethality was observed with CDK9. Its
pharmacological inhibition or knockdown by shRNA is anti-
tumorigenic both in cells and mouse models of hepatocellular
carcinoma, the extent of its effect correlating with Myc levels
(Huang et al., 2014).

Since several CDK inhibitors are currently in clinical trials
(Lapenna and Giordano, 2009), there is clear merit in analyzing
the results taking into account this potential Myc synthetic
lethality.

Myc has been shown to control multiple aspects of
transcription and co-transcription, as well as RNA metabolism,
including splicing, mRNA stability, and translation efficiency
(Koh et al., 2016). In the context of the translation machinery,
Myc is able to modulate Ribosomal Biogenesis (RiBi) through the
coordinated regulation of all three RNA polymerases: Pol I, Pol II,
and Pol III. Selective inhibition of Pol I transcription has been
proposed as a promising therapeutic approach in Myc-driven
cancers (Poortinga et al., 2015), as Myc is supposed to prime
cells to nucleolar stress. Remarkably, despite the risk associated
to interfering with a central engine of a “housekeeping” process
such as RiBi, an inhibitor of Pol I (CX-5461; Drygin et al., 2011)
has recently demonstrated sufficient safety in Phase I clinical
trials in patients with lymphoma and leukemia, and is now in a
Phase I/II study in solid malignancies (although not confined to
Myc-driven cancers only).

Myc synthetic lethality has been observed with various other
targets in mouse tumor models, for example with ARK5 (Liu
et al., 2012), PIM kinase (Horiuchi et al., 2016), microRNA-
206 that acts by inhibiting MAP3K13 (Han et al., 2016), Aurora
kinases (den Hollander et al., 2010; Yang et al., 2010), CHK1
(Murga et al., 2011; Ferrao et al., 2012), and MondoA (Carroll
et al., 2015). MondoA had been previously linked to the
regulation of glucose metabolism while overexpression of Myc
in mammalian cells renders them addicted to certain metabolic
pathways (Shim et al., 1998; Yuneva et al., 2007) thus prompting
the extension of these synthetic lethal screen to genes involved
in metabolism. This led to the identification of Myc synthetic
lethal metabolic genes involved in glycolysis (ALDOA and
PDK1) and nucleotide biosynthesis (CTPS) (Toyoshima et al.,
2012); purine biosynthesis (PFAS and CAD), trans-sulphuration
(CBS), mitochondrial transcription (TFAM), glycolysis (ENO3),
and lipogenesis (FASN and SCD) (Carroll et al., 2015); and
glutamine/glutamate (SLC1A4 and SLC25A6) (Toyoshima et al.,
2012; Carroll et al., 2015).

It is well documented that Myc contributes to metabolic
adaptations in cancer cells (Dang, 2012). As a proof of concept,
inhibition of various metabolic targets, such as LDHA and
glutaminase, reduced tumor growth, and extended survival in
Myc-dependent and Myc-inducible cancer models, although the
synthetic lethality with Myc was not specifically demonstrated
(Hsieh and Dang, 2016).

This indirect strategy has therefore already provided a variety
of additional therapeutic targets. Some clinical trials are ongoing
(e.g., inhibitors of CHK1/2, PIM, and Aurora kinases). Whether
these would be relevant for tumors in which Myc is not a driving
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oncogene has to be seen, but the fact thatMyc is causally linked to
most human cancers suggests that this approach warrants further
clinical investigation.

Indirect Targeting by Immunotherapy
This rather different approach to cancer treatment is currently
receiving a significant amount of interest worldwide. One
strategy would be to prime the immune system to target Myc-
overexpressing tumors. As a proof of concept, immunization of
mice with humanMyc generated T-cells that helped protect some
mice from a lethal lymphoma (Helm et al., 2013).

A more direct immunotherapy could target specific immune
system components required for Myc-induced tumorigenesis,
such as mast cells (Soucek et al., 2007). PCI-32765 (Ibrutinib) is
an inhibitor of Bruton’s tyrosine kinase (BTK) that is clinically
approved for the treatment of multiple cancers (Smith, 2015;
Massó-Vallés et al., 2016) and was shown to inhibit Myc-driven
pancreatic islet tumor formation (Soucek et al., 2011).

