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This paper presents a lumped-parameter model that can reproduce blood volume

response to fluid infusion. The model represents the fluid shift between the intravascular

and interstitial compartments as the output of a hypothetical feedback controller that

regulates the ratio between the volume changes in the intravascular and interstitial fluid

at a target value (called “target volume ratio”). The model is characterized by only three

parameters: the target volume ratio, feedback gain (specifying the speed of fluid shift),

and initial blood volume. This model can obviate the need to incorporate complex

mechanisms involved in the fluid shift in reproducing blood volume response to fluid

infusion. The ability of the model to reproduce real-world blood volume response to fluid

infusion was evaluated by fitting it to a series of data reported in the literature. The model

reproduced the data accurately with average error and root-mean-squared error (RMSE)

of 0.6 and 9.5% across crystalloid and colloid fluids when normalized by the underlying

responses. Further, the parameters derived for the model showed physiologically

plausible behaviors. It was concluded that this simple model may accurately reproduce

a variety of blood volume responses to fluid infusion throughout different physiological

states by fitting three parameters to a given dataset. This offers a tool that can quantify

the fluid shift in a dataset given the measured fractional blood volumes.

Keywords: fluid shifts, blood volume, fluid resuscitation, mathematical model, lumped-parameter model, subject-

specific model

INTRODUCTION

The fluid shift between the intravascular and interstitial compartments is an essential mechanism
of homeostasis, and a key determinant of the physiological response to circulatory pathology and
medical therapy. The net fluid shift is determined by the summary action occurring across the
body’s massive network of microvasculature, and the determinants of flow for each microscopic
segment are complex, including the permeability of the vessels and the local Starling forces
(i.e., hydrostatic and oncotic pressure gradients). Each of these determinants can be, in turn,
altered by a wide range of other factors, including the vasomotion of upstream and downstream
vessels, lymphatic flow, and a myriad of endocrine and exocrine signals that affect the preceding
determinants.

Given the undeniable complexity that underlies fluid shift between the intravascular and
interstitial compartments, it can be challenging to mathematically model the fluid shift in an
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individual subject or patient. Existing models of fluid shift can
reproduce the volume changes in the blood and interstitial fluid
(Cervera and Moss, 1974; Pirkle and Gann, 1975; Hedlund
et al., 1988; Mazzoni et al., 1988; Arturson et al., 1989; Carlson
et al., 1996; Gyenge et al., 2003; Tatara et al., 2007) and
even intracellular fluid (Hedlund et al., 1988; Mazzoni et al.,
1988; Arturson et al., 1989; Carlson et al., 1996; Ursino and
Innocenti, 1997; Gyenge et al., 2003; Fernandez de Canete
and Del Saz Huang, 2010; Siam et al., 2013). However, there
are so many disparate factors that, without exhaustive and
impractical measurements, it is not possible to comprehensively
characterize the fluid shift associated with an individual. A
reasonable alternative is to use “typical” values for certain
parameters (i.e., values that represent average values in a
population) (Champion et al., 1975; Lewis, 1986; Wears and
Winton, 1990; Mardel et al., 1995; Simpson et al., 1996; Hirshberg
et al., 2006; Saito et al., 2013) but this is no longer an
individualized model. Recently reported volume kinetic models
(Ståhle et al., 1997; Svensén and Hahn, 1997; Drobin and
Hahn, 1999, 2002; Hahn, 2010) may offer value via a tradeoff
between simplicity and transparency. However, these models still
have weakness in terms of physiological transparency. As an
example, volume kinetic models dictate that the ratio between
the changes in the intravascular and interstitial volumes depends
only on their baseline values (see Appendix for details), which
is an oversimplification of the known physiology that the ratio
actually varies with the level of intravascular and interstitial
volumes as well as physiological conditions (Guyton et al.,
1975). To overcome the challenges in modeling the fluid shift
in an individual, we sought to develop a lumped-parameter
model that could reproduce the fluid shift at the macroscopic
level without microscopic details between the intravascular and
interstitial compartments. Specifically, we sought a model which
is simple enough to be fitted to individual subjects with only a
rudimentary set of measurements, and at the same time accurate
enough to characterize that subject’s response to fluid infusion.
The ability of the model to reproduce real-world blood volume
response to fluid infusion was evaluated by fitting it to a series of
data.

