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Diagonistic dyspraxia (DD) is by far the most spectacular manifestation reported by
sufferers of acute corpus callosum (CC) injury (so-called “split-brain”). In this form of alien
hand syndrome, one hand acts at cross purposes with the other “against the patient’s
will”. Although recent models view DD as a disorder of motor control, there is still little
information regarding its neural underpinnings, due to widespread connectivity changes
produced by CC insult, and the obstacle that non-volitional movements represent for
task-based functional neuroimaging studies. Here, we studied patient AM, the first
report of DD in patient with complete developmental CC agenesis. This unique case also
offers the opportunity to study the resting-state connectomics of DD in the absence of
diffuse changes subsequent to CC injury or surgery. AM developed DD following status
epilepticus (SE) which resolved over a 2-year period. Whole brain functional connectivity
(FC) was compared (Crawford-Howell [CH]) to 16 controls during the period of acute DD
symptoms (Time 1) and after remission (Time 2). Whole brain graph theoretical models
were also constructed and topological efficiency examined. At Time 1, disrupted FC
was observed in inter-hemispheric and intra-hemispheric right edges, involving frontal
superior and midline structures. Graph analysis indicated disruption of the efficiency of
salience and right frontoparietal (FP) networks. At Time 2, after remission of diagnostic
dyspraxia symptoms, FC and salience network changes had resolved. In sum,
longitudinal analysis of connectivity in AM indicates that DD behaviors could result from
disruption of systems that support the experience and control of volitional movements
and the ability to generate appropriate behavioral responses to salient stimuli.
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This also raises the possibility that changes to large-scale functional architecture
revealed by resting-state functional magnetic resonance imaging (fMRI) (rs-fMRI) may
provide relevant information on the evolution of behavioral syndromes in addition to that
provided by structural and task-based functional imaging.

Keywords: alien hand, callosal agenesis, disconnection syndrome, graph theory, resting-state, functional
connectivity, epilepsy

INTRODUCTION

Acute damage to the corpus callosum (CC) may generate
a cluster of clear-cut inter-hemispheric disconnection (IHD)
‘‘split-brain’’ symptoms reflecting the inability to convey
sensory information to contralateral motor or linguistic output
areas (Tomasch, 1954; Sperry, 1968a). In rare cases it may
also produce diagonistic dyspraxia (DD; Akelaitis, 1945), a
fascinating neuropsychological syndrome involving involuntary
inter-manual conflicts where one hand acts at cross purposes
with the other. DD has remained the most representative
‘‘alien hand’’ syndrome, a term encompassing a variety
of seemingly goal-directed movements occurring after a
brain insult, performed without the intention of the actor
(Scepkowski and Cronin-Golomb, 2003; Biran and Chatterjee,
2004; Berlucchi, 2012). Although DD has been observed in cases
of acquired CC damage, to our knowledge it has never been
described in developmentally-based CC dysgenesis.

Agenesis of the CC (AgCC), occurring in 1/4000 live
births (Paul et al., 2007), may be partial or complete; may
be found in isolation (primary AgCC) or as part of a wider
developmental disorder (Paul et al., 2007); and is commonly
associated with epilepsy (Taylor and David, 1998). In contrast
to acquired lesions of the CC, primary AgCC has an overall
limited and subtle impact on cognition and subjects with
AgCC do not display clinically relevant IHD symptoms (Sperry,
1968b). To account for this puzzling fact—known as ‘‘Sperry’s
paradox’’ (Sperry, 1968a)—compensatory structural pathways
have been suggested. Neuroimaging has recently provided
support for macrostructural changes in AgCC, evidencing intra-
and interhemispheric whitematter tracts providing bilateral links
via the posterior and anterior commissures (Tovar-Moll et al.,
2014). These are likely to compose, at least partly, the set of
compensatory pathways preserving inter-hemispheric transfer.
These observations are corroborated by a resting-state functional
magnetic resonance imaging (rs-fMRI) study showing preserved
functional connectivity (FC) between homotopic cortices in
AgCC subjects (Tyszka et al., 2011). Additionally, intrinsic
connectivity networks (ICNs) in the AgCC group were similar
to those identified in controls, suggesting that global functional
architecture remains largely preserved in AgCC. Paralleling the
clinically-defined Sperry’s paradox, these findings stand in sharp
contrast with the drastic disruption of inter-hemispheric FC
observed following surgical interruption of the CC (Johnston
et al., 2008).

Here, we report on an epileptic AgCC patient who developed
pervasive DD behaviors following status epilepticus (SE),

with gradual improvement over 2-years. Patient AM offers
a rare opportunity to longitudinally study the functional
underpinning of DD, without the major impact produced by
acute callosal section/lesions on connectomics. By examining
rs-fMRI connectivity via edgewise comparison of FC and graph
theoretical modeling, we demonstrate large scale disorganization
and reorganization paralleling the emergence and extinction of
IHD and DD symptoms.

