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The transient oscillatory model of odor identity encoding seeks to explain how odorants with
spatially overlapped patterns of input into primary olfactory networks can be discriminated.
This model provides several testable predictions about the distributed nature of network
oscillations and how they control spike timing. To test these predictions, 16 channel elec-
trode arrays were placed within the antennal lobe (AL) of the moth Manduca sexta. Unitary
spiking and multi site local field potential (LFP) recordings were made during spontaneous
activity and in response to repeated presentations of an odor panel. We quantified oscil-
latory frequency, cross correlations between LFP recording sites, and spike–LFP phase
relationships. We show that odor-driven AL oscillations in Manduca are frequency modu-
lating (FM) from ∼100 to 30 Hz; this was odorant and stimulus duration dependent. FM
oscillatory responses were localized to one or two recording sites suggesting a localized
(perhaps glomerular) not distributed source. LFP cross correlations further demonstrated
that only a small (r < 0.05) distributed and oscillatory component was present. Cross spec-
tral density analysis demonstrated the frequency of these weakly distributed oscillations
was state dependent (spontaneous activity = 25–55 Hz; odor-driven = 55–85 Hz). Surpris-
ingly, vector strength analysis indicated that unitary phase locking of spikes to the LFP was
strongest during spontaneous activity and dropped significantly during responses. Appli-
cation of bicuculline, a GABAA receptor antagonist, significantly lowered the frequency
content of odor-driven distributed oscillatory activity. Bicuculline significantly reduced spike
phase locking generally, but the ubiquitous pattern of increased phase locking during spon-
taneous activity persisted. Collectively, these results indicate that oscillations perform
poorly as a stimulus-mediated spike synchronizing mechanism for Manduca and hence
are incongruent with the transient oscillatory model.
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INTRODUCTION
Odor stimulation drives a combinatorial spatio-temporal response
in first-order olfactory processing centers, the insect anten-
nal lobe (AL), and the vertebrate olfactory bulb (OB). Sev-
eral aspects of these physiological responses have been cor-
related with an animal’s ability to discriminate between even
subtly different odorant stimuli in behavioral assays (Stopfer
et al., 1997; Daly et al., 2001; Linster et al., 2001; Wright et al.,
2002; Galán et al., 2004). For example, odor can drive local
field potential oscillations (LFPOs) at species-specific frequencies
(Gelperin and Tank, 1990; Heinbockel et al., 1998). Superim-
posed on these LFPOs are what has been described as slower
temporal patterns of action potentials among populations of
principal output cells of the AL/OB (for review see Laurent
et al., 2001). At least a subset of action potentials from these
responses has been shown to correlate to a specific phase range
(i.e., phase lock) of the LFPOs in the locust (Laurent and
Davidowitz, 1994; Laurent and Naraghi, 1994; Laurent et al.,

1996a,b, 2001; MacLeod and Laurent, 1996; Wehr and Laurent,
1996).

Selective disruption of GABAA receptor signaling in the locust
AL interferes with fast inhibitory synaptic interactions, thereby
disrupting odor-driven oscillations in the AL and its primary
projection fields (MacLeod and Laurent, 1996). Disruption of
GABAA mediated oscillations also appears to affect discrimination
of closely related monomolecular odors in mouse and honeybee
(Stopfer et al., 1997; Nusser et al., 2001). Thus, based on compara-
tive data from locust (Laurent and Davidowitz, 1994; Laurent and
Naraghi, 1994; Wehr and Laurent, 1996, 1999), honeybee (Stopfer
et al., 1997), zebra fish (Friedrich and Laurent, 2001), and mice
(Nusser et al., 2001), a general model of olfactory encoding has
been proposed, positing that stimulus driven LFPOs synchronize
transiently active spiking responses across a distributed network
of principal output cells in order to mediate enhanced odor dis-
crimination over time in downstream brain centers, such as the
insect mushroom bodies (MB; for review see Laurent, 2002).
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However, odor discrimination is also correlated with more par-
simonious encoding models such as odor dependent patterns of
spike bursting (Stopfer et al., 2003; Daly et al., 2004b; Lehmkuhle
et al., 2006), which optimize on a relatively shorter time scale (ca.
∼140–240 ms after stimulus onset). This rapid timescale is consis-
tent with correspondingly rapid and accurate behavioral responses
in discrimination tasks in both insects and mammals (Uchida
and Mainen, 2003; Budick and Dickinson, 2006; Wesson et al.,
2008a,b). Spatial mapping of odorant responses in the OB and AL
suggest that fine odor discrimination can be largely accounted for
by subtle differences in glomerular input patterns alone (Johnson
et al., 1998, 1999, 2005; Linster et al., 2001; Galán et al., 2004). Con-
sistent with the notion that both spatial and temporal processes
contribute to odor discrimination, we have recently shown that
both odor dependent spatial patterns of glomerular output and
spatio-temporal sequences of activations of these glomeruli can
be observed during a response (Staudacher et al., 2009). In this
case temporal patterns evolved over a ∼120-ms response window
in an odor dependent manner. However, when data are collapsed
across time, the spatial pattern alone remains odor dependent.
Thus even within a given species, there are odor dependent spatial
and temporal components that correlate to an animal’s ability to
discriminate.

The goal of the current study therefore was to better charac-
terize oscillatory dynamics within the AL of the moth Manduca
and to specifically establish whether odor-driven oscillations drive
spike timing in a manner consistent with the transient oscillatory
model. Specifically, we wanted to test the following predictions of
this model: (1) Odor-driven LFPOs should be distributed across
the AL; (2) The frequency content of these oscillations are: (a) of
a consistent and stable frequency; (b) independent of the odor
delivered and (c) occur reasonably consistently in response time
across stimulus repeats; (3) unitary spiking responses should phase
lock to oscillations; (4) this phase locking should be enhanced
during odor-driven responses, relative to spontaneous activity;
and (5) the local inhibitory network should establish oscilla-
tory activity in the field and hence affect precise spike timing.
To test these hypotheses, we placed 16 channel silicon micro-
electrode arrays within the AL to record spatial and temporal
patterns of spiking activity across ensembles of sorted neural
units. In addition, we recorded local field potentials (LFP) in mul-
tiple locations across the electrode array to investigate whether
responses were localized or distributed. These recordings were
made during both spontaneous activity and in response to odor
stimulation in order to compare oscillatory and spiking activity
during spontaneous epochs (i.e., ongoing processes of an active
system), and during odor-driven responses. This allowed us to
test whether the evolution of odor-driven oscillatory activity was
associated with increased phase locking of individual cells. Finally,
in order to address the functional role of local inhibition, the
above observations were made before and during GABAA receptor
blockade.

MATERIALS AND METHODS
MOTHS
Male Manduca moths were reared at West Virginia University
using standard rearing procedures (Bell and Joachim, 1976). At

stage 18 of pupal development, pupae were placed individually
into paper bags and stored in a Percival incubator at 25˚C with
a reversed 16:8 LD cycle and 75% relative humidity. Moths were
allowed to develop 5–7 days post eclosion, prior to experimental
use; this ensures complete development of the AL and is consistent
with our other behavioral studies.

NEUROPHYSIOLOGICAL PREPARATION
The method used for preparing moths has been described in detail
elsewhere (Daly et al., 2004a,b). Briefly, individual moths were
placed into a 14-mm ID copper tube and their heads firmly fixed
to this tube with molten soft dental wax. An approximately 2 mm2

window was cut into the top center of the head capsule. Next, cuts
were made around the perimeter of the bilateral pair of pharyngeal
dilator muscles (again ∼2 mm2). The pharyngeal dilator muscles
with attached head capsule cuticle were then slid forward into the
previously cut window. The repositioned section of cuticle was
then glued into position with superglue. By moving these feeding
muscles, the brain can be directly accessed while leaving the animal
functionally completely intact (Daly et al., 2004a). The prepared
moth was then positioned on an air table and standard physiolog-
ical saline was applied to the opened head to remove hemolymph
and keep the brain moist. The flagellum of the ipsilateral antenna
was then placed into a glass sleeve (ID 2.5 mm), which was con-
nected to an olfactometer. Finally, the 16 channel electrode array
(Neuronexus 2 × 2 tet) was placed into the AL using a high reso-
lution motorized micromanipulator and controller (WPI HS6-3)
under visual control. The probes were placed along a visually iden-
tifiable anatomical boundary between the AL and the rest of the
brain, so that the probe array was located at the very caudal bound-
ary of the AL. The depth of the deepest electrode in the array was
between 500 and 600 μm, although this varied somewhat from
moth to moth and was optimized for each recording. The com-
pleted preparation provided stable recordings for several hours.
All recordings were performed between 1 and 4 h after the start of
the moth’s subjective night when they are normally active.

ODOR AND DRUG DELIVERY
Three microliters of monomolecular odorants were individually
placed, undiluted, onto a ∼3-mm × 30-mm strip of Whatman fil-
ter paper and placed into a ∼1.7-ml glass cartridge (see Table 1
for odor list). The cartridge ends were made of 1/16 in ID nylon

Table 1 | List of odorants used.

Odorant Source Purity Density

1-pentanone Sigma 99% 0.815

1-hexanol Sigma 97% 0.861

1-heptanol Sigma 98% 0.822

1-octanol Sigma 99% 0.82

1-nonanol Fluka 98% 0.88

1-decanol Sigma 97% 0.89

2-hexanone Sigma 98% 0.81

2-octanone Sigma 98% 0.82

2-nonanone Sigma 99% 0.821

2-decanone Sigma 98% 0.824
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luer fittings. Prepared cartridges were then connected to the odor
delivery system such that the cartridge was only 2 cm from the
tip of the antenna. Under normal conditions, dried and charcoal
filtered air passed through the air supply tubing to the antenna
at a velocity of 280 cm/s. This velocity was more than sufficient
to minimize boundary layer effects around the antenna’s sensilla,
yet well within the normal flight speed of this moth (Stevenson
et al., 1995). To stimulate with odor, clean air was shunted from
the normally open line, which blows constantly on the antenna,
to a second line which contained the odor cartridge, via a three-
way valve (The Lee Co., model LFAA1200118H). The clean air and
odor lines then merged into a T. The third arm of the T connected
to the glass sleeve, in which the antennal flagellum had previously
been inserted. Thus, air from either the clean air line or the odor
line was continuously flowing over the flagellum.