MATERIALS AND METHODS

Development of a Lumped-Parameter
Model of Blood Volume Response to Fluid
Infusion
The proposed lumped-parameter model involves only three
parameters to describe an individual’s fluid shift after fluid
infusion: target volume ratio (i.e., ratio between the volume
changes in the intravascular and interstitial fluids), α; feedback
gain (specifying the speed of fluid shift), K; and initial blood
volume, VB0.

The first parameter of the proposed model is α, which varies
depending on the overall physiological state of the subject. By way
of background, the volume of fluid stored in the intravascular,
interstitial and intracellular compartments is determined by
the vessel permeability and the hydraulic and osmotic pressure

gradients at the capillary walls and cell membranes. From
microscopic standpoint, the kinetics of a number of ions
and proteins as well as the pressure-volume relationships of
the fluid compartments determine the hydraulic and osmotic
pressure gradients, and therefore, the fluid volume stored in
each compartment. However, from macroscopic standpoint,
the consequence of the interaction among these complex
mechanisms is that the ratio between the volume changes in the
intravascular and interstitial fluid is summarized by a constant
parameter value, denoted here as α (Guyton et al., 1975).
Typically, interstitial fluid volume changes 2–3 times as much
as intravascular volume changes (i.e., α = 2–3) when total blood
volume is increased, up to a critical blood volume level. Beyond
this level, however, majority of the fluid infused to the body is
not stored in the intravascular compartment but is shifted to
the interstitial compartment (i.e., α≫2–3) (Guyton et al., 1975;
Bajwa and Kulshrestha, 2012). In sum, the fluid shift between
intravascular and interstitial compartments, which is due to an
array of complex physiological processes, may be viewed as the
output of a hypothetical feedback controller that regulates the
volume changes in the intravascular and interstitial fluid at a
target ratio 1 : α.

The second parameter of the model is K, which specifies
the speed of fluid shift, i.e., the rate of fluid shift between
the intravascular and interstitial compartments. K also
varies depending on the physiological state of the subject.
This parameter is predicated on a feedback control system
analogy shown in Figure 1A. The left and right compartments
represent the intravascular and interstitial compartments,
respectively, while the valve represents a summary of all the
physiological processes that produce the fluid shift between the
two compartments. In this analogy, it is both fluid infusion
(u) and loss (v; e.g., hemorrhage and urine) that act on the
intravascular compartment to alter blood volume (VB). The
magnitude of the valve opening is a function of the discrepancy
between the target versus actual changes in VB: there is an
increased rate of fluid shift,q, between the intravascular and
interstitial compartments when the discrepancy between target
versus actual VB grows larger.

The third parameter of the model is VB0. Its role is to
normalize VB to yield its fractional change from the initial
VB ((VB − VB0)/VB0) as the output of the model. Considering
that fractional change in VB, rather than its absolute change,
is reported in many experimental protocols (Ståhle et al., 1997;
Svensén and Hahn, 1997; Drobin and Hahn, 1999, 2002; Hedin
and Hahn, 2005; Hahn, 2010; Hahn et al., 2013), the above
normalization allows the model to readily analyze experimental
data obtained from such protocols.

The representation in Figure 1A can be formalized into the
mathematical model (or block diagram) shown in Figure 1B.
Both u and v are the inputs to the model, while the change in
VB from VB0 (1VB = VB−VB0) is the output. The objective
of the feedback controller is to retain the 1/(1+ α) fraction
of the inputted fluid volume in the intravascular compartment
while shifting the remaining α/(1+ α) fraction to the interstitial
compartment in the steady state. q acts as feedback control to
steer 1VB to the target change in VB (rB). In this way, the
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FIGURE 1 | Lumped-parameter model of blood volume response to fluid infusion. (A) Feedback control system analogy via connected compartments. The

left and right compartments represent the intravascular and interstitial compartments, while the valve represents a summary of all the physiologic processes that

produce the fluid shift between the two compartments. The fluid infusion (u) and loss (v; e.g., hemorrhage and urine) act on the intravascular compartment to alter the

blood volume (VB), which in turn alters the interstitial fluid volume (VISF ). The magnitude of valve opening is a function of the discrepancy between the target versus

actual changes in blood volume. (B) Mathematical model. The fluid infusion (u) and loss (v; e.g., hemorrhage and urine) are the inputs to the model, while the change

in blood volume (1VB) is the output. The objective of the feedback controller is to retain the 1/(1+α) fraction of the inputted fluid volume in the intravascular

compartment while shifting the remaining α/(1 + α) fraction to the interstitial compartment in the steady state. The fluid shift from the intravascular to interstitial

compartment (q) acts as feedback control to steer 1VB to the target change in blood volume (rB).

steady-state volume changes associated with the intravascular
and interstitial fluid achieve the 1:α ratio.

