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Olfactory sensory neurons (OSNs) are the receptor cells for the sense of smell. Although 
cell bodies are located in the olfactory mucosa (OM) of the nasal cavity, OSN axons 
directly project to the olfactory bulb (OB) that is a component of the central nervous 
system (CNS). Because of this direct and short connection from this peripheral tissue to 
the CNS, the olfactory system has attracted attention as a port-of-entry for environmental 
toxicants that may cause neurological dysfunction. Selected viruses can enter the OB 
via the OM and directly affect the CNS. On the other hand, environmental toxicants 
may induce inflammatory responses in the OM, including infiltration of immune cells and 
production of inflammatory cytokines. In addition, these inflammatory responses cause 
the loss of OSNs that are then replaced with newly generated OSNs that re-connect 
to the OB after inflammation has subsided. It is now known that immune cells and 
cytokines in the OM play important roles in both degeneration and regeneration of 
OSNs. Thus, the olfactory system is a unique neuroimmune interface where interaction 
between nervous and immune systems in the periphery significantly affects the structure, 
neuronal circuitry, and immunological status of the CNS. The mechanisms by which 
immune cells regulate OSN loss and the generation of new OSNs are, however, largely 
unknown. To help develop a better understanding of the mechanisms involved, we have 
provided a review of key research that has investigated how the immune response in 
the OM affects the pathophysiology of OSNs.

Keywords: olfactory epithelium, inflammation, immune system, intranasal administration, olfactory vector 
hypothesis, olfactory dysfunction, neurodegenerative disease

inTRODUCTiOn

We are continuously exposed to a variety of potentially harmful environmental agents, such as 
bacteria, viruses, mold, dust, pollen, and environmental chemicals. Environmental agents entering 
the nasal cavity may become allergens, causing inflammation in the olfactory mucosa (OM) (olfac-
tory inflammation), and leading to allergic rhinitis and infectious sinusitis (1). The symptoms are 
usually associated with hyposmia or anosmia (2, 3). Olfactory loss in rhinitis/sinusitis is attributable 
primarily to blockade of airflow to the olfactory sensory neurons (OSNs) that receive odorous 
molecules, but damage to the OM is also considered as a possible cause (2, 4–6). In fact, multiple 
studies have shown that olfactory inflammation causes the loss of OSNs (7–14).

Epidemiological studies have associated exposure to environment toxicants with the incidence 
of neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases (15, 16). Since olfac-
tory dysfunction is a common prodromal symptom of these diseases, and because xenobiotics 
administered into the nasal cavity are often found in the brain, the nasopharynx has attracted 
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attention as a port-of-entry for environmental agents that cause 
neurological disease (the olfactory vector hypothesis) (17–19). 
To date, a variety of neurotoxicants have been directly admin-
istered to the naris of model animals to study their transport 
to the brain and the resultant neurodegenerative effects in the 
central nervous system (CNS). Results of these types of studies 
have now been summarized in a number of reviews (17, 20–22).

Neuroinflammation is a hallmark of neurodegenerative 
diseases (23–26). Although knowledge of the cause of neuro-
inflammation is still limited, olfactory inflammation has been 
proposed as one of the major mechanisms (27, 28). Interestingly, 
allergic rhinitis is associated with development of Parkinson’s 
disease later in life (29). We, therefore, believe that a better 
understanding of the olfactory immune system will advance our 
knowledge of the pathogenesis and progression of neurological 
disease. To date, there are many reports showing that artificially 
induced olfactory inflammation can cause immune responses 
and damage to the OM (7–14). Conversely, new OSNs are 
generated in the OM throughout life, which may help in the 
repair of damaged tissue (30, 31). It also has been reported that 
immune cells in the OM regulate the depletion of old OSNs 
and generation of new OSNs. This review summarizes the roles 
of immune cells in the inflammatory response, tissue damage, 
and regeneration of the OM with a focus on model systems, 
primarily the OM of murine species.

