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Synchronization is one of the central phenomena involved in information processing in

living systems. It is known that the nervous system requires the coordinated activity of

both local and distant neural populations. Such an interplay allows to merge different

information modalities in a whole processing supporting high-level mental skills as

understanding, memory, abstraction, etc. Though, the biological processes underlying

synchronization in the brain are not fully understood there have been reported a variety

of mechanisms supporting different types of synchronization both at theoretical and

experimental level. One of the more intriguing of these phenomena is the anticipating

synchronization, which has been recently reported in a pair of unidirectionally coupled

artificial neurons under simple conditions (Pyragiene and Pyragas, 2013), where the

slave neuron is able to anticipate in time the behavior of the master one. In this paper,

we explore the effect of spike anticipation over the information processing performed

by a neural network at functional and structural level. We show that the introduction of

intermediary neurons in the network enhances spike anticipation and analyse how these

variations in spike anticipation can significantly change the firing regime of the neural

network according to its functional and structural properties. In addition we show that

the interspike interval (ISI), one of the main features of the neural response associated

with the information coding, can be closely related to spike anticipation by each spike,

and how synaptic plasticity can be modulated through that relationship. This study has

been performed through numerical simulation of a coupled system of Hindmarsh–Rose

neurons.

Keywords: spike anticipation, information processing, neural networks, synchronization, chaotic dynamical

systems

1. INTRODUCTION

The nervous system in insects, animals, and humans has evolved to allow an accurate and versatile
information processing adapted to their particular environments. However, despite the diversity of
the cognitive abilities of living beings, the most evolved species share common neural mechanisms,
both at neural and network scales, supporting information processing and coding (Kandel et al.,
2000).
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The central paradigm of neural information coding at cellular
scale is the timing between consecutive action potentials or
spikes (Koch, 1999). This interspike interval or ISI is the key
to characterize the diverse activity regimes in real neurons and
so the variety of information processing in the nervous system
(Izhikevich, 2007), although subthreshold oscillations have also
been proposed as a mechanism for coding neural information
(Hänggi, 2002; Villacorta-Atienza and Panetsos, 2005).

These cellular mechanisms support information processing
at network scale, where different functional processes appear to
take advantage of the diversity and complexity of connective
structures, transmission phenomena (as excitation–inhibition
interplay or delay), etc. Among these processes synchronization
has raised as one of the central brain mechanisms involved in
high cognitive abilities (Varela et al., 2001). From a conceptual
point of view synchronization is the coordinated behavior
of several coupled dynamical systems, but this definition
is specially natural in the field of neuroscience since it is
known that the nervous system requires the coordinated
activity of both local and distant neural populations. Many
different types of synchronization have been described, both
in deterministic and chaotic systems (Pikovsky et al., 2003).
The most interesting and biologically-motivated classes of
synchronization concern diverse features of chaotic dynamics,
as complete synchronization (Pecora and Carroll, 1990),
generalized synchronization (where dynamical features of the
system are not equal but related by a functional dependence over
time; Rulkov et al., 1995), phase synchronization (Rosemblum
et al., 1996), and anticipating synchronization (Voss, 2000).
In this last type of synchronization a driven element in a
unidirectionally coupled chaotic system can synchronize its
behavior in advance to the activity of the driving element.

Recently a new anticipating synchronization has been
reported in unidirectionally coupled pair of oscillators (Pyragiene
and Pyragas, 2013). In this type of anticipation the response of
the slave (driven oscillator) precedes in time the behavior of the
master (driving oscillator); for instance in the case of coupled
neurons, the action potential, or spike, elicited by the slave
neuron will occur before the appearance of the corresponding
spike coming from the master neuron. The main finding of
this reporting is that this anticipation appears under a single
requirement: the mean frequency of the uncoupled slave must
be greater than the mean frequency of the master. This finding
improves previous results, where anticipating synchronization
were reported theoretical and experimentally in multiple models
and experimental setups but with important restrictions, as the
necessity of memory elements in the master element or time-
delay self-feedbacks in the slave oscillator (see Pyragiene and
Pyragas, 2013 and references therein).

In this paper, we explore the anticipating synchronization
introduced by Pyragiene and Pyragas, in the context of the
spiking dynamics of neural networks and its plasticity, as a
main functional mechanism of the network. We consider two
complementary approaches, developed by means of numerical
simulations. On the one hand, we study the impact of spike
anticipation over the activity of a neural network exhibiting
common features of complex theoretical and biological neural

networks as closed loops, relay neurons, excitatory and inhibitory
coupling, and convergent and divergent information pathways.
The neural network firing activity is a direct reflection of its
information processing, both from the basic information theory
(Shannon and Weaver, 1959) and the information processing
in the nervous system, which ranges from the simplest coding
of the stimulus intensity through the increase of the firing
frequency in the peripheral sensory neurons (Kandel et al., 2000)
to the complex dynamical and statistical relationships between
firing activity of different neural populations in high-level brain
areas (Koch, 1999; Benito et al., 2014). On the other hand, we
study the effects of spike anticipation over synaptic plasticity,
responsible for the reinforcement/debilitation of connections
among neurons, a critical aspect of information processing in the
nervous system.