The governing equation associated with this mathematical
model is derived as follows. The rate of change in VB is given
by the following ordinary differential equation:

1V̇B (t)= u (t)− v (t)− q (t) (1)

q is formulated to eliminate the discrepancy between the target
versus actual changes in VB. As described above, rB in response
to u and v is the 1/(1+ α) fraction of the accumulated resultant
fluid intake u− v:

rB (t) =
1

1 + α

∫ t

0
[u (τ) − v (τ)] dτ (2)

To capture themacroscopic behavior of q with a possibly simplest
mathematical expression, q is modeled to be proportional to
eB = rB − 1VB:

q (t) = −KeB (t) (3)

This expression physically means that (1) q shifts from the
intravascular to interstitial compartment if rB < 1VB while
from interstitial to intravascular compartment if rB > 1VB,
and that (2) q increases as the discrepancy between rB and
1VB increases. Combining (Equations 1–3) yields the following
ordinary differential equation as the lumped-parameter model
that relates u− v to 1VB:

1V̈B (t) +K1V̇B (t) = [u̇ (t)− v̇ (t)]+
K [u (t)− v (t)]

(1+ α)
(4)

where d
dt [u (t)− v (t)] = u̇ (t)− v̇ (t) was used. To rewrite

(Equation 4) in terms of the fractional VB response, 1VB must

be normalized by VB0. Dividing both sides of (Equation 4) by VB0

yields (where
⌣
VB (t) = 1VB (t)/VB0):

⌣̈

VB (t)+K
⌣̇

VB (t) =
[u̇ (t)− v̇ (t)]

VB0
+

K [u (t)− v (t)]

VB0 (1+ α)
(5)

The parameters in the model (Equation 5) can be uniquely
determined if the data are informative (Ljung, 1999). To
illustrate, (Equation 5) can be transformed to the following linear
regression:

⌣̈

VB (t) =
[
K 1

VB0

K
VB0(1+ α)

]



−
⌣̇
VB (t)

u̇ (t)− v̇ (t)
u (t)− v (t)


 = θTφ (t) (6)

The vector θ in a linear regression is identifiable (Ljung, 1999)
(meaning its elements can be uniquely determined provided
the data are informative). Hence, all the parameters can be
uniquely determined from θ once it is determined via, e.g.,
the standard least-squares technique (Ljung, 1999) or even a
numerical optimization technique (Storn and Price, 1997): K
from the first element of θ; VB0 from the second element of θ; and
α from the third element of θ using K and VB0 thus determined.

Model Evaluation Method
The lumped-parameter model detailed above is intended to
summarize VB response to u and v in an individual subject or
patient using just three parameters specific to the individual.
However, it is possible that the underlying physiology is too
complex to be adequately reproduced by such a simple model.
Hence, we sought to evaluate the ability of this lumped-parameter
model to reproduce real-world blood volume response to fluid
infusion by fitting it to a multitude of different experimental
datasets, to assess whether or not such a simple model is capable
of accurately reproducing the experimental data.
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Experimental Data

To analyze the model, a series of datasets reported in the
literature were used that had

⌣
VB response (versus time) to u and

v. In all the datasets used in this study,
⌣
VB was measured using

hemoglobin as the tracer substance. Assuming that the mass of
the tracer substance remains constant, an increase in VB results
in a decrease in the concentration of the tracer substance in the
blood. Hence,

⌣
VB can be computed from the change in the blood

hemoglobin concentration as follows (Drobin and Hahn, 1999,
2002; Hahn, 2010):

⌣

VB (t) =
1VB (t)

VB0
=

VB (t) − VB0

VB0

=
1

1−Hct (t)

Hgb (0)−Hgb (t)