Structure of the Olfactory Mucosa
The OM is located in the upper region of the nasal cavity, and 
is made up of the olfactory epithelium (OE) and the underlying 
lamina propria (Figure 1). The surface of the OE is covered with 
a mucus layer where inhaled odorant molecules can be trapped, 
which then bind to odorant receptors expressed on the cilia 
of the OSNs whose cell bodies are located in the OE. Unlike 
other receptor cells, OSNs project directly to the olfactory bulb 
(OB), the first relay station of olfactory information in the CNS, 
through the cribriform plate. Sustentacular cells line the apical 
surface of the OE, and provide trophic, metabolic, and mechani-
cal support for OSNs. At the basal surface of the OE, there are 
two types of basal cells (horizontal and globose basal cells) that 
give rise to new OSNs and sustentacular cells during lifetime of 
the organism.

The lamina propria is a layer of connective tissue through 
which OSN axons pass. OSN axons, although unmyelinated, are 
gathered into bundles (olfactory nerve) that are wrapped with 
olfactory ensheathing cells (OECs). OECs are specialized glial 
cells that are resident in the olfactory system. The lamina propria 
also contains Bowman’s glands and vascular elements. Bowman’s 
glands produce mucus and secrete it to the mucus layer via the 
OE duct.

Response of Olfactory Mucosa to 
intranasal Administration of 
environmental Agents
Inhalation of harmful environmental agents often damages 
the OM. Here, we focus on the damages associated with 
inflammatory responses within the nasal cavity (32). Several 

animal models of human chronic rhinosinusitis have been 
developed by inoculating bacteria or fungus extract into the 
mouse nostril (10, 33, 34). These mouse models have shown 
inflammatory responses in the nasal cavity, as well as general 
pathology of the OE that includes mast cell and eosinophilic 
infiltration into the respiratory epithelium, with increased 
depth of lamina propria. In addition, olfactory inflammation 
can be caused by a single compound derived from microbial 
pathogens, such as polyinosinic:polycytidylic acid [Poly(I:C)] 
(14), lipopolysaccharide (LPS) (9), satratoxin G (SG), and 
roridin A (RA) (7, 8, 11, 13). Poly(I:C) is a synthetic analog 
of viral double-stranded RNA, and is recognized by Toll-like 
receptor 3 (TLR3) (35), whereas LPS is an endotoxin found in 
the outer membrane of Gram-negative bacteria that activates 
another type of Toll-like receptor, TLR4 (36, 37). When injected 
intraperitoneally, LPS caused systemic inflammation that also 
changes the level of inflammatory cytokines in the brain (38). 
SG and RA are macrocyclic trichothecen mycotoxins produced 
by fungi such as Stachybotrys chartarum, the “black mold” (39). 
Immunohistochemical analyses using TLR3 and TLR4 antibod-
ies indicated that sustentacular cells and OECs may be the first 
target cells of PolyI:C and LPS in the OM, respectively (14, 
40). Besides activating different receptors, therefore different 
types of cells, intranasal inoculation of each of these agents 
causes an inflammatory response and damage to the OM of 
rodents. It is useful to review what is known about intranasal 
inoculation of Poly(I:C), LPS, SG, and RA and their effects 
on olfactory tissues.

inflammatory Response
Infiltration of neutrophils expressing Ly-6G/-6C into the OM 
occurs 1 day after intranasal inoculation of Poly(I:C), SG, or RA 
(7, 8, 14). Kanaya et al. confirmed that Poly(I:C) caused the infil-
tration of macrophages (F4/80+) and T-lymphocytes (CD3+) 
(14). In contrast to the situation with neutrophils, which com-
pletely disappeared within 6 days, significantly higher numbers 
of macrophages and T-lymphocytes were observed in the OM as 
long as 21 days after the last Poly(I:C) inoculation. In addition, 
in the OM, Poly(I:C), SG, or RA caused upregulation of mRNAs 
encoding inflammatory cytokines, including IL-1α, IL-1β, IL-6, 
TNF-α, and MIP-2.