The main objective of our work is to characterize qualitatively
the effects of spike anticipation over a variety of main dynamical
and functional aspects of the neural networks related with
their information processing. We remark the simplicity of
the conditions required to exhibit such effects and therefore,
their potential significance as a novel factor to be considered
together with other well-known processes critical in information
processing, as input excitatory/inhibitory balance, time-delay,
spiking regime of individual neurons, network topology, etc.

2. MATERIALS AND METHODS

Throughout this paper we will consider the Hindmarsh–Rose
neuron (HR, Hindmarsh and Rose, 1984) as a versatile neuronal
model capable of exhibiting numerous features and behaviors
typical of real neurons (Izhikevich, 2004). The unidirectional
coupling of HR neurons with the proper parameters ensures the
appearance of spike anticipation (Pyragiene and Pyragas, 2013),
so the backbone of this work will be a basic network composed
of amaster neuron coupled to a chain of n intermediary neurons,
whose last neuron is coupled to the slave neuron. This network is
mathematically described by the system:

Cmẋm = ym + x2m(b− axm)− zm + J0,

ẏm = c− dx2m − ym,

żm = r(s(xm − xst)− zm),
...
Ciẋi = yi + x2s (b− axi)− zi + J0 + ki(xi−1 − xi),

ẏi = c− dx2i − yi,
żi = r(s(xi − xst)− zi).
...
Csẋs = ys + x2s (b− axs)− zs + J0 + ks(xn − xs),
ẏs = c− dx2s − ys,
żs = r(s(xs − xst)− zs),

(1)

where the subscripts m and s will denote the master and slave
neurons and i = 1, ..., n is the index for the n intermediary
neurons (i = 0 denotes the master neuron). The parameters
with no these subscripts take the values of: a = 1, b = 3,
c = 1, d = 5, s = 4, r = 0.005, xst = −1.6, and J0 =

3.25. The membrane capacitances Cm, Ci, and Cs determine the
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oscillatory behavior of the neurons by modulating their time
scale, exhibiting silence, subthreshold oscillations or “spiking”
activity (when action potentials appear).

The spike anticipation will be quantified by the difference
between the time corresponding to a local maximum of a certain
master spike and the time corresponding to the local maximum
of the nearest slave spike. Thus, a positive spike anticipation will
denote a slave spike occurring previously to the driving master
spike. In order to exhibit synchronization by spike anticipation
the master, intermediary, and slave neurons must fulfill that
Cm > C1 > ... > Ci > ... > Cn > Cs, so each driven
neuron (in uncoupled conditions) will be slightly faster than
its corresponding driving neuron. In this study, we fixed these
parameters to Cm = 1 and Cs = 0.7, with {Ci}

n
i= 1 equispaced

in the interval (0.7, 1). Finally, the parameters {k}ni= 1 and ks, all
equal to 1.7, determine the coupling strength between the HR
neurons in the system.

The dynamics of the system described by Equation 1 was
simulated in Matlab (Matlab 2012a 64-bits, The Mathworks,
Inc.) by means of the standard solver implementing the adaptive
explicit Runge–Kutta method of degrees (4, 5). The initial
conditions were fixed to zero and the chaotic network dynamics
was considered after a transient time ttr = 300, taking a time
discretization of 0.01 units of time and during a time interval of
T, where usually T = 5 × 104. The results were obtained with a
precision given by tolerances in the adaptive algorithm of 10−10

but they are robust against higher tolerances up to 10−6.

3. RESULTS

The main point of this paper is to study spike anticipation as a
novel phenomenon that could be taken into account during the
study and characterization of information processing in neural
networks. In order to support this point we will describe and
characterize qualitatively the effects of spike anticipation over
main functional aspects of neural networks as their the spiking
dynamics and their plasticity.

3.1. Spike Anticipation in
Biologically-inspired Networks
As pointed previously, the basic network studied in this work
is mathematically described by Equation 1 and depicted in
Figure 1A. The master neuron displays a chaotic dynamics
structured in bursts (sequences of spikes separated by silent
intervals), shown in Figure 1B. The unidirectional coupling
of the neurons in the network forces the synchronization of
their dynamics, where spike anticipation appears according to
the number of intermediary neurons. Figure 1C illustrates this
anticipation by showing superimposed two synchronized spikes
of the master (blue curve) and the slave (red curve) neurons
when no intermediaries are present (n = 0); the inset shows the
synchronized state by correlating the master and slave interspike
intervals or ISI. On the other hand, the introduction of three
intermediary neurons (n = 3) enhances four-fold the spike
anticipation, as shown in Figure 1D, keeping the synchronization
of the system (inset).