Hgb (t)
(7)

where Hct (t) is the hematocrit at time t, and Hgb (t) is
hemoglobin concentration at time t. The datasets used in this
study included (1)

⌣
VB response to bolus infusion of fluid under

different VB states (Dataset 1 Drobin and Hahn, 1999); (2)
⌣
VB

response to bolus infusion of crystalloid fluids (Dataset 2 Drobin
and Hahn, 2002); and (3)

⌣
VB response to bolus infusion of colloid

fluids (Dataset 3 Hedin and Hahn, 2005).
From the aforementioned reports (Drobin and Hahn, 1999,

2002; Hedin and Hahn, 2005), the volume of fluid infused and
⌣
VB response were extracted at 10min intervals as the average of
the maximum and minimum responses across all the subjects
(although the model is intended for use in individual subjects,
average responses were considered here because the response
associated with each subject could not be extracted from the
visually presented data in these reports). The urine excretion rate
was estimated by dividing the total urine volume by the study
duration (infusion time+ post-infusion observation time) based
on the simplifying assumption that it remained constant, because
only the total urine volumes were available in these reports.

Overall, we studied a total of seven distinct protocols
summarized in Table 1: in Dataset 1, there were three protocols
(with 0, 450, and 900ml pre-infusion hemorrhage); in Dataset
2, there were two protocols (with infusions of 0.9% saline and
ringer’s lactate); and in Dataset 3, there were two protocols
(with infusions of 5% albumin and autologous plasma). The
measured

⌣
VB responses associated with all the datasets are shown

in Figure 2.

Model Fitting

Fitting the model to each dataset meant estimating the values of
the three parameters α, K and VB0 associated with each dataset.
First, Equation (5) was discretized into a difference equation
using the Euler’s method, where TS is sampling interval (Nise,
2010):

⌣

VB (i) = 2
⌣

VB (i − 1) −
⌣

VB (i − 2)

− KTS

[⌣

VB (i − 1) −
⌣

VB (i − 2)
]

+
TS

VB0
{[u (i − 1) − u (i−2)]− [v (i−1)− v (i−2)]}

+
KT2

S

VB0 (1+ α)
[u (i− 2)− v (i− 2)] (8)

Second, an optimization problem was formulated to derive the
set of optimal parameters that minimize the error between

⌣
VB

and its model-reproduced counterpart
⌣̂

VB:

2∗ = {α∗,K∗,V∗
B0} = arg min

2

∑N

i= 1

[
⌣

VB (i) −
⌣̂

VB (i)
]2

(9)

FIGURE 2 | Measured fractional blood volume responses to fluid used

for evaluation of the lumped-parameter model. Ringer’s AC, ringer’s

acetate (Dataset 1; Drobin and Hahn, 1999); Saline,0.9% saline (Dataset 2;

Drobin and Hahn, 2002); Ringer’s LA, ringer’s lactate (Dataset 2; Drobin and

Hahn, 2002); Albumin, 5% albumin (Dataset 3; Hedin and Hahn, 2005);

Autologous Plasma, autologous plasma (Dataset 3; Hedin and Hahn, 2005).

TABLE 1 | Datasets used for model evaluation.

Dataset 1 (Drobin and Hahn, 1999) Dataset 2 (Drobin and Hahn, 2002) Dataset 3 (Hedin and Hahn, 2005)

Number of subjects 10 (Humans) 10 (Humans) 15 (Humans)

Age (min-max) 23–33 year 24–44 year 18–36 year

Weight (min-max) 65–85 kg 72–95 kg 70–94 kg

Fluid infused Crystalloid (Ringer’s Acetate) Crystalloid (Saline and Ringer’s Lactate) Colloid (Albumin and Autologous Plasma)

Infused volume 25ml/kg 25ml/kg 10ml/kg

Infusion time 30min 30min 30min

Observation time (Post-infusion) 150min 210min 450min

Hemorrhage volume (Pre-infusion) 0ml/450ml/900ml 0ml 0ml
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where 2 is a vector of (unknown) parameters, 2∗ is the
optimal 2,

⌣̂

VB (i) is model-reproduced
⌣
VB (i) at a discrete

time instant i (i = 1 · · ·N) for a protocol. For a given set

of 2,
⌣̂

VB was computed by inputting u and v data to
(Equation 8). The optimization problem (Equation 9) was
solved using MATLAB’s Optimization Toolbox (MathWorks,
MA, USA).

