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Interleukin (IL)-17 plays a key role in immunity. In acute infections, a rapid IL-17 response
must be induced without prior antigen exposure, and γδT cells are the major initial IL-17 pro-
ducers. In fact, some γδ T cells make IL-17 within hours after an immune challenge. These
cells appear to acquire the ability to respond to IL-1 and IL-23 and to make IL-17 naturally in
naïve animals.They are known as the naturalTγδ17 (nTγδ17) cells.The rapidity of the nTγδ17
response, and the apparent lack of explicit T cell receptor (TCR) engagement for its induc-
tion have led to the view that this is a cytokine (IL-1, IL-23)-mediated response. However,
pharmacological inhibition or genetic defects inTCR signaling drastically reduce the nTγδ17
response and/or their presence.To better understand antigen recognition in this rapid IL-17
response, we analyzed the antigen receptor repertoire of IL-1R+/IL-23R+ γδT cells, a proxy
for nTγδ17 cells in naïve animals directly ex vivo, using a barcode-enabled high through-
put single-cell TCR sequence analysis. We found that regardless of their anatomical origin,
these cells have a highly focused TCR repertoire. In particular, the TCR sequences have
limited V gene combinations, little or no junctional diversity and much reduced or no N
region diversity. In contrast, IL-23R− cells at mucosal sites similar to most of the splenic γδ

T cells and small intestine epithelial γδ lymphocytes expressed diverse TCRs. This remark-
able commonality and restricted repertoire of IL-1R+/IL-23R+ γδ T cells underscores the
importance of antigen recognition in their establishment/function.

Keywords: γδT cells,TCR repertoire, high throughput TCR sequencing, IL-1R+ γδT cells, IL-23R+ γδT cells, IL-17+ γδ

T cells

INTRODUCTION
Interleukin (IL)-17 is an important cytokine in the inflamma-
tory response. It induces chemokines and cytokines that mediate
the maturation and release of neutrophils from the bone mar-
row. Neutrophil recruitment focuses the immune response at
the site of infection to reduce pathogen load, and induces the
subsequent phases of the inflammatory response, which primes
antigen-specific αβ T cell and B cell activation and initiates the
resolution program. Although both αβ T cells and γδ T cells
can make IL-17, αβ T cells producing IL-17 (Th17 cells) require
antigen-specific priming and a specific cytokine environment to
develop. In acute infections, a rapid IL-17 response must be ini-
tiated without prior antigen exposure, and γδ T cells have been
identified as the major initial IL-17 producers in infections and
after immunization [reviewed in Ref. (1)].

Some naïve γδ T cells in secondary lymphoid organs undergo
antigen-driven activation and differentiation to become IL-17
producers: within 24 h after immunization, antigen-specific γδ

T cells in the draining lymph node increase in numbers and
show activated phenotypes (e.g., becoming CD44hi and CD62Llo).

Forty-eight hours after immunization, activated γδ T cells express
RORγt and after another 12 h, these cells make IL-17A and IL-17F
(2, 3), these are the inducible Tγδ17 cells. Importantly, encoun-
tering antigen in an immune response induces the expression of
inflammatory cytokine receptors such as IL-1R and IL-23R on
γδ T cells. Signaling through the T cell receptor (TCR) and the
cytokine receptors can then induce sustained, high magnitude IL-
17 production (2, 4). These observations provide a mechanistic
basis for the induction of a sustained antigen-specific γδ T cell
IL-17 response, which is much more rapid than that of Th17 αβ

T cells.
In addition to the inducible Tγδ17 cells discussed above, some

γδ T cells in naïve mice, such as those in the skin dermis, the peri-
toneum, intestinal lamina propria, the lung, and the spleen have an
activated phenotype (CD44hiCD62Llo) and express IL-1R and IL-
23R. These cells make IL-17 a few hours after immune challenge-
these are the natural Tγδ17 (nTγδ17) cells (1). The observation
that IL-17 can be induced with IL-1 and IL-23 alone without
deliberate TCR triggering has led to the supposition that the anti-
gen recognition by these cells is irrelevant to their response (5).
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Nonetheless, this response is inhibited by cyclosporine A (CsA) or
by FK506 (2). Both compounds reduce nuclear factor of activated
T cells (NFAT) activity and disrupt the calcineurin-NFAT signal-
ing circuit activated by signaling through the antigen receptor (6).
Furthermore, the amount of IL-17 induced by the inflammatory
cytokines alone is much lower in magnitude when compared with
that induced by cytokines together with TCR stimulation (2, 4),
suggesting that robust IL-17 production requires combined signal-
ing through the TCR and cytokine receptors. Moreover, the num-
ber of rapid IL-17 responding IL-1R+ γδ T cells in the intestinal
lamina propria and peritoneum is markedly reduced in germ free
mice, and in SPF mice treated with the antibiotic neomycin sul-
fate, vancomycin but not in mice treated with metronidazole when
compared with SPF mice and the numbers can be restored by SPF
microbiota reconstitution. However, the presence of these IL-1R+