Now we explore the effect of spike anticipation in a
neural network exhibiting diverse characteristics typical of both
biological and artificial neural networks, as the presence of
closed loops, excitatory and inhibitory synapses (responsible
for generating and modulating the network dynamics), relay
or intermediate neurons, convergent and divergent flux of
information, etc. This network is depicted in Figure 2A, where
master (blue) and slave (red) neurons are coupled to a third
neuron X (green), whose dynamics will depend on spike
anticipation through the master-slave synchronization. The
couplings strength of neuron X with master and slave neurons
are denoted by kMX and kSX , respectively, where we will consider
positive values for kMX , modeling the excitatory afferent to the
neuron X from the master, and negative values for kSX describing
the inhibitory input to X from the slave neuron.

In order to study the influence of spike anticipation over the
network dynamics we will pay attention to the behavior of the
neuron X. Figures 2C,D show the activity of the neuron X when
master and slave neurons are directly coupled (no intermediaries)
and when the network contains three intermediary neurons,
respectively. The difference in spike anticipation induced by a
different number of intermediary neurons (see Figures 1C,D)
leads to a significant change in the activity of the neuron X.
The quantitative analysis of this activity in both conditions is
shown in Figure 2E (n = 0) and Figure 2F (n = 3), where
the histograms of ISI for the neuron X activity (5 × 104 units
of time) reveal the appearance of spike bursts (increasing the
spiking frequency) and a decrease of the interburst time intervals
when spike anticipation increases, being these kinds of spiking
activity are main features of neural dynamical behavior observed
experimentally in the nervous system. (Steriade et al., 1991).

It is possible to analyse how the functional neural regime
can be affected by spike anticipation in a complementary way,
by taking advantage from the synchronization between master
and slave neurons. Let us consider again the scenario provided
by the previous neural network with n = 3, analysing the
activity of neuron X. In these conditions we consider the state as
“anticipation” since synchronization makes the spiking behavior
of master and slave neurons equivalent but with the later
advanced in time. In consequence we simulate a “no anticipation”
state in the same conditions by interchanging the values of the
couplings, which will be equivalent to introduce master and
slave’s signals in the neuron X with no anticipation, i.e., with the
slave signal following the evolution of the master one. The results
are shown in Figure 3, where Figures 3A,B depict the neuron X
activity in anticipation and no anticipation states, respectively,
and where Figures 3C,D summarize by ISI histograms. These
results reveal how spike anticipation can change dramatically the
spiking behavior from tonic spiking to phasic behavior, with the
appearance of periodic spike bursts.

A different functional regime for the neuron X appears with
three intermediary neurons and by changing the functional
parameters properly to elicit a qualitatively different behavior, as
illustrated in Figure 4. Such behavior is characterized by slow
bursts of fast spikes with decreasing amplitudes, resembling
real neural activity observed experimentally in different contexts
(Weyand et al., 2001; Viemari et al., 2013).
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FIGURE 1 | Anticipating spike synchronization in Hindmarsh–Rose neurons. (A) Basic neural network that will be used in the paper. The master (M) and slave

(S) neurons are connected through n intermediary neurons (ij with j = 1, ..., n). All of them are modeled as Hindmarsh–Rose neurons with a specific arrangement of

their oscillation frequencies (see Section Materials and Methods for details). (B) Chaotic dynamical state (bursting) of the neurons (blue for the master neuron activity).

(C) With no intermediaries, i.e., direct master-slave coupling, spike anticipation appears (blue line for master and red line for slave), keeping the phase synchronization

(inset). (D) When three intermediary neurons exist with a proper distribution of their firing frequencies (see text) spike anticipation is up to fourfold enhanced (measured

as the difference between the maxima of the closest master and slave action potentials).

3.2. Discrimination of Spikes by
Anticipation
We have analyzed how the introduction of a different
number of intermediary neurons enhances spike anticipation
(Figures 1C,D), however this network feature has a deeper
impact over the neural information processing since such
anticipation will be related to the type of spike that is anticipated.
In order to study this point we briefly come back to the
initial basic network in Figure 1A, and correlate the ISI of each
spike elicited during the activity of the slave neuron with its
corresponding spike anticipation.

The Figure 5 shows such correlation for n = 0, i.e., with
no intermediary neurons, (upper row) and for n = 3 (lower

row), by using different graphical representations. The 2D plot

in Figure 5A and the 3D histogram in Figure 5B (showing

how spikes are accumulated in each region) reveal that a

direct coupling between master and slave neurons provides
a similar anticipation for every spikes, regardless of their