Model Testing

First, the ability of the model to reproduce
⌣̂

VB data was assessed
by analyzing the goodness of fit associated with each protocol, in
terms of sample-by-sample error normalized by the average

⌣
VB

(e) and root-mean-squared error normalized by the average
⌣
VB

(RMSNE):

e (i) =

⌣
VB (i)−

⌣̂

VB (i,2∗)
⌣
VB (i)

, i = 1, · · · ,N

RMSNE =
1

⌣
VB (i)

√√√√
∑N

i = 1

[
⌣
VB (i)−

⌣̂

VB (i,2∗)

]2

N
(10)

where
⌣

VB (i) is the average
⌣
VB response over the study duration,

and
⌣̂

VB (i,2∗) is
⌣
VB reproduced by inputting u and v data to

(Equation 8) characterized by 2∗.
Second, the intravascular and interstitial fluid volume

responses to u and v were qualitatively compared across
different protocols. 1V̂B (i,2∗) associated with each protocol

was estimated by1V̂B (i,2∗) = V∗
B0 ·

⌣̂

VB (i,2∗), while the change
in interstitial fluid volume 1V̂ISF (i,2∗) was estimated as the
numerical integration of q (i,2∗):

1V̂ISF

(
i,2∗

)
=

i∑

n= 1

q
(
n,2∗

)
=

i∑

n= 1

−K∗eB
(
n,2∗

)

=

i∑

n = 1

−K∗
[
rB (n) − 1V̂B

(
n,2∗

)]
(11)

Third, the following hypotheses on the parameters were
generated to gauge if they were meaningfully derived by the
model fitting: (1) α∗ decreases as pre-infusion hemorrhage
increases; (2) V∗

B0 decreases as pre-infusion hemorrhage
increases; and (3) α∗ is larger in crystalloids than in colloids.
These hypotheses were tested by examining the values of α∗

and V∗
B0.

Parametric Sensitivity Analysis
The parametric sensitivity analysis was performed
in the frequency domain. The sensitivity functions
associated with the model (Equation 5) to VB0, K, and
α were derived as the normalized partial derivatives
of G

(
jω

)
, the frequency response function associated

with (Equation 5), with respect to VB0, K, and α:

SVB0

(
jω

)
=

VB0

G
(
jω

) ∂G
(
jω

)

∂VB0

∣∣∣∣∣
2=2∗

= − 1 (12)

SK
(
jω

)
=

K

G
(
jω

) ∂G
(
jω

)

∂K

∣∣∣∣∣
2=2∗

=
−K∗α∗

(
jω

)2

(1 + α∗)
(
jω

)3
+ K∗ (2+ α∗)

(
jω

)2
+ K∗2

(
jω

)

Sα

(
jω

)
=

α

G
(
jω

) ∂G
(
jω

)

∂α

∣∣∣∣∣
2=2∗

=
−α∗

(1+ α∗)

K∗

(1+ α∗)
(
jω

)
+ K∗

Then, the frequency responses of these sensitivity functions were
examined to elucidate how VB0, K, and α are tuned to fit the
model to the data on

⌣
VB response to u and v.

RESULTS

Table 2 summarizes the results of data analysis, including the
estimated parameters for each dataset and the associated error
metrics. Overall, the model reproduced the data accurately with
average normalized error and RMSNE of 0.6 and 9.5% across
crystalloid and colloid fluids.

Figures 3–5 show
⌣
VB responses reproduced by the model,

together with the measured data, associated with Datasets 1,
2, and 3, respectively. The upper and lower panels present the
measured versus model-reproduced

⌣
VB responses as well as 1V̂B

and 1V̂ISF.
Figure 6 illustrates (A) the frequency responses of the model’s

sensitivity functions (12) to VB0, K, and α and (B) the mechanism
of how VB0, K, and α are tuned to fit the model to the data on

⌣
VB

response to u and v.

DISCUSSION

This paper presented a lumped-parameter model that
can reproduce VB response to u and v. This section
considers the strengths and limitations of the model
in terms of its parsimony, accuracy and physiological
transparency.