Damage of the Olfactory Mucosa
Intranasal inoculation of environmental agent-derived com-
ponents also damaged the OM and led to apoptosis of OSNs 
and decreased thickness of the OE (7–9, 14). When Poly(I:C) 
was inoculated into mouse nostril once a day for 3  days, the 
number of apoptotic cells was significantly increased and the 
number of OSNs was decreased in first 3 days. When examined 
9  days after the first inoculation (i.e., 6  days after the last 
inoculation), few apoptotic cells were observed in the OE, 
but the number of OSNs was less than that observed 3  days 
post inoculation.

The mechanisms underlying OSN loss associated with 
olfactory inflammation are currently not well understood. 
Inflammatory responses seem to play a critical role for death 
of OSNs. During inflammation, neutrophils and macrophages 
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FigURe 1 | Schematic diagram of the olfactory mucosa and olfactory bulb. The olfactory mucosa is composed of the olfactory epithelium (OE) and the 
lamina propria. Three types of cells are found in the OE, olfactory sensory neurons (OSNs), sustentacular cells, and basal cells. The dendrites of OSNs project 
toward the mucus layer where they protrude the cilia expressing odorant receptors. Sustentacular and basal cells are localized at the apical and basal regions of the 
OE, respectively. The lamina propria is a layer of connective tissue, which lies beneath the OE, and contains fibroblast, blood vessels, and Bowman’s gland. OSN 
axons are fasciculated into bundles that are wrapped with olfactory ensheathing cells and target the olfactory bulb (OB) by passing through the lamina propria and 
cribriform plate. The OB is divided into multiple layers. Each OSN axon runs the surface of the OB, olfactory nerve layer (ONL), and projects to a glomerulus in the 
glomerular layer (GL). There, the OSN axons synapse with primary dendrites of projection neurons, mitral and tufted cells, and onto populations of interneurons, 
periglomerular cells. The secondary dendrites of mitral/tufted cells make dendrodendritic synapses with another population of interneurons, granule cells, in the 
external plexiform layer (EPL). Beneath the EPL, the OB has the mitral cell layer (MCL) and granule cell layer (GCL) where the cell bodies of mitral cells and granule 
cells are located, respectively.
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secrete elastases, proteases known to break down bacterial 
membrane proteins (41). Intranasal inoculation of neutrophil 
elastase caused the loss of OSNs in the OE (14). In contrast, 
Poly(I:C)-induced damage of the OM was blocked by prior intra-
peritoneal injection of the neutrophil elastase inhibitor, Silevestat 
(14). In addition, inflammatory cytokines are also involved in 
inflammation-induced OSN death. Lane and colleagues created 
a transgenic, induced olfactory inflammation (IOI) mouse 
model, in which expression of TNF-α in sustentacular cells 
was induced with doxycycline as a chronic rhinitis model (12). 
Using this transgenic mouse, Lane et al. showed that induction of  
TNF-α expression caused marked reduction of OE thickness and 
loss of OSNs, whereas the sustentacular cells were unaffected. 
Concurrent treatment with prednisolone (to inhibit downstream 

inflammatory responses) prevented OSN loss, therefore suggest-
ing that TNF-α does not directly cause OSN apoptosis (42).