γδ T cells requires signaling through VAV1, a guanine nucleotide
exchange factor required for the activation of γδ T cells via γδ TCR
ligation (7), but not the myeloid differentiation primary response
protein 88 (MyD88) or toll-like receptor 3 signaling pathways (8).
In addition, the number of nTγδ17 cells is drastically reduced in
the SKG mouse (9), which carries a mutation that reduces the
function of the kinase domain of the TCR-proximal signaling
kinase Zap70. These observations demonstrate the importance
of TCR signaling in nTγδ17 induction and function. To evaluate
the contribution of antigen recognition to their function, we seek
to determine the antigen receptor repertoire of nTγδ17 cells. To
this end, we use a bar-code-enabled high throughput single-cell
TCR sequencing strategy, which allows us to identify the TCR γ

and δ gene pair from each cell directly ex vivo, without the bias
introduced through generating T cell clones or hybridomas. This
method determines the entire sequence of both the TCR γ and δ

chains, including the V gene segment and CDR3 region, such that
we can properly define the antigen receptor specific repertoire,
rather than describing these cells solely based on their Vγ or Vδ

usage. The results are discussed below.

MATERIALS AND METHODS
MICE
C57BL/6 mice were purchased from Jackson Laboratories and
housed in the Stanford Animal Facility for at least 1 week before
use. IL-17FThy1.1/Thy1.1 mice (10) were bred and housed in the
pathogen-free Stanford Animal Facility. IL-23R EGFP mice (11)
were bred and housed in the pathogen-free Merck Research Labo-
ratories,Palo Alto Animal Facility. All experiments were performed
in accordance with the Institutional Biosafety Committee and the
Institutional Animal Care and Use Committee.

ANTIBODIES AND CELL ISOLATION
Antibodies were purchased from either eBioscience or BD Bio-
sciences unless otherwise stated. All analyses and sorting were
performed on a BD Aria or Falstaff sorter. γδ T cells were enriched
from mouse splenocytes or peritoneal cells by negative depletion
as described (2).

To isolate Thy1.1 positive spleen γδ T cells from IL-
17FThy1.1/Thy1.1 reporter mice, enriched γδ T cells were stained with
PE-GL3, Pacific Blue-CD3e, PerCPCy5.5-Thy1.1, PerCP/Cy5.5
Mouse IgG1, κ Isotype Ctrl (OX-7 and its isotype control;

BioLegend), LIVE/DEAD Aqua, APC-Cy7 conjugated anti-TCRβ,
CD19, CD11b, CD11c, F4/80, TER-119. APC-Cy7 and Aqua pos-
itive cells are excluded from analysis. Peritoneal IL-1R positive
γδ T cells were isolated from C57BL/6J mice i.p. infected with
1000 tachyzoites of Type II Me49 strain of Toxoplasma gondii 5 h
prior. To isolate IL-1R (CD121a) positive cells, enriched γδ T cells
were stained with PE-GL3 (pan anti-γδ TCR), PE-Cy7-CD3e (145-
2C11),APC-CD121a (JAMA-147; BioLegend), LIVE/DEAD Aqua,
and APC-Cy7 conjugated anti-TCRβH57-597), CD19 (1D3),
CD11b (M1/70), CD11c (N418), F4/80 (BM8), TER-119 (TER-
119). APC-Cy7 and Aqua positive cells are excluded from analysis.
Dermal split-thickness skin was obtained from C57BL/6J mice
ears. Dermal sheets were prepared by incubation of split-thickness
skin with 0.25% trypsin for 16 h at 4°C, and subsequent removal of
the epidermis. Dermal sheets were digested with 2.5 mg/ml colla-
genase and 0.3 mg/ml hyaluronidase for 45 min at 37°C to release
dermal cells. Dermal cells were stained with PE-GL3, APC-Cy7-
CD3e antibodies and Live/Dead Aqua. GL3 and CD3e positive
dermis γδ T cells were isolated with FACS.