Lumped-Parameter Model
Parsimony

The lumped-parameter model presented in this paper is
essentially a minimal model (Equation 5) characterized by
only three parameters: α, K, and VB0. That this simple
model can be fully characterized just by these parameters
and accurately reproduce subject-specific VB responses is its
key benefit compared with the existing physiology-based first
principles models (Pirkle and Gann, 1975; Mazzoni et al., 1988;
Arturson et al., 1989; Carlson et al., 1996; Gyenge et al., 2003)
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TABLE 2 | Data analysis results: estimated parameters and error metrics.

Infusion type K*
P V*

B0
[ l ] α* Error[%] RMSE[%]

Dataset 1 Ringer’s AC (000ml) 0.052 4.86 4.45 0.49 ± 14.1 13.3

Ringer’s AC (450ml) 0.065 3.88 4.00 0.57 ± 7.93 7.52

Ringer’s AC (900ml) 0.076 3.27 2.57 0.38 ± 4.04 3.84

Dataset 2 Saline 0.047 5.56 2.35 0.46 ± 10.0 9.62

Ringer’s LA 0.069 5.03 2.39 1.81 ± 17.6 16.9

Dataset 3 Albumin 0.028 3.94 0.45 0.05 ± 9.09 8.73

Autologous Plasma 0.147 3.11 0.34 0.62 ± 6.49 6.25

K*
P, V

*
B0, and α* are the estimated KP, VB0, and α associated with each dataset, obtained by solving the optimization problem (Equation 8) for each dataset. Ringer’s AC, ringer’s acetate.

Ringer’s LA, ringer’s lactate.

FIGURE 3 | Model evaluation for Dataset 1 (Drobin and Hahn, 1999). Upper panel, Measured fractional blood volume responses to ringer’s acetate (“Data”) under

different pre-infusion hemorrhage states, versus response reproduced by the lumped-parameter model (“Model”). Lower panel, Model-reproduced changes in blood

and interstitial fluid volumes. 1st column, 0ml pre-infusion hemorrhage; 2nd column, 450ml pre-infusion hemorrhage; 3rd column, 900ml pre-infusion hemorrhage.

whose complexity makes it extremely challenging to reproduce
subject-specific VB responses to u and v without exhaustive and
impractical measurements.

Accuracy

The results of data analysis (Table 2 and Figures 3–5) support the
ability of the lumped-parameter model to accurately reproduce
VB responses to u and v. The goodness of fit between measured
versus model-reproduced

⌣
VB responses is encouraging. These

results, derived from five different fluids one of which was
also associated with three different pre-infusion hemorrhage
states (Dataset 1), suggest that the model may be suitable for

summarizing VB responses to a wide range of fluids over diverse
VB states.

Transparency

The proposed lumped-parameter model is a simple and highly
structured model, constrained by the physiological principle
that the ratio between the volume changes in the intravascular
and interstitial fluid is regulated at a target value (Guyton
et al., 1975). Thus, it is not obvious if the parameters estimated
from the model fitting (Equation 9) would retain the intended
physiological meanings. Since the actual values of the model
parameters (VB0, K, and α) were not directly measured, the
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FIGURE 4 | Model evaluation for Dataset 2 (Drobin and Hahn, 2002). Upper panel, Measured fractional blood volume responses to crystalloid fluids (“Data”),

versus response reproduced by the lumped-parameter model (“Model”). Lower panel, Model-reproduced changes in blood and interstitial fluid volumes. 1st column,

0.9% saline; 2nd column, ringer’s lactate.

physiological transparency of the estimated parameters could not
be established in a strict sense (i.e., by comparing the actual versus
estimated parameters). Yet, the physiological “plausibility” of the
proposed model is supported by a few observations from the data
analysis (Table 2), as detailed below.

First, the values of V∗
B0 and α∗ estimated by fitting the lumped-

parameter model to measured
⌣
VB responses were comparable, at

least in terms of the orders of magnitude, to the known nominal
plasma volume (∼3.2 l for an 70 kg male; Skillman et al., 1967;
Gyenge et al., 1999; Hedin andHahn, 2005) and the ratio between
the volume changes in the intravascular and interstitial fluid due
to a perturbation in the body fluid volume (∼2.3; Guyton et al.,
1975; Lewis, 1986; Wears and Winton, 1990; Simpson et al.,
1996): the values of α∗ derived for the models associated with
isotonic crystalloids (Datasets 1–2) ranged between 2.4 and 4.5,
while the values of V∗

B0 derived for the models (Datasets 1–3)
ranged between 3.1 l and 5.6 l.

