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Biological invasions offer optimal scenarios to study evolutionary changes under
contemporary timescales. After long-distance dispersal, exotic species have to cope
with strong mate limitation, and shifts toward uniparental reproduction have been
hypothesized to be selectively advantageous. Oxalis pes-caprae is a clonal tristylous
species native to South Africa, and invasive in Mediterranean regions worldwide. It
reproduces sexually and asexually but the importance of each strategy differs between
ranges. Native populations reproduce mostly sexually while in invasive ones asexual
reproduction is the prevailing strategy due to the dominance of pentaploid monomorphic
populations. Nevertheless, two contrasting scenarios have been observed after
introduction: transition toward clonality, and re-acquisition of sexuality fueled by multiple
introductions of compatible mates. Here, we aimed to assess evolutionary changes of
reproductive traits in O. pes-caprae invasive populations and evaluate whether these
traits could be related with invasion success and prevalence of certain forms in the
western Mediterranean basin. Sexual and asexual reproduction traits were quantified
under optimal conditions in a common garden experiment including native and invasive
sexual, predominately asexual, and obligated asexual individuals. Different reproductive,
ecological, and genetic constraints created by long-distance dispersal seem to have
generated different selective pressures in sexual and asexual traits, with our results
supporting evolutionary changes in invasive populations of O. pes-caprae. Native plants
had higher sexual fitness, while a transition toward clonality was clear for invasive forms,
supporting clonal reproduction as a major trait driving invasion. Differences were also
observed among invasive plants, with sexual forms having increased dispersal potential;
thus, they are expected to be in advantage in comparison with predominantly asexual
and obligated asexual plants, and may become widespread in the future. Historical
processes, like the initial introduction of predominantly asexual forms followed by sexual
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forms more recently, could be in the origin of current distribution patterns of O. pes-
caprae in the western Mediterranean. This study shows that invasion processes are
very dynamic and that ecological and genetic constraints determined by the invasion
process may originate different reproductive strategies that are likely to determine
invasion success.

Keywords: clonality, evolution of reproduction, Mediterranean regions, pentaploid, polyploidy, reproductive
strategy, sexual and asexual reproduction, tristyly

INTRODUCTION

Biological invasions are a serious threat to biodiversity and have
long been recognized to comprise significant ecological and
evolutionary consequences, not only for the communities being
invaded, but also for the invasive species themselves (Brown and
Eckert, 2005; Barrett et al., 2008; Pyšek et al., 2012; Oduor, 2013).
For these reasons, since the seminal works of Elton (1958) and
Baker and Stebbins (1965), biological invasions have attracted
much attention of researchers in an attempt to identify traits
that might confer an advantage during colonization of new
habitats (Pyšek and Richardson, 2007; Hayes and Barry, 2008; van
Kleunen et al., 2010) and to understand the biotic and abiotic
factors that determine invasion success (e.g., Souza et al., 2011;
Wisz et al., 2013). It also became clear that the introduction of
sub-populations in new ecological scenarios generates valuable
oportunities to study evolutionary transitions over contemporary
time scales (e.g., Sakai et al., 2001; Brown and Eckert, 2005;
Barrett et al., 2008; Prentis et al., 2008). These studies contribute
to a better understanding of the factors triggering a successful
invasion, and provide new insights on the evolutionary history
of specific traits, such as those related to the reproductive system
(Barrett et al., 2008; Barrett, 2011).

Reproduction is one of the key factors involved in the
successful establishment and spread of a given organism
after long-distance dispersal (e.g., Sakai et al., 2001; Barrett
et al., 2008; Hayes and Barry, 2008; Castro-Díez et al., 2014;
Moravcová et al., 2015). Reproductive modes determine the
production, dispersal and genetic composition of propagules,
thus influencing the genetic and demographic structure of
populations, as well as the dispersal ability and evolutionary
potential of introduced individuals or sub-populations, that, by
its turn, will also determine the reproductive strategy (Sakai
et al., 2001; Novak and Mack, 2005; Barrett et al., 2008;
Ness et al., 2010). Flowering plants exhibit an outstanding
diversity of reproductive strategies, from sexual to asexual modes
and from self-compatible to obligated outcrossers (reviewed
in Barrett, 2002), that frequently occur in combination and
reveal liability under certain ecological and genetic stressful
conditions (Dorken and Eckert, 2001; Eckert, 2002; Goodwillie
et al., 2005; Herben et al., 2015). Thus, the relative contribution
of each strategy to the fitness of a population/individual is
expected to vary under the novel conditions and will play a
major role in the establishment and spread of the introduced
individual(s) (e.g., Brown and Eckert, 2005; Lui et al., 2005;
Barrett et al., 2008; Silvertown, 2008). Sexual reproduction
provides the possibility for increasing genetic diversity through

recombination, thus contributing not only to ameliorate loss
of genetic diversity due to founder events, but also to fuel the
opportunities for local adaptation and the ability of colonizers
to respond to unpredictable environmental fluctuations in the
new range(s) (Eckert, 2002; Novak and Mack, 2005; reviewed in
Barrett, 2011). Despite the clear advantages of sexuality, asexual
reproduction might be favored under unreliable circumstances,
as it provides reproductive assurance and enables the persistence
of individuals in unfavorable habitats for sexual reproduction or
avoids the costs associated with sexual reproduction, allowing
small populations and adaptive genotypes to rapidly establish and
spread (Eckert, 2002; Barrett, 2015; reviewed in Vallejo-Marín
et al., 2010).