ISIs. However, when master and slave neurons are coupled
through three intermediary neurons a complex relationship

appears, correlating different spike anticipations with different
ISIs as illustrated in Figures 5C,D. In order to interpret this

result we must keep in mind the spiking regime exhibited by

the slave neuron (Figure 1B; note that this is almost equal

to the master behavior since they are synchronized). This
neural activity is organized in bursts, containing spikes whose
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FIGURE 2 | Firing regimes of a biologically-inspired neural network under spike anticipation. (A) Neural network where the afferent information is introduced

in the master neuron and conveyed to the closed loop where the neuron X is driven by the excitatory (blue flat arrow end) and inhibitory (red dot arrow end) inputs from

master and slave neurons. (B) Detail of the closed loop, composed of n intermediary neurons. We denote the coupling between neuron X and master and slave by

kMX and kSX , respectively. (C,D) Chaotic dynamics of the neuron X under different spike anticipation, induced by introducing different intermediaries (n = 0 and n = 3,

respectively). (E,F) Statistical analysis of the neuron X activity by means of ISI histograms. Neuron X also follows the Hindmarsh–Rose model described in the Section

Materials and Methods adopting the same values for the majority of the common parameters, and with J0X = 1.3, CX = 1, kMX = 3 and kSX = −3. T = 5× 104.

intra-burst ISIs adapt with time, i.e., in the same burst “fast”
(low ISI) and “slow” (higher ISI) spikes coexist. When the basic
network contains three intermediary neurons it can be seen
that: (1) the lowest spike anticipations ([0.05, 0.18]) correspond
to the slowest intra-burst spikes, which signalize the end of
the burst, (2) significant higher anticipations appear for faster
intra-burst spikes, with a clear difference between the fastest
spikes (anticipations in [0.67, 0.75]) and the remaining ones
(anticipations in [0.49, 0.57]), and (3) medium anticipations
([0.4, 0.48]) correspond to the inter-burst ISIs (highest ISIs),
i.e., to those spikes signalizing the beginning of the burst. In
consequence these results indicate that specific parts of the
neural code conveying different neural information can be
discriminated by using their corresponding spike anticipation,
suggesting the potential impact of this phenomenon over neural
information processing.

3.3. Synaptic Plasticity Under Spike
Anticipation
We illustrate the relation between spike frequency and
anticipation by focusing on synaptic plasticity, a critical factor
of the network information processing. Let us consider a
type of synaptic plasticity based on the reinforcement of

the causal relationships between afferent information. This
mechanism plasticity tunes the coupling strength between
neurons depending on the relative timing or coincidence degree
between presynaptic and postsynaptic spikes (Markram et al.,
1997, 2012). More in detail, if a presynaptic spike precedes a
postsynaptic action potential (elicited by a second input), the
corresponding synapse is potentiated, as an enhancement of their
possible causal relationship. On the contrary if the presynaptic
spike appears after the postsynaptic one, the synapse relating
them is depressed, reflecting an unlikely causal relationship
among them. Nevertheless, the simplicity of this idea this
mechanism is currently considered as one of the main processes
in the activity-dependent development of the nervous system.

Here we study synaptic plasticity under spike anticipation
focusing on the previous idea of causal potentiation/depression
of neural connectivity. For doing that we study the neural
network presented in Figure 2, paying attention to the synapse
connecting slave and X neurons (red arrow in Figure 6A) and
showing how plasticity can be affected by the complex structure
of the relationship between spike anticipation and ISIs (Figure 5).
The key factor of the network in Figure 2 is the input provided
to X neuron by master (M) and slave (S) neurons since their
causal correlation will be the factor for potentiating or depressing
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FIGURE 3 | Comparison of neural activity when anticipation and no anticipation exists. (A,B) Phasic and tonic firing of neuron X under anticipation and no

anticipation, respectively. (C,D) ISI histograms summarizing these different behaviors. Parameters: n = 3, J0X = 3.25, CX = 0.7. For the anticipation case kMX = 0.7

and kSX = −1 and for the no anticipation case kMX = −1 and kSX = 0.7. T = 5× 104.

FIGURE 4 | Fast spiking in slow burst induced by spike anticipation. (A) Neuron X activity. (B) Corresponding ISI histogram. Parameters: n = 3, J0X = 3.25,

CX = 1, kMX = 0.6 and kSX = −0.3.

the synapse: when the X neuron receives a spike from the S
neuron before the spike from the M neuron arrives the S–X
synapse is potentiated, being depressed on the contrary. This
mechanism is inspired by spike timing dependent plasticity or
STDPmodels (Friedel and vanHemmen, 2008; Butts andKanold,
2010) with the difference that they focus on the input–output

spike correlation and we analyse the causal relationship between
spikes of different inputs, assuming that this is the reflection of
a causal correlation between input and output. Figure 6B shows
a scheme of such a process, where red and blue vertical lines
denote the maxima of the S and M spikes, respectively, and gray
vertical lines denote the temporal window where both spikes
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FIGURE 5 | Detailed structure of the relationship between interspike interval (ISI) and spike anticipation. The basic neural network in Figure 1A was used

as testbed. For n = 0 it is shown (A) ISI vs. anticipation correlation and (B) the 3D histogram, illustrating the spike distribution over the different regions in (A). Panels

(C,D) show the same respective diagrams for n = 3.

must coincide in the correct order to elicit potentiation. In the
studied neural network spike anticipation provides this preceding
behavior and so the synaptic potentiation. On the contrary, when
no anticipation exists the M spike precedes the S spike and the
synapse is depressed (Figure 6C).