Second, α∗ decreased with an increase in the pre-infusion
hemorrhage volume (Dataset 1), which is consistent with
the physiological principle that more fluid is retained in the
intravascular compartment as its volume decreases (Guyton et al.,
1975). In fact, comparing the lower panels in Figure 3, the
model estimated that q decreases as pre-infusion hemorrhage
increases via a decrease in α∗. At the same time, V∗

B0

also showed physiologically plausible behavior, exhibiting a
decreasing trend with an increase in the pre-infusion hemorrhage
(Dataset 1), meeting the physiological expectation that pre-
infusion hemorrhage would decrease VB0.

Third, α∗ estimated for colloids (Dataset 3) was smaller
than α∗ estimated for crystalloids (Datasets 1–2), which is
consistent with the fact that colloid is better retained in blood
than crystalloid due to its relatively large molecule size (Hahn,
2013) (note that this property of colloid should decrease α∗

since less fluid is shifted to the interstitial compartment). In
fact, comparing the lower panels in Figures 3–5, the model
estimated that the fluid volume shifted from the intravascular
to interstitial compartment relative to the change in VB is
largely smaller for colloids than crystalloids (note that the colloid
infusion dose is only 40% of the crystalloid infusion dose;
Table 1).

In sum, the lumped-parameter model presented in this paper
is (1) simple in that it can be characterized by just three
parameters; (2) able to reproduce VB responses to u and v;
and (3) showed physiologically plausible behaviors in terms of
the estimated model parameters. We speculate that the lumped-
parameter model may have clinical uses. For example, each time
it is fitted to the response of a subject to bolus infusion of fluid,
it may (1) characterize VB state of a subject (e.g., by way of V∗

B0);
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FIGURE 5 | Model evaluation for Dataset 3 (Hedin and Hahn, 2005). Upper panel, Measured fractional blood volume responses to colloid fluids (“Data”), versus

response reproduced by the lumped-parameter model (“Model”). Lower panel, Model-reproduced changes in blood and interstitial fluid volumes. 1st column, 5%

albumin; 2nd column, autologous plasma.

(2) estimate unmeasured variables of interest, such as the volume
of inter-compartmental fluid shift and the change in interstitial
fluid volume; and (3) predict future physiological responses of a
subject, such as predicting VB response to future u and v. These
speculative applications will be evaluated in future work.

Parametric Sensitivity Analysis:
Mechanism Underlying Model Fitting
Parametric sensitivity analysis provided in-depth insight as to
how the model parameters are tuned to fit the model to the data.
The Bode magnitude plots of the sensitivity functions (Equation
12) to VB0, K, and α suggest that the model’s response is primarily
affected by VB0 in the high frequency regime while comparably
affected by VB0 and α in the low frequency regime, with the effect
of K limited to mid-frequency regime (Figure 6A). Physically,
this means that the model’s transient response is largely affected
by VB0 (and, to a modest extent, by K) while its steady-state
response is affected comparably by both VB0 and α. Thus, in
solving (Equation 9), the model tends to fit the transient portion
of the response by primarily adjusting VB0, while it tends to fit the
steady-state portion of the response by primarily adjusting α once
a value of VB0 that best fits the transient response is determined
(Figure 6B).

The above mechanistic insight on model fitting may elucidate
why VB0 was often estimated to be larger than what is regarded
as nominal as detailed below (see, e.g., VB0 estimated for Dataset
2 in Table 2). In response to a fluid bolus, VB first peaks and
then decreases as the fluid is distributed to the extravascular
compartment. Thus, the real α may first peak and then decrease
to a steady-state value as well (Guyton et al., 1975). However,
the model assumes that the value of α is fixed at its steady-state
(i.e., the lowest) value. The model (Equation 5) dictates that this
α, together with actual VB0, yields an increase in the model-
reproduced

⌣
VB response. To compensate for this discrepancy,

VB0 is tuned to be larger than its actual value to decrease the
transient

⌣
VB response. This may be (at least) a mechanism

underlying the large values of VB0 derived for the Datasets 1–
2. Compared with crystalloid (Datasets 1–2), VB0 derived for
colloid (Dataset 3) were physiologically more plausible, because
the infusion dose of colloid was small (Table 1), resulting in less
likelihood of volume overload, thereby making the assumption of
constant α more realistic.