Long-distance dispersal is frequently associated with strong
founder effects and loss of genetic diversity, thus exposing
founder individual(s) to strong mate limitation both at the
establishment of the first viable population(s) and during
range expansion (Baker, 1955, 1965; Stebbins, 1957). This is
particularly relevant in obligated outcrossing species, such as
self-incompatible or heterostylous plants, in which compatible
mates might be lost during long-distance dispersal (e.g., Ornduff,
1987; Hollingsworth and Bailey, 2000; Barrett et al., 2008;
Zhang et al., 2010). Under this scenario, a switch to uniparental
reproduction, either through self-fertilization or increased
asexual reproduction, might be selectively advantageous and
foster invasion (reviewed in Pannell et al., 2015). Transitions
to asexual reproduction or selfing have been documented
for several introduced species, such as the clonals Fallopia
japonica in the UK (Hollingsworth and Bailey, 2000), Eichhornia
crassipes in China (Zhang et al., 2010), Oxalis pes-caprae in
Mediterranean regions (Baker, 1965; Ornduff, 1987), and Arundo
donax in Australia (Haddadchi et al., 2013), and the self-
compatibles Echinochloa microstachya in Australia (Barrett and
Husband, 1990), Echium plantagineum in Australia and Canary
Islands (Petanidou et al., 2012), and Gomphocarpus physocarpus
in Australia (Ward et al., 2012). Additionally, higher rates
of uniparental reproduction in introduced and in invasive
species compared with natives or with species that failed to
establish, have been reported by several studies (Mulligan and
Findlay, 1970; Rambuda and Johnson, 2004; Silvertown, 2008;
van Kleunen et al., 2008; Marco et al., 2010). Nevertheless,
comparative studies of plant reproductive strategies in native
and invaded ranges are scarce (but see Brown and Eckert, 2005;
Lavergne and Molofsky, 2007; Petanidou et al., 2012).

Sexual and asexual reproductive strategies frequently co-occur
in flowering plants and, although this dual strategy was proven to
be advantageous (Silander, 1985; Bengtsson and Ceplitis, 2000;
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Van Drunen et al., 2015), it can also lead to allocation trade-
offs and antagonist interactions between reproductive modes,
such as the interference generated by clonal growth in the
opportunities for mating (Handel, 1985; Vallejo-Marín et al.,
2010; Barrett, 2015; Van Drunen et al., 2015). By reducing the
number of mating partners and by increasing the opportunities
for geitonogamous pollen dispersal, clonal growth interferes with
sexual reproduction in reducing not only the offspring sired,
but also its quality and fitness (e.g., Handel, 1985; Charpentier,
2002; Somme et al., 2014; but see Van Drunen et al., 2015).
Allocation trade-offs occur when the production of sexual and
asexual structures compete for the resources available from the
total resource pool (van Kleunen et al., 2002; Thompson and
Eckert, 2004; Liu et al., 2009), or through the replacement of
sexual structures by asexual ones or vice-versa (e.g., production
of inflorescences instead of vegetative shoots, Geber et al., 1992;
production of bulbils in the inflorescences instead of flowers,
Ronsheim and Bever, 2000; or production of flowers from
meristems that in previous years resulted in vegetative tissue,
Savinykh, 2003). Therefore, it is expected that differential fitness
of the two strategies will affect the balance between sexual and
asexual reproduction in the population over time (Silvertown,
2008; Vallejo-Marín et al., 2010; Van Drunen et al., 2015).
If strong trade-offs between investment in sexual and asexual
reproduction occur, rapid clonal expansion may limit allocation
to flowering and seed production (Vallejo-Marín et al., 2010).
However, evidence for fitness trade-offs between sexual and
asexual reproduction is ambiguous (Van Drunen et al., 2015).
Although several studies support a trade-off between the two
strategies (e.g., van Kleunen et al., 2002; Thompson and Eckert,
2004; Liu et al., 2009; Van Drunen and Dorken, 2012), studies at
the genet level are scarce and many of them failed to detect such
trade-offs between reproductive strategies (Vallejo-Marín et al.,
2010; Van Drunen and Dorken, 2012).

Oxalis pes-caprae is a clonal tristylous species native to South
Africa and invasive throughout all Mediterranean regions of the
world. This species reproduces by two contrasting strategies:
asexually through the profuse production of bulbs (Pütz, 1994;
Vilà et al., 2006) and sexually trough a highly specialized
mechanism, tristyly and heteromorphic self-incompatibility
system (Ornduff, 1987) that promote cross-fertilization and
increased genetic diversity (Barrett, 2002). Sexual and asexual
reproduction occurs in both native and invaded areas, but the
contribution of each reproductive mode differs between ranges
(Castro et al., 2007, 2013; Ferrero et al., 2015). In the native range,
isoplethic populations occur (Ornduff, 1987; Turketti, 2010;
Ferrero et al., 2015), i.e., populations with similar proportions of
the three reciprocal style morphs (long-, mid-, and short-styled
morphs, hereafter L-, M-, and S-morph, respectively), indicating
that populations are in equilibrium and that sexual reproduction
is expected to be the main reproductive mode. In the invaded
range, two different scenarios appear to be occurring. Until very
recently, the main scenario was a transition toward clonality in
which the pentaploid (5x) S-morph was the dominant form, and
thus asexual reproduction through bulbs has been pointed as
the prevailing mechanism of reproduction and spread (Baker,
1965; Ornduff, 1987; Castro et al., 2007). Additionally, a complete

sterile double-flowered form was also reported to be successfully
spreading in south western Iberian Peninsula (Castro et al.,
2007). However, we have recently detected the re-acquisition of
sexual reproduction likely fueled by multiple introductions of
compatible mating partners [tetraploid (4x) L-, M-, and S-morph
individuals; Castro et al., 2013; Ferrero et al., 2015]. This is the
first study exploring the role of reproductive traits in the invasion
success of O. pes-caprae.