The plasticity model is defined by three parameters: the
increasing and decreasing rates of the synaptic reinforcement, ri
and rd, respectively [which, for the sake of simplicity and unlike
the STDP standard models (Davison and Frégnac, 2006), have
been considered non-dependent on the time difference between
spikes], and the width w of the window where S and M spikes
must coincide in the correct order for potentation. The width of
the temporal window (characterized by the parameter w, where
width = 2w) affects the synaptic potentiation/depression since
the wider the window the larger the range of anticipation and
the larger the set of spikes reinforcing the synapse. To illustrate
this point we represent again the graphic of anticipation vs.
ISI (Figure 5C) enlightening in magenta the spikes with an
anticipation less than or equal to 0.5 and 0.3, which corresponds
to a window w = 0.5 and w = 0.3 (Figures 6D,E respectively);
all these spikes will provide synaptic potentiation, as shown

in Figure 6F, whereas a more balanced situation between
potentiation and depression takes place for w = 0.4 (Figure 6G).
In the same way, when w = 0.3 there are less spikes whose
anticipation lies in the window so the synapse is progressively
depressed, as shown in Figure 6H.

4. DISCUSSION

4.1. Spike Anticipation and Information
Processing
As demonstrated by Pyragiene and Pyragas (2013) spike
anticipation may appears between two directionally connected
neurons under simple conditions. This paper explores how
the presence of this spike anticipation in synchronized neural
networks can alter their functional regimen, with the subsequent
impact over their information processing. In order to analyse
this phenomenon we have studied simple neural networks
biologically motivated, assuming that information processing in
these networks is based on one of the central paradigms in neural
coding, which claims that the information is mainly coded in the
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FIGURE 6 | Synaptic plasticity under spike anticipation. (A) Neural network with a loop composed of three intermediate neurons between master (M) and slave

(S), and where information flux converges into the neuron X. Red arrow points the synapse whose plasticity is analyzed by monitoring the evolution of its coupling

weight kSX . The bottom inset shows in detail the connection scheme involving the analyzed plasticity. (B) Scheme of synaptic plasticity when potentiation appears;

the S event (the maximum of the spike received by X neuron from the slave one), denoted by a red vertical line, precedes the M event (blue vertical line) inside the

temporal window (gray lines) due to spike anticipation. (C) When there is no anticipation the M event precedes the S one and the synapse is depressed. (D) The

relationship between anticipation and ISI (Figure 5C) reveals that the wider the window, the larger the number of spikes that can coincide inside the window (denoted

by magenta points), since the corresponding anticipations lie in the range of the window width. This panel corresponds to w = 0.5. (E) When w = 0.3 the range of

anticipations less than or equal to w is smaller, so there are fewer spikes that can potentiate the synapse. (F–H) Present the time evolution of the synaptic weight kSX
evaluated for three different windows w = 0.5, w = 0.4, and w = 0.3, respectively. The increasing and decreasing rates of the synaptic reinforcement (i.e., the change

of the synaptic weight) are ri = 0.02 and rd = ri/7, respectively.

ISI (Koch, 1999). Therefore, under this relevance of the spike
timing, the main objective of this paper is to show that the
appearance of spike anticipation could be a novel factor to be
taken into account when information processing is studied in
both real and artificial neural networks.

We have simulated a basic neural network composed of
a variable number of intermediaries connecting the master
with the slave neuron, mathematically described by a set of
coupled Hindmarsh–Rose neurons. This network has been
configured as a minimal model to capture the functional
essence of a typical neural network of the mammal nervous
system (distant afferents, closed loops, intermediary neurons as
relay stations, convergent/divergent information flow, etc.). The
numerical simulations performed with this model suggests that
the existence of spike anticipation can induced the appearance
of a diversity of qualitatively different behaviors: (1) firing
of distant single spikes as seen at both thalamic and cortical
anticipatory activity during active tactil discrimination (Pais-
Vieira et al., 2013), bursting of slow and fast spikes, phasic
spiking and tonic firing which resemble state-dependent changes
in thalamic firing (i.e., between sleep and wakefulness Tsoukatos
et al., 1997; Fanselow et al., 2001; Weyand et al., 2001).
Such behaviors have been observed as functional patterns

associated to different types of information processing in real
neurons.