Study Limitations
Despite promising initial results obtained for the proposed
lumped-parameter model, there are a few limitations that must
be investigated in more depth in future studies. First, the amount
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FIGURE 6 | (A) Frequency responses of the model’s sensitivity functions (Equation 12) to VB0 and α. (B) Mechanism of how VB0 and α are tuned in fitting the model

to fractional blood volume response data.

of data examined in this study was limited (seven datasets
representing average subjects). Considering that the model is
ultimately intended for use in individual subjects, the model
must be assessed using datasets associated with individual (rather
than average) subjects receiving fluid infusion under diverse
physiological states. Noting that we only evaluated the model’s
ability to reproduce VB response to fluid infusion (i.e., testing
the model against the same data used for fitting), particular
focus must be given to evaluate the model’s ability to predict
VB response (i.e., testing the model against fresh data not used
for fitting). Second, the physiological relevance of the model
parameters was not fully established. Future work is required to
compare estimated model parameters with their gold standard
counterparts to assess the agreement between them. VB0 may
be compared with its direct measurement, e.g., based on the
spectrophotometric detection of indocyanine green (Henschen
et al., 1993). α may be compared with the ratio between 1VB

and 1VISF in the steady state, which may be derived from the
measurements of VB0 and

⌣
VB as well as u and v. It is noted that α

varies with volume state and is also altered by many physiological
factors (Guyton et al., 1975). Thus, α must be interpreted as a
resultant (and perhaps) linearized ratio between 1VB and 1VISF

within the physiological regime presented by the data, especially
under the presence of diverse physiological changes. Third,
blood hemoglobin concentration measurement can be subject to
inaccuracy under large volume changes (Dasselaar et al., 2012).

Future work must investigate the influence of the measurement
inaccuracy on the quality of the estimated model parameters.
Finally, the amount and attributes (e.g., frequency contents)
of data required to accurately determine subject-specific model
are yet to be examined. In this study, we have shown via the
identifiability analysis that the model can be uniquely determined
if the dataset is informative, and that model parameters estimated
from dataset containing both transient and steady state exhibit
physiologically plausible behaviors. Yet, for the model to be
clinically useful, model parameters must be reliably determined
from minimal data. Future analysis on this aspect will thus be
necessary.
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APPENDIX

Volume Kinetics Model
For illustration purposes, a two-compartment volume kinetic
model is considered. However, the finding applies to general
volume kinetic models. The governing equation is given by
(Hahn, 2010):

v̇c = R0 − CL0 − CL
vc − vc0

vc0

− CLd

(
vc − vc0

vc0
−

vt − vt0

vt0

)

v̇t = CL d

(
vc − vc0

vc0
−

vt − vt0

vt0

)
(A1)

where vc and vc0 are the blood volume and its baseline value, vt
and vt0 the interstitial fluid volume and its baseline value, R0 fluid
infusion rate, CL0, CL and CLd the clearances associated with
the baseline fluid loss, dilution-dependent elimination and inter-
compartmental distribution, respectively. Denoting the changes
in the intravascular and interstitial fluid volumes as state variables
x1 and x2, (Eq. A1) is reformulated into the following:

[
ẋ1
ẋ2

]
=

[
− (K1 + K2) K3

K2 −K3

] [
x1
x2

]
+

[
1
0

]
u (A2)

where K1 = CL/vc0, K2 = CLd/vc0, K3 = CLd/vt0 and
u = R0−CL0. So, taking the Laplace transform and solving for
x1 and x2 yields:

x1 (s) =
s+ K3

s2 + (K1 + K2 + K3) s+ K1K3
u (s) ,

x2 (s) =
K2

s2 + (K1 + K2 + K3) s+ K1K3
u (s) (A3)

This results in the following:

x2 (s)

x1 (s)
=

K2

s + K3
(A4)

Thus, the steady-state ratio between x1 and x2 (equivalent
to α in our lumped-parameter model) reduces to
lims→0 x2 (s)/x1 (s) = K2/K3 = vt0/vc0, meaning that
the ratio between the changes in the intravascular and interstitial
fluid volumes is determined by the ratio of their initial
values.
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