The objective of this study was to quantify changes in
reproductive traits in invasive populations of O. pes-caprae and
evaluate whether these differences could explain the prevalence
of some floral forms in the invaded range of the western
Mediterranean basin and be involved in the invasion success
of this species. We compared the investment in sexual and
asexual reproduction between native and invasive individuals,
and among sexual (4x L-, M-, and S-morph), predominately
asexual (5x S-morph) and obligated asexual individuals (4x
sterile double-flowered form) found in the invaded range.
Based on the invasion history of O. pes-caprae and on a
trade-off hypothesis between allocation to sexual and asexual
reproduction, we expected that, in the invaded range, selection
has promoted individuals with an increased capacity for
investment in asexual reproduction in detriment of sexual
reproduction, especially among the mostly clonal forms; in
sexual forms the trade-off between the two strategies might be
more dependent of the environmental context. Still, the low
sexual success of sexual forms in the invaded area (due to
low mate availability and/or genetic depauperated populations;
Castro et al., 2013; Ferrero et al., 2015) may generate a context
promoting asexuality in comparison with sexual forms from
native populations. Thus, we hypothesized that asexual forms
would have significantly higher asexual potential than sexual
forms in order to become dominant in the invaded range, and
that both would have significantly higher asexual potential than
sexual forms from the native area where sexual reproduction
prevails. Our findings are discussed in the light of biological
invasions and of the role of reproductive traits in successful
invasion.

MATERIALS AND METHODS

Plant Species
Oxalis pes-caprae L. (Oxalidaceae), Bermuda buttercup, is a
geophyte with a deeply buried annual bulb that produces
subterranean stems bearing a rosette of leaves and several
inflorescences of yellow flowers arranged in umbellate cymes
(Vilà et al., 2006; Sánchez-Pedraja, 2015). It is a tristylous species
with a heteromorphic self-incompatibility system (Ornduff,
1987). Thus, the production of viable offspring only occurs
after legitimate pollination between individuals with reciprocal
style morphs. Double-flowered sterile individuals have also been
frequently observed in the western Mediterranean basin (Castro
et al., 2007) and sporadically in South Africa (Salter, 1944;
Suda and Oberlander, personal communication). The Bermuda
buttercup has a high capacity for asexual reproduction through
a profuse production of bulbs. The main bulb produces a
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fasciculate root with contractile properties that grows deeper
in the soil some centimeters each year (Pütz, 1994), and
later in the season or under stressful conditions (e.g., soil
perturbation), the subterranean stems produce a high number
of small bulbs (Young, 1968; Verdaguer et al., 2010; authors
personal observations). Furthermore, O. pes-caprae is a polyploid
species, with diploid (2n = 2x = 14 chromosomes), tetraploid
(2n = 4x = 28 chromosomes), and pentaploid (2n = 5x = 35
chromosomes) individuals. In South Africa, all cytotypes have
been reported, although the 5x cytotype appears to be extremely
rare (Ornduff, 1987; te Beest et al., 2012; Ferrero et al., 2015).
Contrarily, the 5x is the dominant cytotype in the invaded ranges
worldwide, although in Australia and recently in the western
Mediterranean region, the 4x has also been reported (Symon,
1961; Michael, 1964; Castro et al., 2007, 2013).

The Bermuda buttercup was introduced into the
Mediterranean basin in the end of the 18th century, most
probably multiple times (Vignoli, 1937; Galil, 1968; Signorini
et al., 2011), and spread widely afterward. The species was
soon recognized as a weed in several Mediterranean areas
(e.g., Sicily, Hildebrand, 1887; Canary Islands, Morris, 1895;
Algeria, Ducellier, 1914; Balearic Islands, Knoche, 1922;
Malta and neighbor islands, Borg, 1927; Tunisia, Chabrolin,
1934), including Portugal where it was described as abundant
in orchards (Henriques, 1920; Vasconcelos and Moreira,
1976). Early introductions of the plant occurred due to
its ornamental value, and later through soil movement in
agriculture, horticulture, and gardening (Michael, 1964;
Signorini et al., 2011). Still, the routes of (repeated) introduction
to the Mediterranean basin and other invaded regions are not
clear.

Field Sampling
Extensive field sampling for bulb harvesting was conducted
during February and March 2010 in the invaded range of the
western Mediterranean basin (MB), and during August 2011 in
the native area, South Africa (SA). All the necessary permits
for plant collection were obtained. In the invaded range, an
additional effort was made to sample throughout the regions
where trimorphic populations and the sterile double-flowered
form are more common (Castro et al., 2007, 2013). All floral
forms and cytotypes found in this invaded range were included
in our study, i.e., the 4x L-morph, 4x M-morph, 4x S-morph,
5x S-morph, and the 4x sterile double-flowered individuals
(Supplementary Table 1). In the native range, the field sampling
was conducted across most of the latitudinal and longitudinal
distribution of the species (Salter, 1944; Supplementary Table 1).
Our extensive sampling in the native range confirmed previous
results showing that the 5x S-morph and the double-flowered
individuals are extremely rare in South Africa (Ferrero et al.,
2015). For this reason, only 4x L-morph, 4x M-morph, and
4x S-morph native plants were included in this comparative
study. In each population, we sampled bulbs from 10 individuals
per floral form, separated at least 5-m apart to avoid re-
sampling clones of the same individual. Sampled populations
were characterized for style morph frequency and cytotype
composition as described in Castro et al. (2013).

Common Garden Experiment
To investigate if there were differences in sexual and asexual
reproductive traits between native and invasive plants, we
conducted a common garden experiment at the Botanical Garden
of the University of Coimbra, where individual plants from both
areas were grown outdoors under similar optimal conditions. To
remove potential maternal effects, bulbs from SA and the MB
were grown for one and two generations, respectively, before
sexual and asexual investment traits were measured. In June
2012, all bulbs were harvested and stored in paper bags. During
September 2012, they were weighed and weight values were
recorded as initial bulb weight. The analysis of the dispersion
of the initial bulb weight allowed us to select one bulb per
individual matching similar overall mean weights (mean ± SD,
0.463 ± 0.086 g). In total, 338 bulbs were selected, representing
29 populations and 137 individuals from the native area, and
13 populations and 201 individuals from the invaded range
(Supplementary Table 1). This selection reflected the different
reproductive strategies found in SA and MB: sexual (4x L-,
M-, and S-morphs), predominately asexual (5x S-morph), and
obligated asexual (4x sterile double-flowered form).