Two- to four-month-old female IL-23R EGFP+/− mice were
used for the isolation of IL-23R+ and IL23R− γδ T cells. Five mice
were combined for each type of tissue preparation. Visceral fat was
directly minced in 4 mg/ml collagenase II (Worthington), 5% FBS
in RPMI followed by shaking for 45 min at 37°C. Cells were further
purified with 36% Percoll gradient (GE Healthcare) in PBS and
spun at 2000 rpm for 5 min at room temperature. The floating layer
and Percoll layer were aspirated and the resulting cell pellet was
suspended in PBS, counted, and stained for flow cytometry. Colons
were cleaned and washed in PBS and minced into 1 cm segments
and placed into 0.5 mM EDTA in PBS. After shaking for 20 min at
37°C, the intraepithelial cell rich supernatant was discarded. Colon
fragments were washed with PBS, then further minced to pieces
<0.25 cm3 in size in digestion buffer [PBS+ 10% FCS+ 1 mg/ml
collagenase D (Sigma)+ 2000 U/ml DNase I (Sigma)+Dispase
(Corning, dilute 1:100)], and incubated with shaking for 20 min at
37°C. Cells were further purified with percoll gradient as described
for isolating cells from fat. Isolated cells were stained with FcBlock,
CD3 Percp-Cy5.5, TCRδ APC (Clone GL3), TCRβ APC-Cy7, CD4-
PE, CD8α PE-Cy7, Live/Dead Aqua. IL-23R GFP+ and IL-23R
GFP− γδ T cells were single sorted into the wells of a 96-well plate
using a FACsAria II (BD Biosciences).

BARCODE-ENABLED HIGH THROUGHPUT SINGLE-CELL TCR
DETERMINATION
Single T cells are sorted into 96-well PCR plates and sequencing
is performed as described (12), except murine γδ TCR specific
primers are used for this study. γδ TCR primer sequences and
the sequencing reaction are described in detail in Supplemental
Methods in Supplementary Material. Briefly, an RT-PCR reac-
tion is carried out with TCR primers. The products are then used
in a second PCR reaction, with nested primers for TCR genes.
A third reaction is then performed that incorporates individual
barcodes into each well. The products are combined, purified,
and sequenced using the Illumina MiSeq platform. The result-
ing paired-end sequencing reads are assembled and de-convoluted
using barcode identifiers at both ends of each sequence by a cus-
tom software pipeline to separate reads from every well in every
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plate. The resulting sequences are analyzed using VDJFasta (13),
which we have adapted to resolve barcodes and analyze sequences
with a customized gene-segment database. The CDR3 nucleotide
sequences are then extracted and translated. Barcode design is
shown in Figure S1 in Supplementary Material and TCR sequenc-
ing primer sequences are shown in Table S2 in Supplementary
Material.

RESULTS
A defining feature of nTγδ17 cells is their surface expression of
IL-1R and IL-23R in naïve animals. To determine the antigen
receptor repertoire of γδ T cells that are “poised” to mount a rapid
IL-17 response, we analyzed skin dermal cells, and IL-23R+ γδ T
cells in the colon lamina propria, fat, and spleen of naïve IL-23R
reporter mice (IL-23R EGFP). Peritoneal nTγδ17 cells are charac-
terized by their IL-1R expression in rapid response situations (8);
therefore, we analyzed IL-1R+ peritoneal γδ T cells from C57/BL6
mice that were intra-peritoneally (i.p.) infected with T. gondii 5 h
prior. Representative FACS analysis and gates used to isolate these
cells are shown in Figure 1. The TCR sequences were determined
from a single FACS sorted γδ T cell using a bar-code-enabled high
throughput single-cell TCR sequencing strategy. We found that

FIGURE 1 | Representative FACS analysis and gates used to
isolate (A) IL-23R+ (in blue) and IL-23R− γδT cells (in green) (using
FACSDiva) from IL-23R reporter mice. (B) Dermal cells, IL-1R+ γδ T
cells from the peritoneum of C57BL/6 mice infected with T. gondii 5 h
prior. (C) Thy1.1+ cells from the spleen of naïve IL-17F reporter mice.
(B,C) are plotted using FlowJo. The number within each graph
indicates the percentage of the designated population of cells out of
the total γδ T cells.

IL-17F+ spleen γδ T cells from naïve IL-17F reporter mice (Il17f
thy1.1/thy1.1) and IL-23R+ spleen γδ T cells from naïve IL-23R
reporter mice have similar TCR repertoires (Figure 2). This obser-
vation is consistent with the supposition that IL-23R+ γδ T cells
in naïve animals can be used as a proxy for nTγδ17 cells in TCR
repertoire analysis.