The damage to the OM exacerbates the impact caused by 
exposure to environmental toxicants. While Staphylococcus 
aureus is an indigenous microbe found in the nose and usually 
remains in the lumen after intranasal administration, bacteria 
can still penetrate the OE and cause an inflammatory response 
when inoculated intranasally after first damaging the OM with 
Triton X-100 or zinc sulfate (43). In addition, tissue damage 
coupled with an inflammatory response of the OM induced by 
RA was exacerbated by co-exposure to LPS (8). Although mRNAs 
encoding inflammatory cytokines were marginally induced by 
RA alone, co-exposure to both RA and LPS dramatically elevated 
expression of these genes.
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Regeneration of Oe
Basal cells of the OE give rise to new OSNs and sustentacular 
cells throughout life (44, 45). Damage of basal cells caused by 
methyl bromide gas, however, led to the eventual loss of OSNs 
and inhibited the reconstruction of OE (46). In contrast, these 
basal cells seem to be less affected by intranasal inoculation of 
Poly(I:C), LPS, or mycotoxins; apoptosis was restricted to OSNs 
whose cell bodies reside in the middle layer of the OE, below 
the apical row of supporting cell nuclei and above the basal cell 
nuclei (7, 8, 14). Cells expressing Ki67, a proliferating basal cell 
marker, were increased in number and distributed in all layers of 
the OE 6 days after the last Poly(I:C) inoculation (14). The OE 
thickness and the OSN number were almost completely recov-
ered by 21 days post-Poly(I:C) exposure. However, the recovery 
of OSNs was incomplete (40–50%), even at 21–28 days after the 
last inoculation of SG (7, 11).

Immune cells and OECs in the OM also regulate many aspects 
of degeneration/regeneration of OSNs. The resident macrophages 
play a key role in the removal of cell debris and stimulation of 
basal cells to proliferate (47). OEC is known to be a specialized 
type of glia that wraps OSN axons, as well as serves as a major 
phagocytic cell type (48, 49). Bulbectomy or olfactory nerve 
transection causes apoptotic death of OSNs by severing the axons 
and stimulates the generation of new OSNs (50–53). Bulbectomy 
activates the proliferation of OECs in lamina propria (54) and 
the infiltration of macrophages into the OM (55). In addition 
to the phagocyotosis of apoptotic cellular debris, infiltrated 
macrophages secrete a variety of inflammatory cytokines and 
chemokines, such as LIF, IL-6, MCP-1, and MIP-1α (52, 56, 57). 
It has been proposed that MCP-1 and MIP-1α play key roles in 
recruitment of additional macrophages to the OM and that LIF 
stimulates globose basal cells expressing LIF receptor (LIFR) (52, 
57, 58). Activation of LIFR subsequently induces iNOS expres-
sion that in turn stimulates proliferation of neural precursor cells 
(59). An increase in iNOS level was also observed in OECs after 
bacterial challenge to the compromised OM (60).

DiSCUSSiOn

This review has summarized olfactory inflammation caused 
by intranasal inoculation of Poly(I:C), LPS, and mycotoxin. 
Although the receptors and signaling pathways activated by these 
agents are not identical, they induce similar effects on the OM, 
including infiltration of immune cells, upregulation of inflamma-
tory cytokines, and loss of OSNs. It appears that damaged and lost 
OSNs can be replaced with new OSNs since olfactory inflamma-
tion has minimal effect on the basal cells. It is not clear, however, 
whether basal cells are, in fact, affected by olfactory inflamma-
tion. The inoculation of toxicants into the IOI-transgenic mouse 
showed that TNF-α-induced inflammation lasted for 6  weeks 
and compromised the regeneration of OSNs, although the effect 
was not permanent, suggesting that TNF-α suppresses the prolif-
erative activity of basal cells (12, 61). In contrast, intraperitoneal 
injection of the herbicide 2,6-dichlorobenzonitrile induced 
inflammation-like pathological changes in OE and depleted the 
horizontal basal cells, resulting in permanent loss of OSNs (62). 
A critical next step is to elucidate the molecular mechanisms 

underlying the specific loss of OSNs and the resistance of basal 
and sustentacular cells to olfactory inflammation. Since variety 
of immune cells are involved in inflammatory responses, detailed 
researches on types of immune cells activated and infiltrated in 
the OM during olfactory inflammation are required to elucidate 
the mechanisms.