Bulbs were individually planted ∼2.0 cm below the soil
surface in 2 L plastic pots (9.6 cm × 9.6 cm × 21.5 cm)
filled with commercial substrate, and pots were randomized at
the beginning of the experiment. Before flowering, plants were
covered with a mosquito net to avoid undesirable pollination. To
characterize sexual and asexual reproduction performance, we
measured the following traits: (a) bulb viability, (b) occurrence
of flowering; (c) floral display; (d) biomass invested in sexual
and asexual structures; and (e) production of diaspores through
sexual and asexual means (fruit, seed, and bulb production).
During the flowering peak, we classified each individual as
either vegetative or reproductive, and we collected one flower
per inflorescence, when produced, into individual paper bags
for later estimation of: (a) mean flower weight and (b) total
weight investment in flowers per plant. Inflorescences were
periodically monitored, and were collected when senescent,
allowing us to simultaneously assess: (a) the total number of
flowers produced per plant, i.e., floral display, and (b) the total
investment in inflorescences measured as dry weight. Total and
average investments in the production of sexual structures were
estimated for each plant. Fruit and seed production were obtained
by cross pollinating three flowers per plant using reciprocal style
morphs of the same area of origin. Fruit set was calculated as
the proportion of flowers that developed into fruits and seed
production as the mean number of seeds per fruit. We calculated
a measure of sexual potential for each plant by multiplying the
total number of flowers produced by the mean fruit and seed
production. Bulbs were harvested by the end of the season. The
investment in asexual structures was quantified by assessing the
number of bulbs produced per plant, and total and mean bulb
weight per plant.

Statistical Analysis
Data was grouped according to the following criteria: (a) area
of origin (South Africa native range, SA, and invaded range of

Frontiers in Plant Science | www.frontiersin.org 4 June 2016 | Volume 7 | Article 874

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00874 June 22, 2016 Time: 13:26 # 5

Castro et al. Shifts in Reproductive Traits after Introduction

the Mediterranean Basin, MB) and (b) reproductive strategy. We
defined reproductive strategy as: sexual, including 4x plants with
morphologically functional flowers (Sex); predominantly asexual,
5x S-morph plants that reproduce mostly asexually despite some
sporadic ability to produce viable offspring (Asex; Castro et al.,
2013; Costa et al., 2014, in press); and, obligated asexual, 4x
double-flowered sterile mutants (St). Accordingly, all individuals
were assigned to one of the following groups: South African 4x
sexual forms (SA4xSex), Mediterranean basin 4x sexual forms
(MB4xSex), Mediterranean basin 5x predominantly asexual form
(MB5xAsex) and Mediterranean basin 4x obligated asexual form
(MB4xSt, double-flowered sterile mutant).

The above groups were defined as fixed factor in generalized
linear mixed models (GLMM) to assess differences in sexual
and asexual traits. GLMMs enabled us to model variables that
did not completely fulfill the assumptions of a standard linear
model and had the advantage to allow the incorporation of
random factors in the models (Bolker et al., 2009). Although
the initial bulb weight was fairly homogenous, this variable
was included as covariate to account for possible differences
caused by bulb weight. Population and individual were defined
as random factors and these were removed from the models
whenever their variance was lower than the variance of the
residuals (Bolker et al., 2009). When both random factors were
removed, a generalized linear model (GLM) was used instead
(Supplementary Table 2). A binomial distribution with a logit
link function was used to model bulb viability and probability
of flowering; a Poisson distribution with a log link function
was used to model the number of flowers, inflorescences and
bulbs per plant; and a Gaussian distribution with an identity
link function was used to model the mean number of flowers
per inflorescence, mean flower and inflorescence weight, total
flower and inflorescence weight per plant, total weight of
sexual structures per plant, fruit set (arcsine transformed),
mean seed production, sexual potential, mean and total bulb
weight. In all cases, differences between least-square means were
tested pairwise through multiple comparisons. To evaluate the
existence of trade-offs between sexual and asexual investments,
correlations between the amount of biomass invested in
sexual and asexual structures were calculated for the entire
dataset and for each group separately. All statistical analyses
were performed in R version 3.1.1 (R Core Team, 2014)
using the packages “car” for GLMs and Type-III analysis of
variance (Fox and Weisberg, 2015), “nlme” for linear and non-
linear mixed models (Pinheiro et al., 2015), and “multcomp”
for multiple comparisons after Type-III analysis of variance
(Hothorn et al., 2008), and “stats” for GLMs (R Core Team,
2014).

RESULTS

Bulb Viability and Probability of
Flowering
Results from all statistical analyses are summarized in
Supplementary Table 2. Bulb viability was high, varying between
88% in invasive sexual individuals (MB4xSex) and 94% in native

sexual individuals (SA4xSex), with no statistically significant
differences being observed among groups (χ2

3,338 = 3.49,
P= 0.322; Supplementary Figure 1A).

The probability of producing floral structures differed among
groups (χ2

3,305 = 11.23, P = 0.011), with the obligated asexual
individuals (MB4xSt) having a significantly higher probability to
remain vegetative than the other invasive groups (i.e., MB4xSex
and MB5xAsex; P < 0.05), while native sexual plants had
intermediate values between the two extremes (Supplementary
Figure 1B).

Sexual Traits: Floral Display
Floral display differed among groups in terms of the number
of flowers per inflorescence (χ2

3,276 = 19.07, P < 0.001),
number of inflorescences per plant (χ2

3,276 = 47.89, P < 0.001)
and total number of flowers per plant (χ2

3,276 = 31.68,
P < 0.001; Figures 1A–C). The native sexual plants and the
invasive predominantly asexual plants (MB5xAsex) produced
inflorescences with more flowers than the invasive sexual
individuals (MB4xSex; P < 0.05), while the obligated asexual
form (MB4xSt) had a lower and highly variable mean value not
differing from the other three groups (Figure 1A). The groups
with ability for sexual reproduction (SA4xSex and MB4xSex),
even if only sporadically (MB5xAsex), produced significantly
more inflorescences than the obligated asexual individuals,
resulting in larger total floral display per plant (P < 0.05;
Figures 1B,C).