A more detailed analysis of the relationships between spike
anticipation and the structure of the action potential sequences
induced by the synchronization of master, intermediary and slave
neurons, has been performed. It reveals a deeper correlation
between the preceding time of a slave spike with respect to
the master activity and the ISI of this spike. Therefore, spike
anticipation would allow to discriminate different types of action
potentials, conveying different types of information, as those
defining the duration of the burst, the time interval between
consecutive bursts, the inter-burst information, etc. A real
scenario where this discrimination could be exploited is the
synaptic plasticity by potentiation-depression of the synapse
between the slave neuron which receives directly input from the
master. In these conditions the synapse will be potentiated only if
a S spike precedes a M spike in a certain time window, depressing
it in other case. Our results show that under different windows
distinct anticipations appears between S and M spikes, and a
variable percentage of them affect to the reinforcement of the
synapse, changing the synaptic plasticity in different ways.

This dynamical effect would have a significant impact over
the neural network since (1) the potentiation-depression of
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a synapse implies the causal strengthening/debilitation of the
conveyed information through this connection, and (2) the
sensitivity of a synapse to transmit information is a key
factor of the processing capability of the network (Swadlow
et al., 2005; Daw et al., 2007; Khazipov et al., 2013). Living
out of the synaptic delay (see next section), the plasticity
mechanism here studied is inspired by the Spike-Timing-
Dependent Plasticity or STDP observed in many synapses in real
neural networks, as those in the thalamocortical loop, where the
sensory information can be potentiated/depressed according to
the temporal relationship between spikes coming from the cortex
(Daw et al., 2007; Grossberg and Versace, 2008; Sanchez-Jimenez
et al., 2013). Although, this work studies the impact of STDP-
inspired plasticity, obviously real neuronal network plasticity will
depend on others well known plasticity mechanisms such as the
contribution of individual spikes from complex spike patterns,
the presence of presynaptic spike bursts, dendritic location,
the existence of other inputs, excitability changes, synaptic
competence and so on (Artola and Singer, 1993; Sjostrom et al.,
2001; Froemke and Dan, 2002; Hausser and Mel, 2003; Lin et al.,
2003; Caporale and Dan, 2008; Fiete et al., 2010).

4.2. Model Limitations and Future Work
Neural models require a simplified description due to the
functional and structural complexity of real neurons, which
makes unattainable an exact and rigorous analysis. Such
simplifications demand a subtle balance between accuracy and
accessibility to capture their functional essence but ensuring an
affordable capability of description.

The present study, focused on spike anticipation on the
context of neural information processing, is based on a
mathematical model that does not consider a variety of aspects of
real neural networks. On the one hand the first question is how
the particular model used to describe the neurons could affect
the obtained conclusions. However, it is shown in Pyragiene and
Pyragas (2013) that this anticipation in synchronized systems
appears in a variety of different oscillatory systems, including
distinct neural models. Therefore, this kind of anticipation seems
to be a property of the dynamics of the system, with no strong
dependency on its particular description.

On the other hand there exist a critical aspect in real neurons
concerning the intrinsic delay in the generation and transmission
of information in real neural networks. The twomain factors that
introduce a significant delay during the operation of real neural
networks are the finite velocity of action potential propagation
and especially the information transmission through chemical
synapses (Koch, 1999; Kandel et al., 2000). Actually this delay,

together with feedback connections, has been proposed as one
mechanism to induce anticipating synchronization. However, the
anticipation mechanism studied here does require less restrictive
conditions and the impact of the delay associated to the chemical
network couplings over spike anticipation will be tackled in a
future work. Nonetheless, even in the case when no pure master-
slave anticipation would occur, such anticipation could appear in
a reduction of the effective delay in the network, which is a critical
parameter associated to information processing of the network
(Sanchez-Jimenez et al., 2009).

Another relevant issue concerns the plausibility of the
condition over the spiking frequencies of the neurons. When just
two neurons are coupled it is obviously likely that the driven
neuron could be faster than the driver one. When the network
is compound of five neurons (three intermediaries) the same
relation is required for each pair of coupled neurons, but the
qualitative spike anticipation (and its enhancement) is robust
with the distribution of spiking frequencies, beyond the equally-
distributed frequencies here used by simplicity (data not shown).

In summary in this paper, through simple but biologically-
motivated scenarios, we have shown how spike anticipation
could have a significant influence over neural networks both at
functional level, considering the neural firing regimes and the
different information coding that they imply, and at structural
level, redefining key activity-dependent features of the network.
This results suggest that spike anticipation in neural networks
exhibiting non-trivial structures (distant afferents, closed loops,
intermediary neurons, etc.) could be a novel factor to be
considered together with other well-known processes, input
excitatory/inhibitory balance, time-delay, spiking regime of
individual neurons, network topology, etc.

AUTHOR CONTRIBUTIONS

DS: simulations and data analysis; AS: design of the work and text
writing; MG: simulations and data analysis; AN: simulations and
data analysis; JV: design of the work, simulations, data analysis,
and text writing.

ACKNOWLEDGMENTS

Work partly supported by the European Union under the project
FP7-ICT-2013-10, by the INCE Foundation under the project
INCE2014-011, and by the Spanish Ministerio de Ciencia e
Innovacion under projects FIS2013-41057-P and FIS2012-38949-
C03-01.