It is also known that zinc sulfide and hydrogen sulfide admin-
istered into the nasal cavity induces the loss of OSNs (63–67), and 
anosmia induced by intranasal zinc has been suggested to occur 
in humans (68, 69). The immune response caused by exposure of 
the nasal cavity to toxic gases and metals is not well understood, 
but the regions of the OM affected by hydrogen sulfide inhala-
tion is different from the regions affected by either intranasal 
Poly(I:C), LPS, or by mycotoxin inoculation. The OE can be 
subdivided into several zones based on the expression patterns of 
specific molecules (including olfactory receptors), and the dorsal 
medial meatus largely overlaps with zone 1 (aka dorsal zone) (70). 
Inhalation of hydrogen sulfide provoked necrotizing lesions of 
the OSNs predominantly localized in the zone 1 (64, 65), whereas 
the OE lining the dorsal medial meatus was not affected by the 
intranasal inoculation of Poly(I:C), SG, or RA solution (7, 11, 14). 
The difference in susceptible portions in the OE may be attributed 
to the different flows of liquid and gas in the nasal cavity (71). 
Alternatively, molecules exclusively expressed by OSNs in zone 1 
(e.g., NQO1, O-MACS, and Dvl-1) or in zone 2–4 (e.g., OCAM 
and Foxg1) may determine the susceptibility of OSNs to the 
environmental agents (72–76). Understanding the similarities 
and difference in immune responses to different environmental 
agents will help us to evaluate the risks to the CNS.

According to the olfactory vector hypothesis, some neurologi-
cal disorders are caused or accelerated by agents entering the OB 
via the OM (17). Of interest, it was shown that either intranasally 
administered influenza virus, LPS, or MPTP (a synthetic neuro-
toxicant) caused selective decreases of dopamine neurons in the 
substantia nigra of mice (21, 27, 77–79). The route from the OM 
to the substantia nigra, however, remains to be elucidated. The 
transport of viruses, bacteria, and metals from the nasal cavity 
to the OB has been reviewed by others (17, 20–22). Interestingly, 
Nipah virus propagates anterogradely in the hamster CNS via the 
olfactory pathway beginning in the OB (80). The agents entering 
the OB may spread further in the brain to cause neurological dis-
orders. It is suggested that inflammatory responses can spread in 
the CNS both anterogradely or retrogradely via axonal projections 
(81). For instance, corneal inflammation induced by instillation 
of benzalkonium chloride damages primary sensory neurons in 
the trigeminal ganglion, leading to the activation of second-order 
neurons and glial cells in the brain stem and to the production 
of pro-inflammatory cytokines (82). Therefore, the inflammatory 
response may propagate in the brain from the primary olfactory 
tissue. Although this review focused on the effects on the OM, 
olfactory inflammation was also associated with atrophy of the 
OB; upregulation of the mRNA levels of inflammatory cytokines; 
infiltration of neutrophils; and/or activation of astrocytes and 
microglia (7, 8, 11, 43). These changes clearly should affect the OB 
neurons. Furthermore, intranasal LPS injection caused upregula-
tion of TLR2 signals in the OB, which spread to other parts of 
the brain within 24 h (83). Further studies of neuroinflammation 
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and damage in other brain regions will provide us with novel 
insights into the olfactory vector hypothesis and the pathogenesis 
of neurological disorders.

COnCLUSiOn

The olfactory system is a unique site where the peripheral nervous 
system and CNS are in close proximity. Since the OM is bathed 
in a sustained exposure of environmental agents that may cause 
inflammatory responses, the health of the CNS is likely to be 
heavily influenced by the immune status of the olfactory system. 
Big challenges in future are (1) to determine whether olfactory 
inflammation contribute to pathogenesis of neurodegenerative 
diseases; and (2) to determine whether olfactory inflammation 

sequentially affect the immune status of the CNS via the olfactory 
pathways in the brain.
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