Significant differences among groups were also observed in
the biomass invested for the production of sexual structures
(Figures 1D–F, Supplementary Figure 1), namely in the mean
flower and inflorescence weight (χ2

3,276 = 820.80, P < 0.001
and χ2

3,276 = 51.78, P < 0.001, respectively; Figures 1D–E),
total flower and inflorescence weight per plant (χ2

3,276 = 28.08,
P < 0.001 and χ2

3,276 = 44.39, P < 0.001, respectively;
Supplementary Figures 1C,D), and total weight of sexual
structures per plant (χ2

3,276 = 32.30, P < 0.001; Figure 1F).
Obligated asexual individuals (MB4xSt) had significantly heavier
flowers, followed by the MB5xAsex, and the native and
invasive sexual individuals had lower flower weights (P < 0.05;
Figure 1D). The same trend was observed for total flower
weight per plant, except for the obligated asexual individuals
(MB4xSt) which produced less inflorescences (Figure 1B) and
consequently less flowers (Figure 1C), lower total flower weight
(Figure 1F) and reduced investment in total flower biomass
(Supplementary Figure 1C). A different scenario was found for
mean inflorescence weight, which was significantly lower for the
obligated asexual individuals and sexual native plants. Sexual
invasive individuals presented intermediate inflorescence weight,
and invasive predominantly asexual plants had significantly
heavier inflorescences (P < 0.05; Figure 1E; a similar pattern
is observed for the total inflorescence weight per plant;
Supplementary Figure 1D). Despite the differences in the
number and biomass of reproductive structures among all
groups, the total investments in the production of sexual
structures per plant did not differ among groups except for
the MB5xAsex, which presented significantly higher weights
(P < 0.05; Figure 1F).
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FIGURE 1 | Floral display and biomass invested in sexual reproductive structures among different forms of Oxalis pes-caprae from its native and
invaded areas and with distinct reproductive strategies: South African 4x sexual forms (SA4xSex), Mediterranean basin 4x sexual forms (MB4xSex),
Mediterranean basin 5x predominantly asexual form (MB5xAsex), and Mediterranean basin 4x obligated asexual form (MB4xSt, sterile
double-flowered form). (A) Mean number of flowers per inflorescence; (B) Mean number of inflorescences per plant; (C) Total number of flowers per plant;
(D) Mean flower weight (mg); (E) Mean inflorescence weight (mg); (F) Total weight of sexual structures per plant (mg). Values are given as model-adjusted
back-transformed least-square means and 95% confident intervals. Significant differences among factors are indicated with different letters (P < 0.05).

Production of Dispersal Units: Sexual
and Asexual Strategies
Sexual fitness differed significantly among groups (fruit set:
χ2

2,251 = 47.38, P < 0.001; seed production: χ2
2,246 = 89.44,

P < 0.001; and sexual potential: χ2
2,251 = 15.77, P < 0.001).

Fruit and seed production were significantly lower in invasive
plants than in native ones and, among invasive groups, it was
significantly lower in the predominantly asexual individuals
(P < 0.05; Figures 2A,B). The calculation of a measure of
sexual potential revealed that native sexual individuals had a
significantly higher success than invasive plants (P < 0.05);
however, no significant differences were detected in sexual
potential between sexual invasive and predominantly asexual
invasive individuals (Figure 2C).

Asexual traits also differed significantly among groups, either
measured as number of bulbs (χ2

3,305 = 350.13, P < 0.001),
mean bulb weight (χ2

3,305 = 27.36, P < 0.001) or total bulb
weight per plant (χ2

3,305 = 211.13, P < 0.001). Invasive sexual
plants produced more bulbs per plant than predominantly
asexual individuals, which also produced more bulbs than native
sexual and invasive obligated asexual individuals (P < 0.05;
Figure 2D). However, predominantly asexual individuals had
significantly heavier bulbs than native and invasive sexual plants
(P < 0.05), while obligated asexuals had fairly heavy, but

highly heterogeneous bulbs that did not differ significantly
from the other invasive groups (Figure 2E). There was a clear
and significantly higher investment in total bulb weight by
the invasive sexual and predominantly asexual plants than the
other groups, as well as in the obligated asexual individuals in
comparison with native sexual plants (P < 0.05; Figure 2F).

Trade-off between Sexual and Asexual
Investment
No trade-off was observed in the biomass invested in sexual and
asexual structures. On the contrary, the production of sexual
structures was positively correlated with the biomass invested in
the production of bulbs, except for invasive sexuals and obligated
asexuals (total: r = 0.214, P < 0.001; analyses by group: SA4xSex:
r = 0.286, P = 0.0182; MB4xSex: r = −0.0223, P = 0.800;
MB5xAsex: r = 0.449, P < 0.001; MB4xSt: r = 0.183, P = 0.381;
Figure 3).

DISCUSSION

Our results indicate the occurrence of evolutionary changes in
the reproductive traits of invasive populations of O. pes-caprae.
Indeed, most of the traits evaluated, differed between native
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FIGURE 2 | Production of sexual and asexual diaspores among different forms of Oxalis pes-caprae from its native and invaded areas and with
distinct reproductive strategies: South African 4x sexual forms (SA4xSex), Mediterranean basin 4x sexual forms (MB4xSex), Mediterranean basin 5x
predominantly asexual form (MB5xAsex) and Mediterranean basin 4x obligated asexual form (MB4xSt, sterile double-flowered form). (A) Fruit set,
given as arcsine of the proportion of flowers developing into fruit; (B) Seed production, given as the mean number of seeds per fruit; (C) Sexual potential, given as a
measure of sexual ability of the plant obtained multiplying the number of flower produced in a plant by the fruit and seed production; (D) Mean number of bulbs per
plant; (E) Mean bulb weight (mg); (F) Total weight of the bulbs produced per plant (mg). Values are given as model-adjusted back-transformed least-square means
and 95% confident intervals. Significant differences among factors are indicated with different letters (P < 0.05).