REFERENCES

Artola, A., and Singer, W. (1993). Long-term depression of excitatory synaptic

transmission and its relationship to long-term potentiation. Trends Neurosci.

16, 480–487. doi: 10.1016/0166-2236(93)90081-V

Benito, N., Fernández-Ruiz, A., Makarov, V. A., Makarova, J., Korovaichuk, A.,

and Herreras, O. (2014). Spatial modules of coherent activity in pathway-

specific LFPs in the hippocampus reflect topology and different modes of

presynaptic synchronization. Cereb. Cortex 24, 1738–1752. doi: 10.1093/cercor/

bht022

Butts, D. A., and Kanold, P. O. (2010). The applicability of spike time

dependent plasticity to development. Front. Syn. Neurosci. 2:30. doi:

10.3389/fnsyn.2010.00030

Caporale, N., and Dan, Y. (2008). Spike timing-dependent plasticity:

a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46. doi:

10.1146/annurev.neuro.31.060407.125639

Frontiers in Computational Neuroscience | www.frontiersin.org 9 November 2015 | Volume 9 | Article 144

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


de Santos-Sierra et al. Effects of Spike Anticipation on Neural Networks

Davison, A. P., and Frégnac, Y. (2006). Learning cross-modal spatial

transformations through spike timing-dependent plasticity. J. Neurosci.

26, 5604–5615. doi: 10.1523/JNEUROSCI.5263-05.2006

Daw,M. I., Scott, H. L., and Isaac, J. T. R. (2007). Developmental synaptic plasticity

at the thalamocortical input to barrel cortex: mechanisms and roles. Mol. Cell.

Neurosci. 34, 493–502. doi: 10.1016/j.mcn.2007.01.001

Fanselow, E. E., Sameshima, K., Baccala, L. A., and Nicolelis, M. A. L. (2001).

Thalamic bursting in rats during different awake behavioral states. Proc. Natl.

Acad. Sci. U.S.A. 98, 15330–15335. doi: 10.1073/pnas.261273898

Fiete, I. R., Senn, W., Wang, C. Z. H., and Hahnloser, R. H. R. (2010). Spike-

Time-Dependent plasticity and heterosynaptic competition organize networks

to produce long scale-free sequences of neural activity. Neuron 65, 563–576.

doi: 10.1016/j.neuron.2010.02.003

Friedel, P., and van Hemmen, J. L. (2008). Inhibition, not excitation, is the

key to multimodal sensory integration. Biol. Cybern. 98, 597–618. doi:

10.1007/s00422-008-0236-y

Froemke, R.C., and Dan, Y. (2002). Spike-timing-dependent synaptic modification

induced by natural spike trains. Nature 416, 433–438. doi: 10.1038/416433a

Grossbert, S., and Versace, M. (2008). Spikes, synchrony, and attentive

learning by laminar thalamocortical circuits. Brain Res. 1218, 278–312. doi:

10.1016/j.brainres.2008.04.024

Hänggi, P. (2002). Stochastic resonance in biology how noise can enhance

detection of weak signals and help improve biological information

processing. Chem. Phys. Chem. 3, 285–290. doi: 10.1002/1439-7641

(20020315)3:3<285::aid-cphc285>3.0.co;2-a

Hausser, M., and Mel, B. (2003). Dendrites: bug or feature? Curr. Opin. Neurobiol.

13, 372–383. doi: 10.1016/S0959-4388(03)00075-8

Hindmarsh, J. L., and Rose, R. M. (1984). Amodel of neuronal bursting using three

coupled first order differential equations. Proc. R. Soc. Lond. B 221, 87–102. doi:

10.1098/rspb.1984.0024

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE

Trans. Neur. Net. 15, 1063–1070. doi: 10.1109/TNN.2004.832719

Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience. Cambridge, MA:

MIT press.

Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (eds.). (2000). Principles of Neural

Science. New York, NY: McGraw-Hill.

Khazipov, R., Minlebaev, M., and Valeeva, G. (2013). Early gamma oscillations.

Neuroscience 250, 240–252. doi: 10.1016/j.neuroscience.2013.07.019

Koch, C. (1999). Biophysics of Computation: Information Processing in Single

Neurons. New York, NY: Oxford University Press.

Lin, Y. W., Min, M. Y., Chiu, T. H., and Yang, H. W. (2003). Enhancement of

associative long-term potentiation by activation of beta-adrenergic receptors at

CA1 synapses in rat hippocampal slices. J. Neurosci. 23, 4173–4181.

Markram, H., Gerstner, W., and Sjöström, P. J. (2012). Spike-timing-dependent

plasticity: a comprehensive overview. Front. Syn. Neurosci. 4:2. doi:

10.3389/978-2-88919-043-0

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of

synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275,

213–215. doi: 10.1126/science.275.5297.213

Pais-Vieira, M., Lebedev, M. A., Wiest, M. C., and Nicolelis, M. A. L. (2013).