Nine monomolecular odors were presented separately in ran-
dom order. Each odorant was presented in 20 consecutive 100 ms
pulses, each pulse spaced by 10 s. One hundred millisecond pulses
were used based on empirical evidence indicating that this is the
approximate mean exposure time for moths in the natural outdoor
environment (Murlis and Jones, 1981) and a 10-s inter stimulus
interval is sufficient to eliminate any modulation of responses due
to repeated exposures in this model system (Daly et al., 2004b;
Staudacher et al., 2009). This presentation scheme was repeated
prior to, during and following bath application of 200 μM bicu-
culline methiodide (BMI) in physiological saline solution. This
dose level has been shown to be effective in this (Waldrop et al.,
1987; Christensen et al., 1998) and other insect species (Stopfer
et al., 1997; Hosler et al., 2000). Drug treatment was initiated
10 min prior to the start of the second block of odor stimulations.

In a subset of two recordings, we also varied stimulus duration
(50, 100, 500, and 1000 ms) to assess the effect of both briefer and
more prolonged stimulation on the patterns of oscillatory activity.
In this case we presented a restricted number of odors and did not
apply GABAA receptor antagonists. We again presented 20 repeats
of each stimulus/duration; each stimulus was again spaced by 10 s.

PHYSIOLOGICAL RECORDING AND SPIKE SORTING
Data from the four tetrodes on the electrode array were recorded
using a 24 channel Neuralynx amplifier array and Cheetah
data acquisition and stimulus control software. Spike data were
recorded at 32 kHz using the tetrode sampling technique and local
field recordings were sampled at 10.7 kHz from one electrode in
each of the four tetrodes. Figure 1A highlights the approximate
size relationship of the AL with the microelectrode array and
identifies the relative position of the LFP recording sites on the
array. In this case, LFP recordings were made from the top and
bottom-most electrode sites to provide the greatest vertical cov-
erage (250 μm deep by 200 μm wide); note that this represents
approximately one-half the width of the AL. Spike channels were
amplified between 2000 and 10,000 times, whereas all LFP record-
ings were amplified 2000 times. Hardware band pass filter settings
were 600–6000 Hz for spike data and 1–125 Hz for LFP data.

Spikes were sorted in Matlab using the BubbleClust toolbox
supplied by Neuralynx. This tool box implements a kth nearest
neighbor algorithm in a 12 dimensional spike waveform fea-
ture space. BubbleClust identified clusters of spikes that were

subsequently assessed and “cleaned” manually based on a number
of descriptive and parametric statistics used to assess the over-
all quality and statistical separation of each cluster (see Daly et al.,
2004b for complete description). Only those clusters that were sig-
nificantly distinct from all other clusters and stable for the duration
of the recording were considered for further analysis.

Local field potential recordings were re-filtered off-line via a
windowed-sync FIR band pass filter provided by Neuralynx, using
a rectangular smoothing window and 800 taps. This filtering pro-
cedure caused a linear phase lag that was then corrected to ensure
accurate alignment of the LFPs with the spike data. Results were
compared to several other filter implementations (including But-
terworth and Chebyshev filters) to confirm that any oscillatory
activity was not attributable to filtering artifacts, such as ringing.
All implementations produced essentially identical results. Finally,
for time frequency analysis (below) we also implemented a 60-Hz
(±2 Hz, unless otherwise noted) windowed-sinc notch filter to the
LFP data to remove line noise.

ANALYSIS
Several analytic techniques were used in order to quantify the rela-
tionship between parallel recorded LFPOs and between LFPOs and
unitary spiking. These methods include LFP–LFP and unit–LFP
cross correlations, vector strength analysis, power spectral density
(PSD), cross spectral density (CSD), and time frequency response
spectrograms (TFRs). In all cases a 1-ms binning window was
used unless otherwise noted and all calculations were performed
in either MATLAB or Neuroexplorer. Statistical analyses of the
data generated from these methods were performed in MATLAB
and SAS.

First, in order to characterize the frequency content of odor-
driven oscillations, TFR spectrograms were generated via the Short
Time Fourier Transform method. TFRs were calculated with the
“tfrsp” function in the Time Frequency Toolbox for Matlab (freely
available from the Centre National de la Recherche Scientifique
at http://tftb.non-gnu.org). This analysis was performed on indi-
vidual responses to odor stimulation and the results averaged to
highlight consistent oscillations whilst averaging out inconsistent
oscillatory activity. Because TFRs were calculated individually for
each response, then averaged across repeats, the approach abstracts
from (and is hence tolerant of) variation in oscillatory phase
between stimulus-aligned traces. This is important because aver-
aging of raw oscillations from repeated trials for example could
potentially cancel out oscillations that are not phase aligned across
trials. TFR results were z-score normalized to highlight possible
differences in frequency content and relative amplitude across the
four LFPO recording sites (see Figure 1A). Normalization also
allowed comparison of pre- versus post- GABAA receptor block-
ade in order to highlight changes in frequency content for these
specific comparisons.

To assess whether each odorant produced a unique frequency
modulating (FM) sweep pattern (i.e., differences in frequency
range, onset/offset, and duration) we implemented a discriminant
analysis using a supervised classification approach. Specifically we
used the support vector classifiers method (Boser et al., 1992; Galán
et al., 2004; see also Methods in Appendix). Here the goal was to
determine if TFR’s generated from individual odor responses could
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FIGURE 1 | Odor-driven oscillations are frequency modulating and

localized to a subset of recording sites (A). Schematic of the multichannel
electrode array configuration within the antennal lobe (AL; Cason stain).
Neuronexus two-shank 2 × 2 tetrode silicon electrodes array, each shank
containing eight electrodes, which are arrayed into two tetrodes (for tetrode
sampling of spiking activity), are placed into the AL. One electrode from each
tetrode was used to record local field potentials (LFP; red circles). This
provided four parallel LFP recordings (inset) from across the AL. Note in these
example traces, which have been band pass filtered to highlight 25–100 Hz
that there are several instances of spontaneously occurring “bouts” of
oscillatory activity (inset black arrows). (B) Rasterized peri-stimulus LFP traces
from 20 presentations of 9 different alcohols and ketones. Each trace has
been converted to a one dimensional color coded line to indicate whether the
voltage was high (reds) or low (blues; see above inset). All 180 responses are
aligned by stimulus onset (stimulus duration indicated by vertical black lines)
and stacked to create a single composite panel. Odors are separated by black

horizontal lines and identified (left of panel) by moiety (A = alcohol;
K = ketone) and carbon chain length (5–10). Highlighted above are two distinct
oscillatory response epochs; an early phase (e1), and a later phase (e2). (C)

Averaged time frequency response spectrogram showing consistent
oscillatory power (normalized color scale) as a function of frequency (Y -axis)
and peri-stimulus time (X -axis) for a single odor (1-pentanol). Displayed are
the averaged results of 20 independent TFR analyses for each of the 20
presentations 1-pentanol. Inset white bar (bottom) indicates stimulus
duration. Vertical white line indicates odor onset. Horizontal white line is an
80-Hz frequency reference. Inset histogram (light blue) is the corresponding
mean population spiking response to highlight the relationship between the
onset and duration of the spiking response and the oscillations. (D).
Comparison of the spectrogram results from the four parallel recording sites
in response to 2-octanone. Inset numbers correspond to electrode recording
site shown in (A). Power is normalized to the same range to make panels
directly comparable. All panels are scaled and referenced as in (C).

be classified accurately into odor groups based on the multidimen-
sional shape of the FM sweep. Briefly, we first implemented a data
reduction step. This involved cropping the TFRs generated from
each individual stimulus to a 12 to 124-Hz frequency range, and a
−30 to 1000-ms time range and then defined a region of interest
(ROI) within each TFR, consisting of all pixels that were above
the 99th percentile of power density. Next we generated a filtering
mask which represented all pixels from all odors that were above
the 99th percentile and applied it to all TFRs. This data reduc-
tion step effectively selects all significant frequency–time content

both within odor repeats and between different odorants and
removes all irrelevant data. We then implemented the support
vector classifiers using both a linear and third order polynomial
kernel functions. This analysis was performed on two recordings.
Finally, we calculated an experiment wide 95% confidence inter-
val to identify classification performance as significantly above
chance.

In order to statistically quantify differences in odor-driven
spectral content prior to and during GABAA receptor blockade,
PSD analysis was performed. For this analysis we calculated the

Frontiers in Neuroengineering www.frontiersin.org October 2011 | Volume 4 | Article 12 | 4

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Daly et al. Local field potentials and spike timing

PSD for each odor-driven response in a 1000-ms window start-
ing at stimulus onset. Note that in response to a 100-ms stimulus,
TFR analysis indicated that most evidence of odor-driven oscil-
latory activity terminated within ∼500 ms, thus all odor-driven
oscillatory activity should be encapsulated within this 1000 ms
window. Furthermore, TFR analysis indicated that odor-driven
responses were typically no higher than 100 Hz, thus PSD analy-
sis was performed on a 1 to 100-Hz frequency range, in 0.5 Hz
steps using Neuroexplorer. Resulting PSD data were then statis-
tically analyzed using ANOVA in SAS to determine if spectral
power at each frequency step was affected by GABAA receptor
blockade.

To quantify the precise relationship between LFPs recorded
from different sites across the AL, we calculated all possible pair
wise LFP–LFP cross correlations. For this analysis, a ±100-ms
sliding window was used and data was sampled from sponta-
neous and odor-driven activity (−1000 to 0 and 0 to 1000 ms
respectively; time relative to stimulus onset). This analysis was per-
formed individually for each stimulus presentation, both before
and during GABAA receptor blockade, for all recordings. The cross
correlation not only indicates whether any two traces are corre-
lated, but also highlights any temporal structure of that correlated
activity. In order to extract and quantify the temporal structure
embedded in the cross correlation, CSDs were calculated for each
individually calculated cross correlation. CSDs specifically mea-
sure the relative power of any periodic structure present in the
cross correlation, hence the CSD quantifies oscillatory activity that
is distributed across the two recording sites used for a given cross
correlation. Results of the CSD analysis were then statistically ana-
lyzed using ANOVA in SAS to determine if distributed power at
each frequency step varied as a function of spontaneous versus
odor-driven sampling time, and as a function of GABAA receptor
blockade.