and invasive populations and among individuals with different
reproductive strategies when grown in the same environment.
In particular, we found that: (1) overall, plants with sexual
ability (including the 5x S-morph) had higher probability of
flowering and larger floral displays than the sterile forms; (2)
the total investment in the production of floral structures was
significantly higher in the 5x form than in the remaining forms;
this suggests an effect of the ploidy level in the overall size of the
structures and, in the case of the sterile double-flowered form,
a trade-off between the number of flowering structures and the
resources needed to produce them (i.e., heavier sterile flowers
resulting in lower number of inflorescences); (3) differences in
the production of bulbs and seeds revealed that native plants had
higher sexual fitness, while a transition toward clonality was clear
for the invasive forms; (4) differences were also observed among
invasive individuals, with the sexual forms producing more
dispersal units (seeds and small bulbs), the predominantly asexual
form producing an inter-medium number of large bulbs, and
the sterile form being apparently less aggressive and producing
less, yet large, bulbs; (5) finally, no trade-off between sexual
and asexual investments was observed. Below, we discuss our
results in light of the complex invasion history of O. pes-caprae

and draw hypotheses on how reproductive traits could have
been involved in the invasion success and in the prevalence of
some forms in the invaded range of the western Mediterranean
region.

Reproduction: Traits and Strategies
Reproduction determines the number and genetic composition
of dispersal units, being vital for the establishment and spread of
plant populations after long-distance dispersal (e.g., Sakai et al.,
2001; Ness et al., 2010). The relative contribution of different
reproductive modes varies depending on the ecological and
genetic factors under which colonizers are subjected (e.g., Dorken
and Eckert, 2001; Eckert, 2002; Herben et al., 2015). Our results
showed remarkable differences in several reproductive traits
between ranges and among forms with different reproductive
strategies. Overall, a transition to clonality was observed among
invasive plants: native individuals had a higher sexual fitness than
invasive ones, which in contrast had higher asexual fitness than
natives. These observations matched our expectations mainly by
two reasons, described below.

Firstly, genetic diversity of native populations is higher
than that of invasive ones (Ferrero et al., 2015), and this is
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FIGURE 3 | Correlation between biomass invested in the production of sexual and asexual structures among different forms of Oxalis pes-caprae
from its native and invaded areas and with distinct reproductive strategies: South African 4x sexual forms (SA4xSex), Mediterranean basin 4x sexual
forms (MB4xSex), Mediterranean basin 5x predominantly asexual form (MB5xAsex) and Mediterranean basin 4x obligated asexual form (MB4xSt,
sterile double-flowered form).

expected to affect the sexual fitness. Sexual reproduction is the
main mechanism of reproduction in the native range, where
floral polymorphism promotes outcrossing and thus genetic
diversity and frequency dependent selection governs isoplethic
populations (Ornduff, 1987; Turketti, 2010; Ferrero et al., 2015).
Contrarily, invasive populations are highly constrained by the
scarcity of compatible mates (Castro et al., 2007, 2013), being
dominated by 5x S-morphs with residual sexual reproduction
(Costa et al., 2014, in press), and thus with low recombination
probabilities. Additionally, strong founder effects led to a
decrease in genetic diversity of invasive populations (Ferrero
et al., 2015). Altogether, these factors significantly impacted
genetic composition of invasive populations and, consequently,
plant fitness under outcross pollinations. Genetic depauperation
after long distance dispersal has been described in several
other invasive species (e.g., Dlugosch and Parker, 2008; Zhang
et al., 2010), and although multiple introductions can ameliorate
their consequences (Novak and Mack, 2005; Dlugosch and
Parker, 2008; Simberloff, 2009), negative impacts of low genetic
diversity for plant reproduction have been shown (Barrett, 2002;
Crawford and Whitney, 2010). However, genetic bottlenecks do
not necessarily hinder the adaptive potential of invasive species
(Barrett et al., 2008; Dlugosch and Parker, 2008; Rollins et al.,
2013).

Secondly, under unfavorable conditions for sexual
reproduction in invasive populations, i.e., strong mate
limitation (either due to monomorphic populations or due
to the predominance of asexual 5x individuals; Baker, 1965;
Ornduff, 1987; Castro et al., 2007, 2013; Ferrero et al., 2015),

we expected that selection would benefit individuals with an
increased capacity for investment in asexual reproduction.
Indeed, uniparental reproduction has been proposed to be
selectively advantageous under scenarios of strong mate
limitation, such as invasions, rapid range expansion, island
colonization and meta-population dynamics (Baker’s Law;
Baker, 1965; Pannell et al., 2015). Our results corroborate
this prediction: regardless of the reproductive strategy,
invasive O. pes-caprae forms invested significantly more in
asexual reproduction than natives. An enhancement in clonal
reproduction in invasive populations in comparison with natives
has also been observed in several other species. For example,
invasive Butomus umbellatus individuals were more likely to
produce bulbils than native individuals (Brown and Eckert,
2005); rapid selection of genotypes with stronger vegetative
growth was observed in Phalaris arundinacea (Lavergne
and Molofsky, 2007), and greater vegetative reproduction in
the invasive ranges of Achillea millefolium and Hypericum
perforatum than on their native ranges (Beckmann et al., 2009).
Interestingly, differences in bulb production have also been
observed among invasive populations of O. pes-caprae in the
Mediterranean basin, with insular populations having higher
dispersal potential than continental ones (Vilà and Gimeno,
2006). Clonal reproduction was one of the traits identified by
Baker (1965) for the “ideal weed” and there are several studies
addressing invasive species traits that support this reproductive
strategy as one of the features involved with successful invasions
(e.g., Pyšek and Richardson, 2007; Silvertown, 2008; Marco et al.,
2010).
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As expected, individuals with the ability to reproduce sexually,
including the predominantly asexual plants, invested more in the
production of floral structures than the sterile form. This is in
accordance with a strategy to promote sexual reproduction either
by investing in attractive floral display (i.e., larger inflorescences,
inflorescences with larger flower displays) or by producing more
sexual potential units (Barrett, 2002). A trade-off between the
number of inflorescences produced and the considerable amount
of energy necessary to produce double-flowers might explain the
reduced floral display of the sterile double-flowered form (see
below). Interestingly, the 5x form produced larger flowers and
larger inflorescences that resulted in a higher biomass investment
without a detrimental impact in the floral display. The production
of larger reproductive structures is likely related with the ploidy
level, since polyploidy is hypothesized to drive significant changes
in cell size and, consequently, in overall organ size (Levin, 2002).
Apparently, this higher investment did not lead to allocation
trade-offs since the 5x cytotype produced similar floral display to
other sexual forms.