A striking characteristic of the TCR repertoire of IL-1R+/IL-
23R+ γδ T cells is the lack of diversity. They express TCRs with
limited V gene combinations, little or no junctional diversity and
much reduced or no N region diversity. In particular, a single pair
of TCR sequences encoded by Vδ1Dδ2Jδ1 and Vγ6Jγ1 (Group
1 sequences, Figure 2) dominates the repertoire of dermal cells,
IL-23R+ γδ T cells from the lung, colon, and IL-1R+ γδ T cells
from the peritoneum. These cells also utilize two sets of closely
related TCR sequences, which consist of similar Vγ4Jγ1 rearrange-
ments, paired with very similar Vδ5Dδ2Jδ2 (designated as Group
2, 3 sequences, Figure 2). Naïve spleen IL-23R+ and IL-17F+ T
cells did not have a dominant population that expressed Group 1
sequences. Instead, cells with the Group 3 sequences were more
represented. Some of these γδ T cells also expressed TCRs consist-
ing of Group 3 TCRγ chains paired with a very similar Vδ4Dδ2Jδ2
TCRδ chains (designated as the Group 4 sequences, Figure 2).

In contrast, reported TCR sequences identified from spleen γδ T
cells and small intestine epithelial γδ lymphocytes (IELs) (14–16)
and IL-23R− γδ T cell populations in the spleen, lung, and colon
lamina propria analyzed here (Table S1 in Supplementary Mate-
rial) are highly diverse, using different Vγ’s and Vδ’s, with CDR3
regions consisting of both Dδ1 and Dδ2 gene segments in all three
reading frames, and N regions in each of the gene-segment junc-
tions. An analysis of CDR3 paratope convergence within IL-23R−,
IL-23R+, and lL-17F+ γδ T cell populations is shown in Figure 3.
Along this line, it should be noted that the antigen-specific γδ T
cells, including the inducible Tγδ17 cells, also utilize diverse TCRs
(2, 3, 16). In this context, ~1/3 of the IL-23R+ or IL-17F+ spleen
γδ T cells, and ~1/5 of IL-23R+ lung γδ T cells express TCRs
with different VγVδ genes and diverse CDR3 regions. The spleen
and lungs are continuously exposed to blood-borne or air-borne
environmental antigens. It is likely that the TCR repertoire of IL-
1R+/IL-23R+ γδ T cells reflects both the natural and the inducible
Tγδ17 cells.

Despite the fact that a substantial number of IL-1R+/IL-23R+

γδ T cells and dermal γδ T cells express TCRs with similar
Vγ4Jγ1 rearrangement (CSYG-(X)Y-SSGFHK),Vγ4+ TCRγ chain
sequences are not utilized exclusively by this set of T cells. In fact,
~50% of the IL-23R− cells also expressed TCRs with Vγ4, and
more than half of these Vγ4 sequences were also expressed in
IL-23R+ cell populations (Figure 4).

DISCUSSION
Our analysis showed that regardless of their anatomical location,
IL-1R+/IL-23R+ γδ T cells express a highly focused antigen recep-
tor repertoire. While all major groups of TCR sequences expressed
by these cells result from rearrangements with exonuclease diges-
tion and P nucleotide addition (17), only Group 3 and 4 TCR
sequences have N nucleotides at the CDR3 γ and δ junctions. The
N nucleotides are generated at the terminal of the combining gene
segments by terminal transferase (TdT) in a template-independent
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FIGURE 2 | Frequency of each major group ofTCR sequences in
IL-1R+/IL23R+ γδT cell populations. Spleen IL-17+, IL-23R+, IL-23R− γδ T
cells, lung, fat, and colon lamina propria IL-23R+ and IL-23R− γδ T cells,
peritoneum IL-1R+ γδ T cells 5 h after intraperitoneum Toxoplasma gondii
infection and skin dermal γδ T cells were analyzed. Each cell population is
represented by one pie chart. Each section of the pie chart represents one
group of TCR sequences, color-coded as described. n, total number of
analyzed sequences. The number within each section of the pie chart
indicates the percentage of a given group of TCR sequences in the total

number of analyzed sequences of that cell population (Table S1 in
Supplementary Material). All experiments were performed two independent
times, except the analysis of spleen IL-23R+ and IL-23R− γδ T cells, which
were isolated and analyzed once. TCR sequences from two independent
isolations and analyses are very similar and the combined results are shown.
In two independent experiments, 58% and 82% of the total colon γδ T cells
are IL23R+; 74% and 86% of total fat γδT cells are IL-23R+; 0.1% and 0.2% of
spleen cells are IL-17F+; 2.9% of spleen γδ T cells are IL23R+. In the
peritoneum 5 h after infection, 12 and 30% of the γδ T cells are IL-1R+.