We used two related methods to quantify the phase relationship
between unitary spiking patterns and the LFPO, as both a func-
tion of spontaneous and odor-driven responses, and as a function
of GABAA receptor disruption. First, the instantaneous phase of
the LFP was calculated in MATLAB as the analytical phase of the
signal, i.e., as the instantaneous angle of the complex time series
obtained from the Hilbert transform of the LFP. Results of this
analysis provided a visual display, as a series of histograms for each
cell, highlighting the distribution of spikes relative to oscillatory
phase. Our second approach was to use vector strength analy-
sis. Vector strength quantifies the degree to which unitary spiking
activity exhibits a tendency to occur at a particular phase of the
LFPO by calculating the reciprocal of the circular variance of the
distribution of phases of sampled spikes to the LFP; this was also
performed in MATLAB. For this analysis data was sampled from
three peri-stimulus epochs; spontaneous activity prior to stimu-
lation (−300 to 0 ms), an early response epoch (50–350 ms), and
a late response epoch (350–650 ms). Note that 0–50 ms was not
considered in this analysis to account for the time lag between
when the odor valve opened and the earliest physiological evi-
dence of AL responses. Furthermore, because preliminary results
indicated that odor-driven oscillatory activity was relatively broad
band and in a different frequency range than what was observed
during spontaneous activity, we performed the vector strength

analysis on LFP data that was band pass filtered to highlight two
frequency domains; low (25–55 Hz) and high (55–85 Hz). Filtering
LFP oscillations into narrower pass bands results in a less complex
wave and hence allows more accurate calculation of spike phase.
Filtering also allows segregation and characterization of phase
locking in the separate frequency domains. Subsequently, ANOVA
was used to determine whether vector strength was dependent
on: peri-stimulus time (i.e., pre, early, and late response epochs),
the odorant used, and, GABAA receptor blockade. Analysis was
performed after accounting for random effects such as individ-
ual recording (moth) and individual differences between spiking
units. Finally, the filter implementation (low versus high frequency
pass band) was also included in the statistical model to estab-
lish whether the different pass bands produced statistically similar
results.

Finally, to establish whether vector strength values were above
what might be expected by chance, these values were recalculated
for one of the recordings using a bootstrapping method, whereby
spike times were first jittered randomly within a series of time
ranges from ±1 to ±10 ms in 1 ms steps (spikes were re-jittered
30 times for each step in the jitter width). Results were statistically
analyzed using ANOVA in SAS to determine if vector strength was
dependent on the amount of jittering for the three peri-stimulus
epochs.

RESULTS
ODOR-DRIVEN OSCILLATIONS ARE FREQUENCY MODULATING AND
TYPICALLY LOCALIZED TO A SUBSET OF RECORDING SITES
The transient oscillatory model of odor identity encoding posits
that odor stimulation should produce a reasonably narrow (hence
stable) frequency band of oscillatory activity, which is distributed
across much if not all of the AL. This prediction is based on the
morphological characteristics of LNs, which arborize broadly and
mediate oscillatory activity. The model furthermore predicts that
the elicited frequency should be independent of the odorant pre-
sented (Laurent and Davidowitz, 1994; Laurent et al., 1996a). A
stable response frequency that is independent of varying stim-
uli is an important aspect of this model because the second-order
olfactory center, the MB, are proposed to integrate inputs from the
AL across a limited time window defined by delayed feed-forward
inhibition from the lateral horn (Laurent, 2002; Perez-Orive et al.,
2002). Therefore, we detailed the precise nature of the oscillatory
activity in the AL of Manduca to determine if these criteria could
be met.

Figure 1A is a schematic depicting the approximate position-
ing and size of the electrode array in the AL. This figure also
highlights which electrodes from the 16 channel array were used
for LFP recordings. In this case, we made parallel LFP recordings
from the highest two and lowest two recording sites (shown in
red), during periods of spontaneous activity and in response to
odor stimulation. Superimposed on Figure 1A are peri-stimulus
LFP traces representing a range of typical 25–100 Hz oscillations.
These oscillations occur both spontaneously (black arrows) and
in response to a 100-ms odor presentation (stimulus highlighted
by red rectangles). Note that oscillations can be clearly observed
during spontaneous activity on three of the four traces, albeit
at a lesser amplitude than those observed during an odor-driven
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response. This suggests that oscillations are an ongoing product of
a spontaneously active system.

Figure 1B displays rasterized peri-stimulus LFP traces from
a single LFP electrode in response to the 20 repeats of each of
the nine odors used, thus comprising a total of 180 rows of LFP
data. First, in the 200-ms prior to odor stimulation, there is again
evidence of spontaneous oscillations as indicated by the random
“peppering” of interleaved red and blue “blips” in the horizon-
tal (i.e., time) axis. The presence of spontaneous oscillatory field
activity should not be particularly surprising given the sponta-
neously active nature of the insect AL (Perez-Orive et al., 2002;
Stopfer et al., 2003; Daly et al., 2004b).

However, in the presence of odor, LFPOs become both larger in
amplitude and in some cases coherent across repeats when aligned
by the onset of odor stimulation. For example, inter-trial coher-
ence can be seen in Figure 1B by the prominent vertical striping
of blue and red across the 20 repeats of each odor as well as across
odors in some instances. This indicates that consecutive oscillation
peaks (red) and valleys (blue) were phase aligned from response
to response. This “inter-trial coherence” across stimulus repeats is
most prominent for 1-pentanol (A5) between 150 and 300 ms post
stimulus onset. Figure 1B also suggests that odor-driven oscilla-
tions have two distinct epochs; these epochs are highlighted by
inset brackets labeled e1 and e2. Early phase high frequency oscil-
lations (e1) emerge reasonably consistently (∼60 ms post stimulus
onset) and last for ∼50 ms. Early phase LFPO’s appear to some
degree for most odors. This early phase oscillation precedes onset
of the odor-driven I1, a bicuculline sensitive, fast inward Cl−
conductance observed in Manduca PNs (Waldrop et al., 1987;
Christensen et al., 1998). The I1 phase occurs prior to spiking
responses of PNs. Thus, based on the timing of early phase oscil-
lations, they likely relate to sensory cell input and early synaptic
processing that occurs prior to the onset of PN spiking responses.

Starting no earlier than ∼120 ms is a second bout of high
frequency LFPOs (e2), which appear less coherent in response
time, though exceptions exist (again see responses to 1-pentanol).
These later phase oscillations tend to be odor dependent.
However, it is not always apparent, using this visualization
method, whether odor-driven e2 oscillatory activity is consis-
tent from trial to trial in terms of onset, frequency, and/or
phase.

To establish whether odor-driven oscillations are consistent in
response time and produce a reasonably stable frequency, thereby
providing a faithful temporal encoding mechanism that is inde-
pendent of odor identity (Laurent and Davidowitz, 1994; Laurent
and Naraghi, 1994), we calculated TFRs. Figure 1C displays the
averaged results of 20 separate TFR analyses performed on each
of the 20 presentations of 1-pentanol; results are based on a single
recording site. Power was normalized to a probability distribu-
tion and color coded. The first and most striking observation
is that odor stimulation drives an oscillatory response that is
FM. In response to all 9 odors for all 10 moths in the study
(1,800 total odor presentations) we observed that odor-driven
oscillatory responses produced a high-to-low frequency sweep
that typically ranged from 80 to 100 Hz peak frequency down to
20–40 Hz. Superimposed on this TFR is the corresponding peri-
stimulus histogram, highlighting the summed spiking response

for all units in the corresponding population. Results were then
averaged across the 20 stimulus repeats. Consistent with the above
observation that oscillatory activity precedes spiking activity in
AL neurons, Figure 1C shows that high frequency oscillatory
activity precedes the population spiking response by ∼60 ms in
this case.

Across the 10 moths used for this analysis, odor-driven FM
oscillatory responses were also spatially localized. Figure 1D dis-
plays typical TFRs generated from the four parallel LFP recording
sites from a single animal in response to 20 presentations of 2-
octanone. In Figure 1D, the upper left electrode (1) recorded
an FM sweep starting at ∼60 ms post stimulus onset and a peak
frequency of 100 Hz. The frequency of this oscillation then mod-
ulated down to 35 Hz by 400 ms post stimulus onset. This pattern
is evident in the upper right electrode (2) as well, although the
relative power was lower. In the lower two electrodes (3 and 4)
however, almost no evidence of this FM oscillation was present.
As highlighted in Figure 1D electrode 3, there were also con-
sistent spontaneous 20–50 Hz oscillations that were interrupted
upon odor stimulation; this form of spontaneous oscillatory activ-
ity was observed in at least one of the LFP recording sites for
6 of the 10 moths that we analyzed using the TRF method (see
Figure A1 in Appendix for examples from all six recordings). As
suggested by the raw traces in Figure 1A, these ongoing oscilla-
tions tended to be spontaneous but intermittent; this accounts
for the patchy power structure observed in Figure 1D. Thus,
while 2.7 ± 1.15 (mean ± SD) recording sites exhibiting oscilla-
tory activity of some sort, only 1.8 ± 1.2 (mean ± SD) recording
sites actually displayed the same odor-driven FM response patterns
as seen in electrodes 1 and 2. Contrary to the predictions made
of the transient oscillatory model, this suggests that odor-evoked
oscillations that were FM and typically constrained to a sub region
of the AL.

ODOR-DRIVEN OSCILLATIONS MODULATE IN A STIMULUS SPECIFIC
MANNER
As mentioned above, the transient oscillatory model posits that the
oscillations should be frequency invariant across different odors
(Laurent and Davidowitz, 1994; Laurent et al., 1996a). TFR results,
however, suggest that odor-driven FM LFPOs were dependent on
both the physical features of the odorant molecules used as well as
the duration that a test odorant was presented. Figure 2A displays
TFRs from a single recording electrode in response to each of the
nine odors used (see also Figure A2A in Appendix). Responses
driven by both the short chain alcohols and ketones exhibited a
maximum frequency of approximately 100–105 Hz. As the carbon
chain length of the stimulus was increased the peak frequency at
response onset appeared to drop. For example, Figure 2 shows a
maximum frequency of approximately 85–95 Hz when the moth
was stimulated with 1-decanol and 2-decanone respectively. The
duration of the oscillatory response also increased with carbon
chain length. Note for example, the longer chain odors modu-
late more slowly, in the case of K10 the response persists across
the time window whereas the shorter chain odors do not. Finally,
this implies that the rate of the FM sweep (that is, how long it
took to modulate from high-to-low frequency), is slower with the
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FIGURE 2 | Odor-driven oscillations modulate in an odor-specific manner.

(A) Time frequency response spectrograms calculated as a function of
changing molecular features of the stimulus. All panels are the result of TFR
analyses that were calculated, normalized, and presented as described in
Figure 1. Each panel represents the averaged TFR result for a single odorant
(inset and identified as described in Figure 1). Note that alcohols and ketones
of common length are aligned into columns. Note that with the longer carbon
side chains, the initial peak frequency is decreased by ∼15–20 Hz and the FM
sweep appears both slower and longer in duration (see also Figure A2 in

Appendix). (B) Results of the discriminant analysis, showing classification
performance for each odorant as a function of both the linear (blue bars) and
polynomial discriminant functions (green bars). Red line highlights the 95%
confidence limit and hence identifies those odorants for which the linear and
third order polynomial kernel functions were able to accurately classify
significantly better than chance. Note that while the linear kernel in this case
was not able to classify A10 significantly better than chance, the polynomial
kernel could discriminate all odors with 100% accuracy (see also Figure A2 in
Appendix).

longer carbon chain odors. This resulted in a shallower and more
prolonged downward sweep.