Besides the differences in the production of sexual and
asexual diaspores detected between ranges, different strategies
were also observed among invasive forms. As expected, sexual
fitness was higher in the 4x sexual forms than in the 5x form,
and null in the sterile double-flowered form where the sexual
organs were replaced by petals due to a mutation in the genes
responsible for the floral development (Weigel and Meyerowitz,
1994). The lower sexual fitness of the 5x individuals after
outcrossing is mainly due to its odd ploidy level; although these
5x individuals are able to produce some viable gametes, they
also produce unviable gametes with variable ploidies (Vignoli,
1937; Signorini et al., 2013; Costa et al., 2014), diminishing
significantly the production of offspring through seed. However,
and as described above, the 5x individuals produced slightly
larger floral displays and bigger floral structures; these features
increase the number of gametes and the attractiveness of the
plants for pollinators, which might contribute to ameliorate
the low sexual potential of the 5x individuals. Additionally,
differences in the asexual traits were also detected among invasive
forms. Under optimal resource conditions, the obligated asexuals
invested significantly less in bulb production than the other
invasive forms, producing larger bulbs but in smaller amounts
(like native plants) than the other invasive forms. Interestingly,
the sexual and predominately asexual forms allocated a similar
amount of energy to the production of bulbs; however, while
the former invested resources in producing many small bulbs,
the later invested in less but larger bulbs. These patterns agree
with trade-off models for propagule number and size which
predict that in optimal environments it is preferable to maximize
offspring quantity, whereas in stressful conditions (such as the
limitation of sexual partners) it is preferable to invest in offspring
quality (Smith and Fretwell, 1974; Sadras, 2007). Based on this
model, we could hypothesize that selective pressures during
the invasion of the predominantly asexual form might have
benefited larger bulbs, while selective pressures over asexual
propagule production are not expected to be so strong for the
sexual forms that have an additional reproductive mode (Costa
et al., unpublished results). Oxalis pes-caprae bulb weight has

been pointed as an important feature of the invasion process,
especially under stressful conditions (Lane, 1984; Sala et al.,
2007), with parental bulb weight significantly impacting plant
biomass in shaded environments, as evident by the production
of significantly more leaves in plants originated from bigger
bulbs than from smaller ones (Verdaguer et al., 2010). However,
although fitting nicely the results, there are several lines of
evidence that do not completely support this hypothesis and
make our findings difficult to interpret. First, it is difficult to
disentangle the effects of ploidy level from those related with
evolutionary changes. Although, bulb size of the offspring of 4x
sterile double-flowered form and the 5x S-morph were similar,
the larger bulbs in the 5x individuals might be driven by ploidy,
similarly to the pattern observed in the flowering structures
(results herein) and to the patterns observed in other polyploid
complexes (Levin, 2002). Second, 5x S-morph individuals showed
that parent bulb weight has a small overall effect on O. pes-
caprae plant biomass (Sala et al., 2007; Verdaguer et al., 2010). In
general, bulbs emerged successfully and vigorously regardless of
their sizes (Vilà et al., 2006; Verdaguer et al., 2010), still, parent
bulb size might be particularly important for plant emergence
and initial development, depending on the conditions where the
plant is growing (Vilà et al., 2006; Sala et al., 2007; Verdaguer
et al., 2010). Regardless of the effects in early stages, bulb size
was not determinant for the development of adult plants and
subsequent offspring production, possibly because further plant
growth might become independent of this storage organ once the
plant starts to photosynthesize. Finally, the production of bulbs
in O. pes-caprae was shown to be plastic and highly dependent
of nutrient availability (Sala et al., 2007). If bulb weight has
no fitness advantage, then producing many small bulbs would
be advantageous, especially when mate limitation is strong and
no allocation trade-off between sexual and asexual investment
is observed (see below). In this context, sexual invasive forms
have a higher dispersal potential, through both sexual and
asexual means than the other invasive forms and might become
widespread in the future.

Bermuda Buttercup Invasion History:
What Have We Learned So Far?
The Bermuda buttercup is a classic example in biological
invasions, known as a strictly asexual form that successfully
spread in Mediterranean climate regions of the world (5x
S-morph; Baker, 1965). However, the origin of this invasive
form is still unclear and the colonization history revealed to be
more complex and dynamic than previously envisaged. Native
populations are composed of the 4x cytotype, with the 5x
S-morph being extremely rare (Michael, 1964; te Beest et al.,
2012; Signorini et al., 2013; Ferrero et al., 2015). Contrarily, the
5x S-morph dominates all Mediterranean climate regions, except
in Australia where both asexual (monomorphic 5x S-morph
populations) and sexual populations (4x trimorphic populations)
have been reported (Symon, 1961; Michael, 1964; Ferrero,
personal observations). The most accepted hypothesis is that
the 5x S-morph has been originated from 4x individuals in the
introduced range and subsequently introduced in several areas of
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the world (Krejčíková et al., 2013; Signorini et al., 2013; Ferrero
et al., 2015; most probably multiple times in the Mediterranean
basin, Signorini et al., 2011), including South Africa, where it
was recently reported in a new semi-natural location for the first
time (Ferrero et al., 2015). The combination of several factors,
including strong heteromorphic incompatibility system, lack of
compatible mates and odd ploidy, constrained the production
of dispersal units mostly to asexual means, and consequently
the successful spread of this form in introduced ranges became
dependent on bulb production (Baker, 1965; Ornduff, 1987). Our
results strongly support this hypothesis showing a clear selection
toward clonality through a significantly increase in the number of
bulbs as well as in their size (the latter driven or not exclusively
by the ploidy level) in comparison with natives. Producing more
bulbs would be selectively advantageous since it increases the
number of propagules, while larger bulbs may confer significant
advantages under stressful environments, allowing faster plant
emergence and providing more reserves, which will translate into
larger plants (Vilà and Gimeno, 2006; Sala et al., 2007; Verdaguer
et al., 2010; Tavares, 2014).