Somatosensory cortex and Thalamic nuclei during active tactile discrimination.

J. Neurosci. 33, 4076–4093. doi: 10.1523/JNEUROSCI.1659-12.2013

Pecora, L. M., and Carroll, T. L. (1990) Synchronization in chaotic systems. Phys.

Rev. Lett. 64, 821–824. doi: 10.1103/PhysRevLett.64.821

Pikovsky, A., Rosenblum, M., and Kurths, J. (2003). Synchronization: A Universal

Concept in Nonlinear Sciences. Cambridge, UK: Cambridge University Press.

Pyragiene, T., and Pyragas, K. (2013). Anticipating spike synchronization in

nonidentical chaotic neurons. Nonlin. Dyn. 74, 297–306. doi: 10.1007/s11071-

013-0968-7

Rosenblum, M. G., Pikovsky, A. S., and Kurths, J. (1996). Phase synchronization

of chaotic oscillators. Phys. Rev. Lett. 76:1804. doi: 10.1103/PhysRevLett.

76.1804

Rulkov, N. F., Sushchik, M. M., Tsimring, L. S., and Abarbanel, H. D. (1995).

Generalized synchronization of chaos in directionally coupled chaotic systems.

Phys. Rev. E 51:980. doi: 10.1103/physreve.51.980

Sanchez-Jimenez, A., Panetsos, F., and Murciano, A. (2009). Early

frequency-dependent information processing and cortical control in

the whisker pathway of the rat: electrophysiological study of brainstem

nuclei principalis and interpolaris. Neursocience 160, 212–226. doi:

10.1016/j.neuroscience.2009.01.075

Sanchez-Jimenez, A., Torets, C., and Panetsos, F. (2013). Complementary

processing of haptic information by slowly and rapidly adapting neurons in

the trigeminothalamic pathway. Electrophysiology, mathematical modeling

and simulations of vibrissae-related neurons. Front. Cell. Neurosci. 7:79. doi:

10.3389/fncel.2013.00079

Shannon, C. E., and Weaver, W. (1959). The Mathematical Theory of

Communication. Urbana, IL: University of Illinois Press.

Sjöström, P. J., Turrigiano, G. G., and Nelson, S. B. (2001). Rate, timing,

and cooperativity jointly determine cortical synaptic plasticity. Neuron 32,

1149–1164. doi: 10.1016/S0896-6273(01)00542-6

Steriade, M., Dossi, R. C., and Nuñez, A. (1991). Network modulation of a

slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep

delta waves: cortically induced synchronization and brainstem cholinergic

suppression. J. Neurosci. 11, 3200–3217.

Swadlow, H. A., Bezdudnaya, T., and Gusev, A. G. (2005). Spike timing and

synaptic dynamics at the awake thalamocortical synapse. Prog. Brain Res. 149,

91–105. doi: 10.1016/S0079-6123(05)49008-1

Tsoukatos, J., Kiss, Z. H., Davis, K. D., Tasker, R. R., and Dostrovsky, J. O.

(1997). Patterns of neuronal firing in the human lateral thalamus during

sleep and wakefulness. Exp. Brain Res. 113, 273–282. doi: 10.1007/BF024

50325

Varela, F., Lachaux, J. P., Rodriguez, E., and Martinerie, J. (2001). The brainweb:

phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2,

229–239. doi: 10.1038/35067550

Viemari, J. C., Garcia, A. J. III, Doi, A., Elsen, G., and Ramirez, J. M.

(2013). β -Noradrenergic receptor activation specifically modulates the

generation of sighs in vivo and in vitro. Front. Neural Circ. 7:179. doi:

10.3389/fncir.2013.00179

Villacorta-Atienza, J. A., and Panetsos, F. (2005). Information coding by ensembles

of resonant neurons. Biol. Cybern. 92, 339–347. doi: 10.1007/s00422-005-

0554-2

Voss, H. (2000). Anticipating chaotic synchronization. Phys. Rev. E 61, 5115–5119.

doi: 10.1103/PhysRevE.61.5115

Weyand, T. G., Boudreaux, M., and Guido, W. (2001). Burst and tonic response

modes in thalamic neurons during sleep and wakefulness. J. Neurophysiol. 85,

1107–1118.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 de Santos-Sierra, Sanchez-Jimenez, Garcia-Vellisca, Navas and

Villacorta-Atienza. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 November 2015 | Volume 9 | Article 144

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks
	1. Introduction
	2. Materials and Methods
	3. Results
	3.1. Spike Anticipation in Biologically-inspired Networks
	3.2. Discrimination of Spikes by Anticipation
	3.3. Synaptic Plasticity Under Spike Anticipation

	4. Discussion
	4.1. Spike Anticipation and Information Processing
	4.2. Model Limitations and Future Work

	Author Contributions
	Acknowledgments
	References