To assess the odor dependency of FM responses we per-
formed a discriminant analysis using support vector classifiers
and implementing both a linear and polynomial discriminant (or
kernel) function on a subset of two recordings. The results of
this analysis for the dataset shown in Figure 2A are displayed in
Figure 2B (for the second example see Figure A2 in Appendix).
The linear discriminant function (blue bars) was able to accu-
rately discriminate all odors significantly above chance (red line
indicates 95% confidence level) for all but a single odor (A10),
whereas the polynomial function (green bars) effectively classified
with 100 percent accuracy for all odors. This indicates that each
odorant produced a unique frequency response “signature.” This
odor dependency can be interpreted as either volatility-dependent
or carbon chain length-dependent. In either case, these results
indicate that the qualitative nature of the oscillation is clearly
stimulus-dependent.

In two moths we also varied stimulus duration for a subset of
odors. Figure 3 displays TFRs results from an individual recording
site where the odor 2-hexanone was presented 20 times for each
of four different stimulus durations, ranging from 50 to 1000 ms.
Note that there is a stimulus duration dependent elongation of the

FM sweep; this was observed in both moths where duration was
manipulated. Thus again, in contrast to theoretical expectations,
the frequency content, and rate of modulation are clearly affected
by the odorant used as well as the duration of the stimulus.

CORRELATED FIELD ACTIVITY IS STATE DEPENDENT AND ONLY
WEAKLY PERIODIC
The observation that odor-driven FM oscillations are localized to a
subset of recording sites does not necessarily imply the absence of
more subtle distributed oscillatory activity that the TFR method
was unable to quantify. Another method for identifying distrib-
uted activity across the four LFP recording sites was to directly
compare pairs of sites using cross correlation analysis. Results of
this analysis revealed that while different recording sites are in fact
moderately to highly correlated, this correlation decays rapidly in
time, producing very little evidence of periodic structure.

For example Figure 4A displays the cross correlation between
LFP recording site 1 with all other LFP recording sites for a single
animal. This analysis was based on one 40 min recording segment
containing both spontaneous and odor-driven activity and serves
to highlight that recording sites are clearly correlated at 0 s. Indeed,
inspection of these cross correlations reveals that the peak corre-
lations are centered on 0 s. and range from r = 0.33 (sites 1 and
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FIGURE 3 | Frequency modulation is dependent on stimulus duration.

Stimulus averagedTFR spectrograms for a single odor (2-hexanone) presented
for durations ranging from 50 to 1000 ms (20 presentations/duration). White

bars at the bottom of each panel indicate stimulus duration. Vertical and
horizontal white lines reference stimulus onset and 80 Hz respectively. Note
that with increased stimulus duration there are more prolonged FM sweeps.

FIGURE 4 | Oscillatory local field activity is weakly distributed

and contains state dependent frequency content. (A) The cross
correlation between LFPs recorded from site 1 (tetrode 1) and the three
other LFP recording sites in the tetrode array (see Figure 1A). Inset
schematic of the 2 × 2 tetrode array shows the respective LFP recording site
positions. For purposes of simplification, only the site on each tetrode that
was used for LFP recordings is shown. Sites are color coded to identify which
cross correlation trace is associated with which recording electrode. Thus for
example, the red trace is the cross correlation between site 1 (white) and site
2 (red). Results based on a total of ∼20 min of continuous recording time
from a single moth and contain both spontaneous and odor-driven data. Inset
arrows identify the periodic structure observed in the cross correlation
between electrodes 1 and 2. Note that these small “off center” peaks in the
cross correlations occur in a periodic manner suggesting the presence of a
weak but distributed oscillation. (B) The corresponding cross spectral
densities for the data shown in (A). These CSDs indicate that the cross

correlation between electrodes 1 and 2 contained higher frequency content
than 1 and 3 and 1 and 4 respectively. (C) Mean cross correlations for
spontaneous versus odor-driven periods. Results based on all possible pair
wise comparisons between the four LFP recording sites across seven moths.
Odor-driven cross-correlation based on 1 s samples, starting at odor onset, for
each of 180 odor stimuli per moth. Spontaneous cross correlation based on
180 1 s samples taken immediately prior to odor onset for each odor stimulus,
per moth. Note that cross correlations were calculated for each stimulus and
results were averaged. Shaded regions around the mean represent ±1 SD.
Inset color coded broken lines above the X -axis indicate periods where a
significant difference in the cross correlation value from 0 was observed.
Significance threshold for these tests was set to 2.3 × 10−6 to maintain an
overall alpha of 0.01 (see Figure A3 in Appendix for an expanded view). (D)

Mean cross spectral densities as a function of spontaneous and odor-driven
activity. Results based on all responses from the same seven moths shown in
(C). Shaded area represents SE.
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3), to r = 0.68 (sites 1 and 2). This high degree of correlation
occurs between sites which are as much as 250 μm apart. As high-
lighted in Figure 4A, the magnitude of these correlations does not
appear to be dependent on the distance between recording sites.
For example, the cross correlation between sites 1 and 4 in this
experiment (250 μm) was considerably higher than between sites
1 and 3 (200 μm).

Note too that there are some small but regular “ripples” in
the individual cross correlations (highlighted by inset arrows in
Figure 4A). These small and roughly evenly spaced (in time)
peaks and valleys, indicate that there is indeed some periodic tem-
poral structure in the cross correlation. However, the peaks of
these correlations are quite small (ca. r < 0.10). Nevertheless, by
calculating the CSD of each individual cross correlation, any peri-
odic temporal structure in the cross correlation can be quantified;
the corresponding CSDs for the cross correlations displayed in
Figure 4A are shown in Figure 4B. Figure 4B plots the amount
of distributed oscillatory power by frequency and indicates that
there was correlated periodic activity between sites 1 and 2 (red
trace) centered around ∼60 Hz but spanning broadly from ∼40
to 85 Hz. By contrast, distributed oscillatory power present in the
cross correlations between sites 1 and 3, and sites 1 and 4 contained
frequency content in a lower frequency range indicating that the
correlated oscillatory activity between sites 1 and 2 is not the same
as that found between sites 1 and 3 or 1 and 4.

Figure 4C summarizes the mean of all possible unique pair
wise cross correlations for all recordings used in this analysis (six
possible unique pair wise comparisons per moth and seven moths
used for this analysis). Results are based on a total of 360 1000 ms
samples and are broken down as a function of spontaneous versus
odor-driven activity. Mean cross correlations have been plotted
with ±1 SD shading to provide a sense of variability in the cross
correlations; this indicates that the greatest variability occurs in a
±50-ms window centered around 0 ms.

The mean peak cross correlation was 0.38 (SD = ± 0.18) for
spontaneous activity and 0.43 (SD = ± 0.19) for odor-driven
activity. A one-tailed paired t -test comparing the peak cross cor-
relation revealed that odor produces a significant increase in
this measure across the recording sites (p < 0.001). However,
because these cross correlations are presented as means of mul-
tiple analyses, all but the most consistent and robust temporal
details tend to be averaged out. To determine whether the sec-
ondary peaks (and valleys) that flank the central peak at 0 ms were
significantly different from r = 0.0, a two tailed, t -test was calcu-
lated, for each frequency step; this was performed for both the
spontaneous and odor-driven cross correlations. Inset along the
X -axis in Figure 4C are the results of this test. In this case breaks
in the colored lines indicate moments where the spontaneous or
odor-driven cross correlations were not statistically different from
0. Conversely, the presence of colored lines highlights where there
were significant deviations from 0. Thus, in spite of the fact that
the flanking peaks and valleys were quite small, there were periods
where the correlations were significantly different from 0, suggest-
ing that there is indeed some correlated temporal structure that is
distributed across pairs of recording sites.

Therefore, in order to quantify this distributed temporal struc-
ture, CSD’s were calculated for each individual cross correlation.

Results of these CSD analyses were then averaged as a function
of spontaneous versus odor-driven epochs and are displayed in
Figure 4D. As shown in Figure 4D, the most striking difference
between spontaneous and odor-driven CSDs is that they produce
distributed temporal structure in nearly dichotomous frequency
ranges. That is, during spontaneous epochs of time, the bulk of
distributed periodic activity was in the range of ∼25–55 Hz. In
the presence of odor however, there was relatively more distrib-
uted power in the range of ∼55–85 Hz. After accounting for all
statistical main effects, ANOVA revealed distributed oscillatory
power was significantly dependent on the interaction between the
presence or absence of odor and frequency (p < 0.0001). Collec-
tively then, this pattern of results indicate that both spontaneous
and odor-driven activity produce weak but detectable distributed
oscillatory activity in different frequency ranges. Our expectation
was that the relationship between oscillations across recording
sites would be far greater than actually observed; nevertheless the
presence of distributed oscillations is consistent with the transient
oscillatory model. The next question is whether these weak but
distributed oscillations affect spike timing in a pattern consistent
with the model.

UNITARY SPIKING PHASE LOCKS TO LFPOS AS AN ONGOING, NOT
ODOR-DRIVEN PROCESS
The odor-driven increase in the amplitude and frequency of
weakly but distributed oscillatory activity across the AL could
provide enhanced synchrony of distributed spiking behavior from
populations of AL neurons as predicted by the transient oscillatory
model (Laurent and Davidowitz, 1994; Laurent et al., 1996a,b).
This would require that phase locking of spikes to the oscillations
occurs during odor-driven responses and this phase locking would
presumably be stronger than what is observed during sponta-
neous activity. To test this hypothesis, we calculated unitary vector
strength for the three peri-stimulus time epochs. These calcula-
tions were made for each unit across all stimulations of all odors.
Thus for each moth, individual unitary vector strength calcula-
tions were based on 180 ms × 300 ms (or 54 s) samples for each
of the three peri-stimulus time epochs. Furthermore, given that
two relatively distinct frequency domains were observed for dis-
tributed oscillatory activity during spontaneous and odor-driven
epochs (see Figure 4D), vector strength calculations were made
based on both the low (25–55 Hz) and high (55–85 Hz) LFP band
pass filter implementations. Finally, only vector strength values
that were calculated based on 60 or more spikes were included in
the analysis (376,518 spikes, or 87% of the 433,667 spikes sam-
pled). This criterion was used because vector strength describes
the variation in a distribution of spikes relative to the phase of
a 360˚ oscillation cycle. Hence, with low spike counts, the vector
strength measure is less reliable, particularly in cases where there
are spikes that are outliers. To analyze variation in vector strength,
we implemented a mixed General Linear Model in SAS using the
GLM procedure to model data from five moths (90 neurons) for
which we had comprehensive datasets (including both before and
during GABAA receptor blockade via BMI application; BMI results
described below).