However, the story does not end here. In the western
Mediterranean region, invasive populations seem to be changing
very rapidly (Castro et al., 2007, 2013; Costa et al., 2014, in
press). Molecular studies have shown an invasion punctuated by
multiple introductions of other floral morphs comprised of the
tetraploid ploidy level (Ferrero et al., 2015), and field surveys
detected a reacquisition of sexual reproduction in this region
(Castro et al., 2013; Costa et al., 2014, in press). Although
the introduction or incipient occurrence of M- and L-morphs
would constitute a source of compatible mates, these individuals
are still under a scenario of strong mate limitation due to the
dominance of the predominantly asexual 5x S-morph. Thus, they
will be subjected to similar strong selective pressures toward
uniparental reproduction. Our results clearly support that these
new individuals have also diverged from native populations
and present an inversion toward uniparental reproduction via
asexual reproduction (results herein), but also via changes in the
strength of the incompatibility system (Costa et al., unpublished
results). Additionally, our results show that these sexual forms
have superior reproductive fitness in comparison with the 5x
S-morph and the 4x sterile double-flowered form. So, how can
we explain the distribution patterns in the western Mediterranean
basin? Based on the reproductive traits, the current distribution
patterns can only be explained under a scenario of different
introduction timings, first with the introduction and spread of
the 5x individuals and more recently with the introduction of 4x
sexual plants that are starting to become more dominant than
previously documented. Given the superior reproductive fitness
of the 4x sexual individuals, they are expected to become more
dominant in the future. Still, other life-history transition stages
and ecological responses, including bulb viability and emergence,
competitive ability, resistance to herbivory and response to soil
disturbance, need to be addressed in future studies in order to
fully characterize the fitness of each form.

The successful spread of the sterile double-flowered form
in south–west Iberian Peninsula is particularly intriguing. This
form had the lowest dispersal potential among invasive forms

and therefore it is likely under a competitive disadvantage with
other floral forms. Recent molecular studies have shown a
close relationship between these individuals and native plants,
supporting the occurrence of several multiple introductions.
These multiple introductions might have provided a sufficiently
high number of propagules to mediate a successful invasion
process. Although species traits are extremely important, several
studies have shown that propagule pressure is also a determinant
factor for successful invasion (Novak and Mack, 2005; Colautti
et al., 2006; Dlugosch and Parker, 2008; Simberloff, 2009).
Interestingly, propagule pressure was also shown to be important
in colonization by O. pes-caprae along altitudinal gradients
within invaded areas (Ross et al., 2008). Additionally, besides
ecological and life history traits, human mediated dispersal (e.g.,
in earlier stages as ornamental plant, and currently through
soil movements in agriculture, horticulture and gardening, or
through land translocations during road constructions; Michael,
1964; Signorini et al., 2011; Castro et al., 2013) might have also
promoted the dispersal of this invasive form, as well as the others
(Pyšek and Richardson, 2007).

Trade-offs between Sexual and Asexual
Strategies
No trade-off between the production of sexual and asexual
structures has been detected in O. pes-caprae. These observations
agree with studies in other species (Vallejo-Marín et al., 2010;
Van Drunen and Dorken, 2012) and with previous experiments
with O. pes-caprae (Vilà and Gimeno, 2006; Verdaguer et al.,
2010). This lack of a trade-off might be explained by the
particular developmental processes of the plant as the production
of flowering structures and bulbs are asynchronous in O. pes-
caprae likely reducing the competition for resources between
both reproductive processes. In the first half of the plants’ life
cycle, most of the energy is redirected to growth and flowering,
and only afterward, when the aboveground part of the plant starts
to senesce, energy is directed to the production of underground
structures, namely to the production of bulbs (Pütz, 1994;
Verdaguer et al., 2010). Indeed, we observed the opposed pattern,
with a positive correlation between bulb and flower biomass. This
could simply be a reflection of plant size rather than resource
management strategies.

CONCLUSION

Different sexual and asexual reproductive traits were quantified
between native and invasive populations, as well as among
different forms within invasive populations. Different
reproductive strategies and ecological and genetic contexts
created by long-distance dispersal seem to generate divergent
selective pressures in several sexual and asexual reproductive
traits. The introduction process seems to have promoted
clonal reproduction and this is most probably the major trait
driving the invasion success of O. pes-caprae; however, invasive
sexual forms have increased dispersal potential and additional
means to produce dispersal units and promote heterozygosity.
Consequently, invasive sexual forms are expected to be in
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competitive advantage in relation to the predominately asexual
and obligated asexual plants, and thus could become widespread
in the invaded range in the future. Historical processes, with the
introduction of the predominantly asexual 5x S-morph first and
more recently of the 4x sexual morphs, were probably important
in establishing the current distributional patterns of the different
forms in the western Mediterranean basin. This study shows
that invasion processes can be incredibly complex and dynamic,
while the interaction between ecological and genetic constraints
determined by the invasion process might result in different
reproductive strategies which in turn determine the success of
invasive populations.
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