Alternatively, Myc-driven tumors may downregulate the anti-
tumor immune response by producing PD-L1 and CD47, two key
immune checkpoints, making them eligible for treatment with
immune-based therapies that target such checkpoints (Casey
et al., 2016).

FINAL REMARKS

An impressive array of strategies has been developed for drugging
Myc. These take advantage of multiple mechanisms, acting both
directly and indirectly, and impacting on Myc in contrasting
ways (see Table 1 for a summary). Many approaches have yielded
molecules that entered clinical trials.

Early clinical studies with antisense inhibitors of myc did not
progress, nor did a recent trial with myc RNAi (DCR-MYC),
although the approach might still be valid in some applications.
In fact, incorporation of myc siRNA into nanoparticles is an
active field of research yielding novel carrier formulations with
in vivo efficacy. Interference with Myc translation is an approach
that has clearly advanced in the past few years and various groups
and companies are pursuing it.

Similarly, the initial small molecule inhibitors showed poor
bioavailability, but development of these compounds and further
screens have identified compounds with improved in vivo
activity, pharmacokinetics and bioavailability, even with systemic
administration (e.g., Mycro3, KJ-Pyr-9). In addition, efforts
are being directed toward incorporating small molecules into
nanocarriers and some are starting to show in vivo efficacy (MI1-
PD). Published in vivo or clinical trial data is lacking for a number
of other small molecule inhibitors and natural compounds shown
to targetMyc in cell culture; it seems sensible to at least determine
their in vivo efficacy and bioavailability and one hopes that no
promising leads have fallen by the wayside.

Additional strategies such as BET inhibitors and G-
quadruplex stabilizers (Quarflaxin) have progressed to clinical
trials, and yetmore strategies are in preclinical development, such
as peptides and protein domains (Omomyc).

It is important to mention that new therapeutic opportunities
constantly appear, thanks to the ever-growing knowledge

regarding Myc biology and function. For example, novel
strategies could soon be based on the potential inhibition of co-
factors that determine Myc specific recruitment to chromatin
and recognition of target genes. Among these factors, WDR5
and BPTF are probably the best characterized. WDR5 is a
WD40-repeat protein that functions within the context of several
chromatin-regulatory complexes (Thomas et al., 2015). WDR5
interaction with Myc facilitates its recruitment to chromatin
and recognition of target genes. Similarly, in the context
of chromatin access, BPTF, a core subunit of the NURF
chromatin-remodeling complex, has been described as a key
Myc interactor that allows its recruitment to DNA targets
(Richart et al., 2016a,b). Inhibition of interaction of such proteins
with Myc by small molecules could offer a novel therapeutic
opportunity. Once again, it is likely that such small molecules
would also affect other cellular functions that require these two
important epigenetic regulatory proteins, but it is worth trying
to develop molecules specific for the interface with Myc and
validate them in experimental models, before discarding them
a priori.

Other future strategies could include development of viral-
mediated delivery of inhibitors such as shRNA, Omomyc or even
Crispr to delete myc in tumor cells. It is likely, however, that the
most efficient Myc inhibition strategy will not be limited to a
single approach, but rather a combination of targeting methods.
These may include low-dose combinations of drugs that each act
to reduce Myc levels in different ways (Brockmann et al., 2013)
or that act on different aspects of Myc biology.

In this context, no attempt should be left aside to finally
overcome the challenge of targeting the “undruggable,” because
its impact in the clinic would clearly be dramatic.

Interestingly, the search for a clinically-viable Myc inhibitor
has recently been likened to the hunt for the Higgs boson (Lazo
and Sharlow, 2016), which was finally discovered in 2012. After
the success of that 40-year search, we can be hopeful that it
will not be too long before that other elusive particle—a Myc
inhibitor—emerges from clinical trials.
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