The overall model was significant, explaining 49% of the vari-
ance in unitary vector strength scores (p < 0.0001). This analysis
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found that the main effects of odor identity (of the nine odors
used), the peri-stimulus time epoch (−300 to 0; 50–350; and 350–
650 ms, relative to onset of odor stimulation), and drug treatment
(before versus during BMI application) all significantly influenced
vector strength values (p < 0.0001). However, the LFP frequency
range used to calculate the vector strength values (25–55 or 55–
85 Hz) was not significant (p = 0.7274) indicating that vector
strength values were approximately the same for both frequency
domains.

Of particular importance is the significant main effect of peri-
stimulus epoch, which compared vector strength as a function of
the three different epochs of peri-stimulus time. Post hoc analy-
sis of this effect (Figure 5A) indicates that, independent of the
band pass filter implementation, spontaneous activity prior to
odor stimulation (−300 to 0 ms relative to odor onset) pro-
duced the greatest overall vector strength values. Interestingly,

from 50 to 350 ms, the peri-stimulus epoch typically associated
with odor dependent spiking patterns (Stopfer et al., 2003; Daly
et al., 2004b; Staudacher et al., 2009), produced about half the
vector strength, indicating relatively weak phase locking during
odor-driven responses. Even during the late response epoch (350–
650 ms), while there was a significant increase in vector strength
relative to the early response epoch (p < 0.01), it was still sig-
nificantly lower than vector strength during spontaneous activity
(p < 0.01). In order to better understand this “response epoch”
effect at the single unit level, phase lag histograms are displayed
for all 26 units from a single recording and in response to 20 pre-
sentations of 1-decanol, (Figure 5B). Results are displayed for the
same three peri-stimulus epochs. Here we show that ongoing (i.e.,
spontaneous) spiking tends to occur, in this recording,on the rising
phase of the oscillation cycle. In this exemplar case, all units show
a decrease in their phase relationship to the oscillation during the

FIGURE 5 | Unitary spiking phase locks to LFPOs as an ongoing

not odor-driven process (A). Mean unitary vector strength as a
function of the three stimulus epochs for the five moths used in this
analysis. Results are broken down by LFP band pass filter range.
However, note that there are no significant differences within any
peri-stimulus response epoch between the 25–55 Hz (light gray) and
55–85 Hz (dark gray) band pass filter implementations. Inset are the results of
statistical post hoc comparison mean vector strength values (averaged across
filter implementation) across the different peri-stimulus time epochs; means
with significant differences are indicated with an asterisk. Errors bars
represent SE. (B) Phase lag histograms for all 26 recorded units from a single
recording. Results based on one of the four LFPs recording sites, and in

response to the 20 presentations of 1-decanol. Results are broken down by
spontaneous (300 ms just prior to odor onset), early response (50–350 ms),
and late response (350–650 ms). Note that several units (but not all, for
example see the light green histogram) show a tendency to spike on the
rising phase of the oscillation cycle (between 0 and 1.57 radians; see also
inset red wave) during spontaneous activity. During odor-driven responses
only one unit retains a strong (increased) phase relationship to the oscillation
while the bulk of the units lose their phase relationships. (C) Population-level
vector strength as a function of the three stimulus epochs. Results are for the
25 to 55-Hz band pass filter implementation and each panel represents a
different animal. (D) The same as (C) except using LFP data that was
55–85 Hz band pass filtered.
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early phase of the odor-driven response except one (Figure 5B, 50–
350 ms; unit 7, light blue histogram), which increased and shifted
phase essentially to the peak of the oscillation cycle. Finally, dur-
ing the late phase of the response, units appear to come back into
a similar phase alignment as was observed during spontaneous
activity.

In summary, of those units meeting the 60 spike minimum
criterion for both spontaneous and early response epoch (N = 65
units), odor stimulation resulted in 68% of those units producing
a 0.09 ± 0.08 (mean ± SD) reduction in vector strength relative
to spontaneous activity, while only 32% produced a 0.03 ± 0.04
(mean ± SD) increase. Furthermore, consistent with the finding
that vector strength recovers during the late response epoch, we
found that 71% of units produced a 0.07 ± 0.05 (mean ± SD;
N = 68 units) increase in vector strength scores from the early to
late response epoch, while only 29% of cells produced a 0.06 ± 0.08
(mean ± SD; N = 68 units) decrease. Thus, more than two-thirds
of units show a relative decrease in vector strength during the early
response epoch and recover during the late response epoch.

Unitary vector strength measures represent the best possible
scenario for highlighting the relationship between LFPO’s and
spike timing of individual units because it is tolerant of dif-
ferences in preferred phase angles between units. However, the
transient oscillatory model predicts that not only do spikes phase
lock to oscillations during an odor-driven response, but that phase
locking of the responding assembly of output cells results in an
increase of synchronized spiking of the population on an oscil-
latory timescale. In order to understand how oscillations might
synchronize a population of parallel recorded neural units, the
same vector strength analysis can be applied to a population
vector, which is the summed spiking behavior of the recorded
population. This population vector strength approach is sensitive
to differences in preferred phase angles between units. Thus, as
the variation in preferred phase angle among individual neurons
in the population increases, the population-level measure of vector
strength (and hence synchrony among individuals) will decrease.
Figures 5C,D display population-level vector strength and pre-
ferred phase angle across all recorded units for the five recordings
used in the statistical analysis. We again used the same 60 spike
minimum for inclusion into the population vector. Each panel in
Figures 5C,D displays the vector strength for the same three peri-
stimulus response epochs for a single moth; results are collapsed
across all presentations of all odors. Figure 5C displays results
based on the 25–55 Hz band pass filter implementation, whereas
Figure 5D is based on the 55–85 Hz filter. As statistically veri-
fied in Figure 4A and visualized in Figure 5B, the most striking
result observed in Figure 5C is that, on average, vector strength is
consistently greatest during spontaneous activity and consistently
weakest during odor-driven responses; this pattern of results is
consistent across all recordings and across both filtering ranges,
with only one exception; in this case, vector strength values were
roughly equal (see Figure 5D5). Also consistent with Figures 5A,B,
vector strength values during the late response epoch were,on aver-
age, lower than the spontaneous epoch but greater than the early
response epoch.

Given that CSD analysis indicated that distributed oscillatory
activity was in a higher frequency range during odor responses

(Figure 5D), we might have expected to observe greater vector
strength values during odor-driven responses in the higher fre-
quency domain. However, as shown in Figures 5A,D, the relative
disparity between spontaneous and odor-driven phase locking was
not statistically different as a function of the filter implementa-
tion and we found no examples where odor-driven phase locking
was, on average, stronger than spontaneous phase locking. Thus,
whether considering phase locking at the unitary or population-
level, or at low versus high frequency ranges, the results shown
here are in contrast to what the transient oscillatory model pre-
dicts; namely that phase locking should be (relatively speaking) an
odor-driven phenomenon.

Finally, comparison of mean unitary vector strength values
(Figure 5A) with mean population-level vector strength values
(Figures 5C,D) provides an indicator of how well synchronized
the population is on an oscillatory time scale. Specifically the mean
unitary vector strength should be generally higher than those cal-
culated based on a population vector simply because variability
in preferred phase angle is ignored when averaging unitary vector
strength. Recall that vector strength is defined as the reciprocal
of the circular variance of the distribution of phases of sampled
spikes to the LFP; the preferred phase angle is simply the mean
of a given distribution of spikes. Thus as the variability in spike
phases increases, vector strength decreases. Given a set of individ-
ual units with different preferred phase angles, when treated as a
population, those different preferred phase angles (i.e., different
means) will add variance to the population-level distribution of
spike phases, resulting in lower population-level vector strength.
The ratio of the mean population vector strength to mean unitary
vector strength indicates the relative ability of all of the neurons
to spike in the same phase (sic. synchronously). Based on the 25
to 55-Hz LFPs, the population: unit vector strength ratio of the
three response epochs was 0.63, 0.33, 0.48 for spontaneous, early,
and late response epochs respectively. These results indicate that
the preferred phase angles during spontaneous activity are more
consistent (i.e., producing more synchronous spiking) than the
response epochs within this LFP frequency range. For the 55 to
85-Hz LFPs, the ratios were 0.40, 0.61, and 0.61 for spontaneous,
early, and late response epochs respectively suggesting that units
were relatively less phase aligned spontaneously in this frequency
range. This pattern of results suggests that synchronous spiking
from the population is more likely in the higher frequency range.
In all cases, however, there is variation in individual units’preferred
phase relationships to the oscillations, which results in lower net-
work synchronization. Furthermore, even within the higher LFPO
frequency domain, vector strength values during the odor-driven
response are still quite small.

THE PHASE RELATIONSHIP BETWEEN SPIKING AND OSCILLATIONS IS
SMALL BUT SIGNIFICANT
Relative to vector strength values commonly described in vari-
ous regions of the vertebrates brain such as the auditory system
(e.g., Goldberg and Brown, 1969; Moushegian et al., 1975; Kadner
and Berrebi, 2008), the average vector strength values observed
in the present study as well as those from other insect studies
(Ito et al., 2009) are relatively small. However, we can determine
whether these values are above what is expected by chance, by
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randomly jittering the spike timing within a restricted time range
and recalculating vector strength. If the phase relation between
spikes and the LFP are above what is expected by chance, then ran-
domly jittering spike times will negatively impact vector strength
values while maintaining much of the internal statistics of the
dataset. First, to visualize this point, we randomly jittered all of
the spikes from an individual spike train from a single record-
ing (N = 44,758 across a 166-min recording session) by 0, ±3,
or ±6 ms and cross correlated the spike train to one of the cor-
responding LFP recording sites (Figure 6A). Data includes both
spontaneous and odor-driven activity. Note that in contrast to
the cross correlations between LFPs (see Figure 4), this unit–LFP
cross correlation shows clear temporal structure. Furthermore,
random jittering of spikes by ±3 ms reduced and by ±6 ms elim-
inated this cross correlation. Next, using a bootstrapping method
where spike trains were randomly re-jittered and vector strength

FIGURE 6 |The phase relationship between spiking and oscillations is

significant. (A) The cross-correlation of a single unit to a parallel recorded
LFPO normally (in red), after spikes were randomly jittered by a width of
±3ms (blue) and after spikes were jittered by a width of ±6 ms (black). (B)

Vector strength for the three epochs and their recalculation after jittering.
Jittering width started at ±1 ms and was increased in 1 ms steps. Inset
asterisks indicate significant differences in vector strength to neighboring
jittering ranges (one-way paired t -tests; p < 0.01). Note that the resulting
strength of the unit–LFP relationship is clearly dependent by the degree of
jittering indicating that these correlations, though small, are dependent on
precise spike timing with respect to the periodic nature of the local field.

recalculated, vector strength decay can be quantified as a function
of the time range of the random jittering. In this case we used all
units from a single recording and only spikes occurring within our
three 300 ms peri-stimulus epochs (N = 19 units, 10,762 spikes).
The initial data were re-jittered 30 times for each jitter width and
vector strength was recalculated. Results of this analysis were then
statistically analyzed using one-tailed paired t -tests. Figure 6B
plots the mean vector strength by jitter width for each of the three
peri-stimulus epochs and clearly indicate that the distributions of
spikes tend to occur at a particular phase of the oscillation cycle.
One-way t -test comparison of mean vector strength (significant
results inset as asterisks) indicates a significant drop in strength as
a function of increasing the jitter width by as little as ±1 ms up to
the point at which the vector strength values approach 0 (±5 ms;
p < 0.001; Figure 6B); this was true independent of the stimulus
epoch used in the analysis. These results establish that while phase
locking is weak relative to other sensory systems, it is nevertheless
greater than what is expected based on chance.