manner. In mice, TdT is not expressed in developing thymocytes
until 4–5 days after birth (18). Thus, γδ T cells that express Group
1 and 2 sequences are most likely generated during the fetal and/or
neonatal stages. Indeed, Group 1 TCR has also been described for
hybridomas derived from fetal and newborn γδ thymocytes (19)
and is also present at the mucosal sites (20–22). Our observation
that Group 3, 4 TCR expressing IL-1R+/IL-23R+ γδ T cells are
prevalent in the spleen and present in the lung and skin is con-
sistent with the observation that adult precursor cells contribute
to the nTγδ17 cell pool and that these cells express Vγ4+ TCR γ

chains (23–25).
Group 1 TCR sequences have been described for γδ T cell

hybridomas generated from lung epithelium (26), from expanded
γδ T cells after Listeria monocytogenes and Bacillus subtilis infection
and in models of autoimmune inflammation (27–29). In addi-
tion, the rapid appearance of Vγ6 and/or Vδ1 Tγδ17 cells has been
reported in various infection systems: E. coli (i.p.) (30, 31), L.
monocytogenes (i.p. oral) (32, 33) and Staphylococcus aureus (i.p.)
(34). Vγ6+ and Vγ4+ dermal γδ T cells making IL-17 in response
to imiquimod applied topically to induce skin inflammation has
also been reported (24, 25). Separated TCR γ and δ chains of Group
4 sequences were identified from CFA-induced IL-17 making γδ

T cells (35, 36). Taken together, our repertoire analysis confirms

and advances previous studies of TCR usage of nTγδ17 cells by
defining the precise TCR sequences of these cells and observing
how constrained they are. These observations suggest that antigen
encountering is important for establishing their functional attrib-
utes, a finding consistent with observations that signaling through
the TCR is essential for this process (2, 8, 9).

It is unclear what nTγδ17 cells recognize. However, the iden-
tification of their TCR sequences is an important step forward in
characterizing the antigens of these cells. In this context, O’Brien,
Born and their colleagues demonstrated that a multimeric stain-
ing reagent of soluble TCR expressing the Group 1 sequences can
bind L cells, NIH 3T3 cells, a keratinocyte cell line XB-2, as well
as freshly isolated macrophages from naïve mice and from mice
infected with Listeria (37, 38).

While nTγδ17 responses are well documented in the mouse,
it is unclear whether or not a human counterpart exists. In this
regard, human and murine γδ TCR gene sequences are very dif-
ferent. Thus, it is unlikely that one would find human γδ TCRs
that show the sequence equivalent of the TCRs described for the
murine nTγδ17 cells. However, one of the defining characteris-
tics of adaptive immune recognition is that the antigen specificity,
but not the particular antigen-specific receptor sequences, is con-
served through evolution. The recognition of lysozyme by specific
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FIGURE 3 | Analysis of CDR3 paratope convergence of all unique
sequences of IL-23R− γδT cells from the spleen, fat, colon samples,
IL-17F+ γδT cells from spleen and IL-23R+ γδT cells (combined from all
anatomical sites). Percent identity among aligned γ and δ CDR3 amino
acid sequences for all pairwise comparisons within each group are
represented in violin/Box plot. Significance assessed by the
Mann–Whitney–Wilcoxon test with Bonferroni’s correction for multiple
testing given a=0.01 set to p<0.001 to be considered significance. Dotted
line indicates average 99th percentile percent identity for the IL-23R− T cell
populations (68% ID for spleen, 73% ID for fat, 70% ID for colon).

FIGURE 4 | Frequency of Vγ chain usage in IL-23R− cell population. Each
pie chart represents each cell population. n, total number of analyzed
sequences. Number with each section of the pie chart, the percentage of
each group of sequences color-coded as indicated in Figure 2.

murine, human, and camel antibodies as well as by the adap-
tive immune receptors of sea lamprey (39), and the recognition
of the algae protein phycoerythrin (PE) by specific human and
murine γδ TCRs (2) are such examples. Thus, differences in the
TCR gene sequences among different species should not preclude
the presence of nTγδ17 cells.

It should be noted that the focused antigen receptor reper-
toire described here is based on the analysis of pairs of TCR γ

and δ chains, consisting of V gene segments as well as CDR3
regions. While the majority of these γδ T cells expressed Vγ6 or
Vγ4, not all Vγ6 and Vγ4 expressing cells belong to this group
of nTγδ17 cells. These observations underscore the need for cau-
tion in categorizing γδ T cell function solely according to V gene

usage. The approach of determining TCR sequences from a sin-
gle cell directly ex vivo, as outlined here, should facilitate future
analysis of the contributions of γδ T cells to a range of immune
responses.
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