BICUCULLINE SIGNIFICANTLY REDUCES ODOR-DRIVEN FM
OSCILLATORY RESPONSES AND DECREASES THE LATENCY OF SPIKING
RESPONSES
Previous intracellular investigations on the effects of GABAA

receptor blockade establish that BMI injection into Manduca ALs
specifically and reversibly blocks a GABAA-dependent inward Cl−
conductance in PNs (Christensen et al., 1998). This conductance
normally results in a brief IPSP (44 ± 31 ms; Staudacher et al.,
2009) and suppression of spontaneous PN spiking followed by a
relatively prolonged supra-threshold EPSP, upon which an exci-
tatory burst of spikes is superimposed. Thus, we first sought to
establish if an additional function of GABAA receptors in the AL
is to mediate the network’s ability to maintain distributed oscilla-
tory activity across the AL using the same methods as above. This
analysis was performed using a within-animal design so that the
results could be directly compared with those obtained prior to
GABAA receptor disruption.

First, application of BMI disrupted and in many cases com-
pletely eliminated the odor-driven FM LFPOs. Figure 7A presents
four typical TFRs from four different moths before and during
BMI application. In all four cases, application of BMI caused
a qualitative decrease in oscillatory power relative to pre-BMI
measures. This decrease ranged from near complete (Figure 7A
panels 1 and 2) to partial (panels 3 and 4). Note too that in
Figure 7A2i the spontaneous 20–50 Hz activity, which terminates
with odor stimulation, was also greatly reduced as compared to
Figure 7A2ii. This suggests that both ongoing and odor-driven
oscillations were decreased. In order to statistically verify the loss
of the FM responses, we modeled z-score normalized oscilla-
tory power as a function of the main effects of individual dif-
ferences between moths, the recording site the frequency step
and the pharmacological treatment and their interactions using
ANOVA. Results were based on five recordings for which we had
comprehensive datasets for both pre and during BMI treatment.
Results of the ANOVA indicate a significant drop in power from
0.32 ± 0.98 to −0.37 ± 0.81 (mean ± SD) as a result of BMI appli-
cation (p < 0.001). Importantly the interaction of frequency by
treatment was also significant. Post hoc analysis of oscillatory
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power as a function of the frequency by treatment interaction
was performed using one-tailed paired t -tests comparing power
at each of 84 frequency steps a p-value of 0.0005 was used to reduce
experiment-wise type 1 error rate (0.05/84). Results of this analy-
sis (inset in Figure 7B indicated that oscillatory power at nearly
every frequency step from 25 to 100 Hz was significantly reduced
during BMI application.

The corresponding spiking responses were also impacted by
BMI application. Figure 7C represents the mean peri-stimulus
response to all presentations of all odors across all five moths used
in this analysis. Note that as the oscillatory activity is decreased
during BMI application (Figures 7A,B), there is a correspond-
ing ∼60 ms decrease in the mean onset latency of the spiking
population response (inset black arrow). There is also an increase
in spike rate (inset gray arrow) and overall duration of the spiking
response. This pattern of results is consistent with the previous

findings of Christensen et al. (1998). That is, by disrupting the
inward Cl− conductance specifically, I1 inhibition is presumably
lost and hence, PNs respond earlier, stronger, and longer.

GABAA RECEPTOR BLOCKADE INCREASES ODOR-DRIVEN DISTRIBUTED
ACTIVITY BUT CHANGES FREQUENCY CONTENT
A paired one-tailed t -test revealed that across all five moths and the
six possible LFP–LFP cross correlations within each,GABAA recep-
tor blockade did not significantly affect the mean peak LFP–LFP
cross-correlation during spontaneous activity (p = 0.28) but did
significantly increased the peak correlation for odor-driven epochs
(p < 0.01; Figure 8A). Persistent cross correlations across record-
ing sites during GABAA receptor blockade suggests that distributed
activity is not entirely GABAA-dependent. Comparison of the pre
versus during BMI cross correlations shown in Figure 8Aii suggests
that odor-driven distributed frequency content has been affected.

FIGURE 7 | Bicuculline significantly reduces odor-driven FM

oscillatory responses (A). TFR analyses from four separate
experiments (columns 1–4) in response to odor prior to
(i) versus during BMI application (ii). All panels are the result of TFR
analyses that were calculated, normalized, and presented as described in
Figure 1. Inset in the upper right corner of each panel (i) are the odorants
used to generate both (i) and (ii). (B) Mean z -score normalized oscillatory
power by frequency for pre versus during bicuculline (BMI) application. Inset
in gray shading are the standard errors for each frequency step. We also
performed a post hoc one-tailed paired t -test. Significance level was set at

0.0005 to maintain an overall post hoc type 1 error rate of 0.05. Inset black
bars above X -axis represent ranges of frequencies where power was
significantly decreased as a function of BMI application; breaks in the bar
indicate frequencies that were not statistically different. Overall only 16 of 84
tests were not significant. (C) Mean peri-stimulus population response
histogram averaged over all responses to all odors for the five moths used in
this series of analyses (gray shaded area around each trace represents SEM).
Gray box indicates Stimulus duration. Inset arrows highlight the decrease in
response onset latency (black) and increased spike rate during the
response (gray).
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FIGURE 8 | GABAA receptor blockade increases odor-driven distributed

activity and broadens its periodic structure (A). The mean cross
correlation prior to BMI application (red) and during BMI application. Results
displayed for spontaneous (i) and odor-driven (ii) epochs. Results based on
all possible pair wise comparisons across the four LFP recording sites. (B)

Mean cross spectral density prior to BMI application (red) and during BMI
application. Results displayed for spontaneous (i) and odor-driven (ii)

epochs and based on the data represented in (A).

To address this question statistical comparison of CSD measures
was performed using ANOVA. Figure 8B displays the mean CSD
for spontaneous and odor-driven activity for pre versus during
BMI application. ANOVA revealed that there was no significant
change in mean CSD during spontaneous activity (p > 0.01) indi-
cating that the relative power of distributed oscillations remained
largely unchanged during this epoch. However, there was a sig-
nificant shift in distributed frequency content during odor-driven
responses that resulted in an increase in lower frequency content
(between 40 and 55 Hz) while at the same time causing a rela-
tive reduction of higher frequency content (65–85 Hz; p < 0.01;
Figure 8B).

GABAA RECEPTOR BLOCKADE DECREASES PHASE RELATIONSHIPS
BETWEEN UNITARY SPIKING AND LOCAL FIELD POTENTIAL
OSCILLATIONS
Finally,we investigated whether BMI application affected the phase
relationship between unitary spiking and oscillatory activity. As
mentioned above, results of the GLM analysis of vector strength
indicated the BMI effect was significant (p < 0.01). Comparison
of mean vector strength indicated that BMI application reduced
mean vector strength (collapsed across all three peri-stimulus
epochs) by 11% (pre-BMI = 0.14; BMI = 0.12). We again found
that phase locking during spontaneous epochs was significantly
stronger than either early or late odor-driven response epochs
(Figure 9A). On a unit by unit basis BMI produced a notable
decrease in phase locking in both spontaneous and odor-driven

responses (Figure 9B). For purpose of comparison, Figure 9B
data are based on the same units and in response to the same odor
(1-decanol) as shown in Figure 5B. There was qualitative evidence
of a phase relationship remaining in some cells in Figure 9B. How-
ever, as compared to pre-BMI application (see Figure 5B) phase
locking has been greatly reduced during both spontaneous and
odor-driven activity. Nevertheless, as demonstrated in Figure 9A,
phase locking clearly remains across all recordings.

Figures 9C,D shows population-level vector strength as a
function of peri-stimulus epoch for both the low (Figure 9C)
and high (Figure 9D) band pass filter settings; these data too
are from the same animals and hence directly comparable to
Figures 5C,D. Here again, phase locking during spontaneous
activity was consistently greater than either of the response epochs
with only one exception (see Figure 9D4). These results suggest
that while phase locking is significantly reduced, what remains is
still greatest during spontaneous rather than odor-driven activity.

DISCUSSION
Currently there is a long standing debate about the role of temporal
processing in odor identity encoding, at the level of primary olfac-
tory networks. One hypothesis, the transient oscillatory synchrony
model, posits that odor stimulation drives LFPOs, which in turn
drives precise spike time synchronization of projection neurons
from across the AL (i.e., in a distributed manner), thereby binding
this distributed output at the level of MB input. These synchro-
nized spikes are the proposed information carriers for subsequent
odor identification by the MB. The MB in turn is structurally
and functionally organized to receive and interpret synchronous
input from the AL on an oscillatory timescale (for review see Lau-
rent, 2002). This is an exciting model because it provides several
predictions, some of which we have attempted to test.

The first major finding of the present study is that odor stim-
ulation drives oscillatory responses that are strongly frequency
modulated. Furthermore, this modulation occurs in a stimulus-
dependent manner. Among vertebrates, both spontaneous and
stimulus driven oscillations have been observed across several
brain regions (including the OB) and across a broad spectral range
of frequencies (for review see Buzsaki and Draguhn, 2004). In the
olfactory system of mammals, stimulus driven oscillations can be
observed in vivo from 15 to 35 Hz (beta band) to 40–90 Hz (gamma
band; Buonviso et al., 2003; Martin et al., 2004) and there is evi-
dence that spiking can phase lock to these oscillations during a
stimulus driven response (Kashiwadani et al., 1999). Odor-driven
oscillations have typically been described as a constant narrow
band (sic 20–30 Hz) in insects, such as the locust and honey bee
(e.g., Laurent and Davidowitz, 1994; Wehr and Laurent, 1996;
Stopfer et al., 1997). Hence, according to the transient oscilla-
tory model these oscillations should be of a reasonably constant
frequency that should be independent of the odorant presented
(Laurent et al.,1996a). However,we find that in the AL of Manduca,
as in vertebrates, oscillations occur across a far broader spectral
range, modulating across response time from as high as ∼100 Hz
down to as low as ∼20–30 Hz; this modulation takes no more than
∼400 ms to evolve given a 100-ms stimulus and does so in an odor-
specific manner. Odor-driven FM oscillations and their tendency
to occur in two distinct epochs within the AL, while until now
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FIGURE 9 | GABAA receptor blockade decreases phase

correlations between unitary spiking and local field

oscillations. (A) Mean vector strength as a function of the three stimulus
epochs during BMI application. Results are broken down by filter
implementation (25–55 Hz in light gray; 55–85 Hz in dark gray). The results of
statistical post hoc comparison between means are inset; means with
significant differences indicate by an asterisk. Errors bars represent standard
errors. (B) Phase lag histograms for 26 individual units from a single recording

during spontaneous and the two odor-driven response epochs during BMI
application. For comparative purposes, these histograms were generated
from the same moth and in response to the same odorants as shown in
Figure 5B. (C) Population-level measures of vector strength as a function of
the three stimulus epochs for the five moths used in this analysis. Results are
for the 25 to 55-Hz band pass filter implementation and each panel represents
a different animal. (D) The same as (C). except using the 55 to 85-Hz band
pass filter.

unreported in the insect literature, is strikingly similar to what has
been observed in mammalian OB (Buonviso et al., 2003).

It has recently been shown that prolonged odor stimulation (ca.
500–4000 ms) drives FM oscillations ranging from 50 Hz down to
10 Hz in the MBs of Manduca (Ito et al., 2009). We find that FM
LFPOs recorded in the AL occur across a broader spectral range,
do not require prolonged stimulation and are furthermore clearly
odor dependent. The two studies taken together suggest that the
highest frequency content does not pass from AL to MB. Indeed,
much of the higher frequency content that occurs during the early
phase of the AL response (100–80 Hz at ∼60–110 ms post stimulus
onset) occurs prior to initiation of PN spiking responses, which
typically start no earlier than ∼110–120 ms after the odor valve is
actuated (Daly et al., 2004b; Staudacher et al., 2009). Thus, at least
some of the higher frequency content observed in the AL, because
it occurs while PN output is suppressed, cannot be transmitted to
the MB.

In insects, it has been proposed that the downstream receivers of
AL output, the Kenyon cells of the MB, are normally under strong

inhibitory control by inputs projecting from the lateral horn. Lat-
eral horn cells, like the Kenyon cells of the MB calyx, receive direct
excitatory input from the AL. It has been furthermore proposed
that this circuitous pathway establishes an integration window
that is opened for synchronous excitatory input from the AL then
abruptly closed by inhibitory input from the lateral horn (Perez-
Orive et al., 2002). This integrate-and-reset window occurs within
the periodic timescale initially established by odor-driven AL oscil-
lations. From a theoretical perspective, given that neurons have
fixed conduction velocities, cable lengths, and synaptic delays, the
circuit function proposed by Perez-Orive et al. (2002) will have a
biophysically constrained integration window. As a result, such an
integrate-and-reset circuit will have limited tolerance for the FM
oscillations that we have observed (for review see Laurent, 2002).
It remains to be determined if and how subsequent decoding in
the MB could occur under the constraints of a static integration
window.

A second finding of this study is that odor-driven FM oscil-
latory responses are largely restricted to a subset (less than 2 on
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average) of the four LFP recording sites and hence appears in most
cases to be regionalized. Furthermore, cross correlation analysis
also indicates that there is only a very small amount of activity
that is both distributed across pairs of recording sites and tem-
porally structured (i.e., oscillatory). This distributed oscillatory
activity is state dependent; that is, spontaneous distributed activ-
ity is dominated by oscillatory activity in the 25 to 55-Hz range,
whereas distributed odor-driven oscillations are in the 55 to 85-Hz
range; this pattern of results of relatively higher frequency oscil-
latory content during odor-driven responses is consistent with
prior findings in honeybee (Ritz et al., 2001). While the precise
degree of this regionalization of responses remains an important
area for further research, it is at odds with the transient oscillatory
model.

One question that arises from these results is whether the rela-
tively small amount of distributed oscillatory activity is sufficient
to correlate with or otherwise influence spiking behavior in PNs
in a manner that increases the amount of synchrony across AL
PNs, as required by the transient oscillatory model. Our results
demonstrate that spike timing is indeed biased to occur in a pre-
ferred phase relationship to the oscillation, though this bias was
clearly state and cell (and recording) specific (see Figures 5 and
6). Contrary to the expectations of the transient oscillatory model,
however, we observed that during an odor-driven response, as a
population, this phase locking was largely lost. This occurred in
part because unitary vector strength values dropped significantly
during the odor response, which means that even at the level of
individual cells, odor stimulation decoupled cells from the influ-
ence of LFPOs. Additionally, preferred phase angles of individual
units became more variable and hence more evenly distributed
across all phases of the oscillation cycle; this lowered population-
level measures of phase locking. Thus, odor-driven oscillations
per se had little effect on synchronizing the spikes across individ-
ual units of the recorded population. It is worth highlighting that
strong phase locking has been typically observed in response to
longer stimulations than we presented here (Laurent and Naraghi,
1994; Laurent et al., 1996b; Stopfer et al., 1997; Kashiwadani et al.,
1999). While future work will explore the possibility that longer
and temporally structured stimuli have differing effects on odor-
driven phase locking, we note that 100 ms stimulations are entirely
consistent with expected encounter times in natural plumes that
the moth might encounter (Murlis and Jones, 1981) and are known
to respond to in behavioral studies (Willis and Baker, 1984).

The fact that phase locking is lost during odor-driven responses
in this model system should not be surprising. Indeed, it has long
been known that in response to odor stimulation, AL PNs in Man-
duca are briefly inhibited followed by a sustained supra-threshold
depolarization and spiking (for several examples see Christensen
et al., 1996; Christensen et al., 1998; Heinbockel et al., 1998, 1999;
Staudacher et al., 2009). This explains in part why odor responses
appear to be characterized by a loss of phase relationship between
our recorded units and LFPOs. This also likely explains why oth-
ers were not able to establish phase locking during odor-driven
responses in previous studies (Christensen et al., 2003). However,
this does not explain the prolonged loss of phase locking.

In the AL of Manduca, LNs and PNs are spontaneously active
under normal conditions; this has long been known (Matsumoto

and Hildebrand, 1981; Kanzaki et al., 1989). Because oscilla-
tions are presumably the result of reciprocal synaptic connectivity
within the network, it is expected that there is always some spon-
taneous oscillatory activity observable in the LFP, even though the
amplitude may be small, relative to what is observed during odor-
driven responses. Unexpectedly, we found that there is a tendency
for individual cells to spontaneously spike in phase with oscillation
cycles in the absence of odor stimulation.

It has been shown that even weak oscillatory signals in neural
circuits can in some cases enhance signal to noise ratios; this phe-
nomena is called stochastic resonance (Wiesenfeld and Moss, 1995;
Wilkens et al., 2002; Korn and Faure, 2003). It has also been shown
that weakly correlated noise in the olfactory circuit can enhance
spike time synchrony (Galán et al., 2006). Perhaps then, the most
intriguing finding in the current study is the significantly greater
spike to LFP phase locking observed during spontaneous activ-
ity, relative to odor-driven responses; this was true independent
of the frequency range of the oscillations under consideration.
Thus, if oscillations were acting as a synchronizing mechanism
in this model system, they are doing so during ongoing, spon-
taneous activity, and not during odor-driven responses. This is
in sharp contrast to predictions made by the transient oscillatory
model, which assumes that phase locking is a stimulus driven phe-
nomenon involved in odor identity encoding. It is worth noting
that we are unaware of any reported comparisons of spontaneous
versus odor-driven phase locking prior to the present study, thus
it is difficult to assess the generality of our findings. However,
“bouts” of spontaneous oscillatory activity have been observed in
both locust (Laurent and Naraghi, 1994) and honeybee (Ritz et al.,
2001) olfactory pathways that appear to be consistent with our
observations.

In response to odor stimulation, individual PNs recorded from
Manduca AL are briefly inhibited via an inward Cl− conductance,
then burst as the second epoch of oscillations emerge. Several
lines of evidence from both vertebrate and invertebrate mod-
els establish that spatially co-localized principal output neurons
tend to produce stimulus driven synchronous spike bursting pat-
terns (Schoppa and Westbrook, 2001, 2002; Lei et al., 2002; Daly
et al., 2004b; Hayar et al., 2005) in what has been described
as onset synchrony (Christensen et al., 2001; Lei et al., 2002).
Parallel recordings of neural ensembles as well as serial recon-
structions of AL output activity suggest that the onset of this
burst of activity is different for different glomeruli thereby pro-
ducing a brief sequence of onsets that are odor dependent and
optimize within ∼240 ms of odor onset (or ∼120 ms from the
onset of the excitatory response) in this model system (Daly
et al., 2004b; Staudacher et al., 2009); this is roughly consistent
with calcium-imaging studies in honeybee (Galán et al., 2004).
This time course for producing odor-specific activation patterns
also appears to be consistent with physiological evidence from
other model organisms (Muller et al., 2002; Lehmkuhle et al.,
2006; Spors et al., 2006; Namiki and Kanzaki, 2008; Namiki et al.,
2009) as well as behavioral evidence demonstrating odor identi-
fication/discrimination within the same approximate time frame
or faster (Laska et al., 1999; Uchida and Mainen, 2003; Budick
and Dickinson, 2006; Wesson et al., 2008a,b). Thus, it is reason-
able to conclude that the temporal window for odor identification
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is in the range of 240 ms from stimulus onset or about ∼120 ms
from initiation of the excitatory response within the AL (e.g., see
Figure 1).

Stopfer et al. (1997) demonstrated that oscillations are abol-
ished in the honeybee by application of the GABAA receptor
antagonist picrotoxin. Based on a stimulus generalization para-
digm they also suggest that GABAA receptor blockade disrupts fine
odor discrimination in this insect. These findings represent a cor-
nerstone of the transient oscillatory model because they identify
a specific functional role for oscillations. More recently, however,
the conclusion that GABAA receptor blockade affects discrimi-
nation only of closely related odors has been challenged by a
more comprehensive behavior-pharmacological study in Manduca
(Mwilaria et al., 2008). This study was based on pharmacological
data from 1680 moths and established that discrimination of pairs
of odors is generally disrupted independent of the relatedness of
the odor pairs. Furthermore, Mwilaria et al. (2008) showed that
GABAA receptor disruption increased detection thresholds. Based
on these finding it was proposed that the disruption of the abil-
ity to discriminate closely related odors was most likely due to
a general increase in detection thresholds, which increased task
difficulty. These findings have been subsequently supported by
physiological and wind tunnel experiments demonstrating that
GABAA receptor blockade in the macroglomerular complex of the
AL (the region of the male AL where the primary components
of female pheromones are processed), does not affect pheromone
detection at the level of spiking PNs but does reduce PN signal to
noise (Lei et al., 2009). These researchers furthermore showed that
reduction in signal to noise disrupts the ability of male moths to
successfully plume track. This is consistent with the interpretation
that at the level of sensory perception, loss of AL GABAA receptor
function results in a loss of ability to clearly perceive the presence
of (i.e., detect) an odor cue (Mwilaria et al., 2008). This too is in
stark contrast to the transient oscillatory model, which predicts
that the sole functional effect of GABAA receptor blockade is on
the ability to discriminate closely related odors.

In conclusion, it is perhaps not surprising that the transient
oscillatory model,which is based primarily on data from the locust,
does not fit well with data from model systems such as Manduca
given the differences in structural organization of the AL between
these two species. For example, locusts have a derived AL morphol-
ogy consisting of hundreds of small microglomeruli, in which both
olfactory receptor neurons and PNs are multi glomerular and LNs

are non-spiking (Anton and Homberg, 1999). In contrast, Mand-
uca, like most insects and mammals, have exclusively uniglomeru-
lar ORNs and predominantly uniglomerular PNs as well as several
LN morphologies, all of which produce action potentials. The dif-
ferences in structure between the locust and Manduca likely reflect
functional adaptations to distinct behavioral and chemical ecolo-
gies. Insects such as Manduca are more or less specialized upon a
single food source as adults (i.e., floral nectars), and heavily depen-
dent upon olfactory cues for locating these food sources from a
distance (Bernays, 2001). For these insects there is a need to detect
and rapidly discriminate among many faint and brief odor cues
in the environment in order to locate a particular food source via
odor plume tracking behavior. In contrast, orthopteran insects
including locusts are extreme dietary generalists, consuming a
wide variety of food sources consisting of both living and dead
plant and animal material (Gangwere, 1961). Individual food pref-
erences appear to be based upon a mixture of variables including
local environmental conditions, the need to avoid predators (Des-
pland and Simpson, 2005), what types of food are available, food
quality, and nutrient need (Raubenheimer and Simpson, 2003).
Given this pattern of food acquisition, it is likely that these insects
are less dependent on identifying palatable food sources using spe-
cific olfactory cues, but may instead navigate to broad categories
of food odors such as green leaf volatiles (Ochieng and Hansson,
1999; Chen and Kang, 2000). Unfortunately, while recent studies
now support the notion that the locust can learn and discriminate
between a pair of broadly different odorants (Simoes et al., 2011)
there are no studies to date that integrate observations of fine
odor discrimination, food choice, and AL physiology in locusts so
it is not possible at present to speculate how this insect actually
detects and utilizes odors in a behavioral context. We can, how-
ever, posit that the locust, an insect with an unusual wide open
feeding ecology, in addition to possessing a unique AL anatomy
and physiology, is unlikely to process odorants in a manner typ-
ical of the majority of insects or of odorant-sensing animals in
general.
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APPENDIX
METHODS
Discriminant analysis of time-frequency response spectrograms
The aim of this analysis was to establish whether odor-driven fre-
quency modulation of the LFP oscillation was odor specific. There
are two main approaches to investigate this: by means of unsu-
pervised learning algorithms (e.g., k-means clustering analysis),
or by means of supervised learning algorithms (e.g., discriminant
analysis via support vector classifiers). In the unsupervised learn-
ing approach, all samples (in our case TFRs) are represented as
points in a multidimensional space and groups of points that are
closer among themselves than among others are classified together.
One thus expects that all points from the same cluster belong to
the same odor. In practice, however, this is seldom the case. The
clouds of points from the same odor may not have radial symme-
try and even worse, they may partially overlap with the “clouds”
of other odors. Thus, the relative distance between points is not
a good criterion to classify odors, regardless of the definition of
distance (Euclidean, angular, etc.). The supervised classification
approach, which is an alternative to unsupervised clustering, has
been used previously to identify odor-specific patterns of neural
activity in the antennal lobe of the honeybee (Galán et al., 2004).
In this case, a multidimensional representation is also used but the
points are labeled, i.e., assigned to an odor. Then, an optimiza-
tion algorithm, the support vector classifier, (Boser et al., 1992)
attempts to find a hyperplane (a plane in more than three dimen-
sions) or another high-dimensional manifold that separates the
points belonging to the same class (odor) from the rest. If success-
ful, the manifold can be used as a classifier to identify that odor:
on one side lie the points of the same odor; on the other side lie
the rest. The same procedure can be repeated for each odor to
compute odor-specific classifiers. Support vector classifiers have
the advantage over clustering methods of tolerating some over-
lap (soft margin) between clouds of points from different stimuli.
However, when the clouds overlap the mere existence of a sep-
arating manifold is not very informative, since both groups are
not 100% separable. In such cases, the Classification Performance
Index (CPI) provides a better parameter to quantify odor-specific
TFR patterns; CPI is computed using the leave-one-out method
(Boser et al., 1992; Galán et al., 2004): First, the separating man-
ifold is computed after removing one point from the data set.
Then, one tests if the point that was left out is correctly clas-
sified. These three steps (removal of a point, calculation of the
discriminator, and classification of the point removed) are then
iterated for all points of a given stimulus. The fraction of points
that are correctly classified for each stimulus is the CPI. A high
CPI means that the separating manifold is fairly insensitive to the
removal of any given point, and hence robust to perturbations
of the data set. A high CPI implies that the high-dimensional
space in which the points are represented is divided into stimu-
lus specific regions, despite some overlap between the clouds of
points.

Dimensionality reduction
As a preprocessing step for TFRs discriminate analysis, we cropped
out a reduced frequency–time window, which contained the vast
bulk of the FM response across all TFRs (from 12 to 124 Hz and

from −30 to 1000 ms); this resulted in a reduced data matrix of
118,800 pixels per TFR/response. For each response to each odor,
we then defined a region of interest (ROI), consisting of all pix-
els that are above the 99th percentile of power density. All these
ROI (9 odors × 20 repeats = 180 ROI) where overlaid to create a
mask whose pixel values were “1” if that pixel was significantly
activated by any odor in any trial and “0” if not. For the discrim-
inant analysis with support vector classifiers, we only considered
the pixels of the TFRs whose values in the mask were“1.”Each TFR
is thus represented as a vector 24,969 components (pixels) instead
of 118,800 for the cropped TFR, thereby leading to a substantial
dimensionality reduction of roughly 80%.

Kernels for the support vector classifier
The vectors representing the TFRs are fed into the algorithm of
the support vector classifier. The output of the algorithms returns
a set of n “support vectors,” �si , weights ai, and bias b that are used
to classify a given vector �x according to the following equation:

c =
n∑

i =1

aiK (�si , �x) + b, (A1)

where K is a kernel function. In the case of a linear kernel, it is the
dot product: K (�si , �x) = �si · �x and the Eq. A1 defines a plane in the
high-dimensional space. If c ≥ 0, then �x is classified as a member
of group 1 (e.g., odor Y), otherwise it is classified as a member
group 2 (e.g., any other odor different from Y). In this paper, we
also use a non-linear kernel, specifically, a third order polynomial
given by:

K (�si , �x) = (�si · �x + 1)3 .

This allows us to separate odors with a curvy manifold and the
region assigned to a given odor may be composed of disjoint sub-
regions. Using this kernel, we can discriminate TRFs from each
odor group with 100% CPI.

Calculation of the confidence interval for the classification
performance index
The null hypothesis to compute the confidence interval is that the
two groups are completely intermingled and cannot be discrimi-
nated so that the probability that any point falls in one side of the
classifier is p = 50%. In our case, the two groups correspond to the
N = 20 trials of the same odor (first group) and the rest of points
from all other odors (second group). Thus the probability that M
out of the N points fall into the same side of the classifier is given
by a binomial distribution whose mean and variance are N × P
and N × P × (1-P), respectively. The binomial distribution itself
is discrete. However, it can be smoothened by interpolation so that
its cumulative distribution is also smooth, not staggered, and the
percentiles can be calculated at any level. For example, the 95th
percentile corresponds to the ratio M /N = 66.25%. This means
that if the CPI is above 66.25%, we can reject the null hypothesis
with 95% confidence and for each CPI value above this level the
p-value is smaller than 0.05. In the CPI plots, the red line indicates
this significance level.
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FIGURE A1 | Averaged time frequency response (TFR) spectrogram from

6 of 10 total recordings. Displayed in each panel are the averaged results of
20 independent analyses for each of the 20 presentations for various odors
(inset; K = ketone, A = alcohol; number = carbon chain length). Also inset are
white bars indicating stimulus duration (100 ms). Vertical white line indicates

odor onset. Horizontal white line is an 80-Hz frequency reference. Note the
ongoing oscillatory activity present centered around 30–50 Hz that occurs
between 600 ms until just after stimulus onset. Upon stimulus onset this
activity abruptly terminates. Note too that the weakest examples are moths
three and six.

FIGURE A2 | Replication of Figure 2 using data from a different moth to

highlight that FM modulation is odor dependent. (A) Each panel
represents the averaged result of 20 individual TFR analyses that were
calculated, normalized and presented as described in Figure 1. Note that
alcohols and ketones of common length are aligned into columns. (B) Results
of the discriminant analysis for the data shown in (A). Blue Bars represent

classification performance for the linear kernel function, whereas green bars
represent performance of the third order polynomial kernel function. Inset red
line represents the 95% confidence interval. Note that the linear kernel
function classified responses of two of the nine odorants significantly above
chance, whereas the polynomial function accurately classified all odor
responses with 100% accuracy.
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FIGURE A3 | Expanded view of the mean cross correlations for

spontaneous versus odor-driven periods. Results based on all possible
pair wise comparisons between the four LFP recording sites (six in total).
Odor-driven cross-correlation based on 1 s samples, starting at odor onset,
for each of 180 odor stimuli per moth (N = 7 moths). Spontaneous cross
correlation based on 180 1 s samples taken immediately prior to odor onset
for each odor stimulus. Note that cross correlations were calculated for
each stimulus and results were averaged across seven moths. Shaded
regions around the mean represent ±1 SD. Inset broken lines just above
the X -axis indicate where in time the cross correlation was significantly
different from 0. Significance threshold for these tests was set to 2.3 × 10−6

to maintain an overall alpha of 0.01. Each color coded line corresponds to
regions in time where the correlation was significantly different from zero
for spontaneous (mauve) and odor-driven (green) cross correlations.
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