CASE REPORT

Patient History
Patient AM (45 years at first scan) is an ambidextrous man
with a long-standing history of complex partial seizures
in the setting of mesial temporal lobe epilepsy. AM was
first referred to our center in 2011. He had been treated
by carbamazepine (800 mg/day) and phenobarbital (100
mg/day) over the past two decades and partial seizures had
occurred on a monthly basis. Awake EEG demonstrated
left temporal slowing and spikes. Brain MRI revealed left
hippocampal sclerosis, along with complete AgCC and
posterior commissure, but an intact anterior commissure.
A first neuropsychological assessment was undertaken in
September 2011. On the Wechsler Adult Intelligence Scale-III
(WAIS-III), he demonstrated low to average global cognitive
functioning (full IQ = 74), with mild dissociation between
verbal and performance scales (respectively VIQ = 80 and
PIQ= 70).

In March 2012, AM was admitted for SE of unknown
duration, that left him with a right-sided motor weakness
(‘‘Todd’s paralysis’’) that resolved over a 2-week period. Routine
structural brain MRI was unchanged. Lamotrigine was added
to his previous medication regimen (up to 400 mg/day). One
month later, and despite full resolution of epileptic seizures,
he started noticing a series of embarrassing and distressing
behaviors, described as unpredictable and uncontrollable, and
occurring on a daily basis. The most relevant examples being:
(i) walking in his neighborhood, his right hand would suddenly
grab a corner post rendering him unable to turn; AM would
then remain stuck to the post for several minutes, desperately
turning around, until his hand permitted disengagement; he
would then trap his right hand in his jacket to keep walking;
(ii) while driving his car, his right hand would suddenly turn the
steering wheel to the left, despite intending to make a right-turn;
he observed similar behaviors with his right foot, which would
maintain pressure on the accelerator pedal whilst intending to
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slow down; (iii) while putting on his trousers with his left hand,
his right hand would pull them off; the same behaviors could
also occur while attempting to don a pair of socks or a sweat
shirt, and several times for each piece of clothing; and (iv) his
right hand would ‘‘play tricks’’ on him, spiriting away his wallet
from the back pocket of his pants, and refusing to give it back
to him.

Neuropsychological Evaluations
AM underwent a detailed assessment in September 2012
(6 months after SE onset). Full IQ was 69, with stable verbal IQ
(VIQ = 80) but slightly decreased performance IQ (PIQ = 63).
While the DD symptoms constituted the main interferent
with AM’s quality of life, additional neuropsychological testing
revealed further subtle manifestations of IHD. Right-sided
constructional apraxia, right ideomotor apraxia and right
visual anomia were evidenced in addition to the right-
handed DD described above. Only rightward constructional
apraxia is concordant with expectations of IHD in right-
handed subjects, and the pattern of deficits in Patient AM
suggests a bi-hemispheric organization of language, gestural and
constructional skills, with right hemisphere prevalence. With the
exception of enduring ideomotor problems in terms of tool-use
pantomimes with his right hand, follow-up indicated significant
amelioration (September 2013) and extinction (September
2014) of all neuropsychological symptoms (see Supplementary
Figure 1). In parallel, DD behaviors were reported as very
occasional in September 2013 and had totally resolved over the
6 months preceding the final evaluation in September 2014.
At this time, awake EEG was within normal range aside from
occasional left temporal slowing and spikes (see Supplementary
Figure 2).

PROCEDURE

MRI Acquisition
Patient AM was scanned in December 2012 (Time 1—acute
phase) and February 2015 (Time 2—remission). Sixteen control
(male, right-handed, mean age: 41 ± 16 years) cross-sectional
data-sets were used for comparison. All controls underwent a
pre-scan medical interview and had no history of neurological or
psychiatric illness, substance abuse or psychotropic medication.
Participants gave informed consent to take part in this study,
with local Ethics Committee approval (Comité de Protection des
Personnes Sud Méditerranée 1).

A 3T Verio scanner (Siemens, Erlangen, Germany) with a
12 channel receiver coil was used to obtain structural high
resolution T1-weighted images magnetisation-prepared rapid
gradient-echo (MP-RAGE); repetition time (TR) = 1900 ms,
echo time (TE) = 2.2 ms, inversion time (TI) = 900 ms,
1 × 1 × 1 mm voxels) and 15 min of functional gradient echo
planar images (250 volumes, TR = 3600 ms, TE = 28 ms, flip
angle = 90◦, 50 axial slices interleaved, 2.5× 2.5 mm, 122× 122
matrix). Participants were asked to close their eyes and not to
think about anything in particular in a taskless ‘‘resting-state’’
condition.

fMRI Processing and Graph Construction
For a full description of processing and graph construction please
see Ridley et al. (2015). Briefly, after realignment and slice-timing
(SPM8, Wellcome Trust Centre, London, UK), regional masks
in subject-space (FLIRT, FMRIB Software Library1) based on the
AAL template (Tzourio-Mazoyer et al., 2002) were used to obtain
functional time-series from which nuisance regressors obtained
from regions of interest (ROIs) in whitematter and ventricles and
motion parameters (three planes) were removed.

A wavelet transform (MODWT) was used to obtain the range
0.035–0.07 Hz (wavelet scale 2; Achard et al., 2006). The resulting
data was used to populate an 84 × 84 correlation matrix. Each
cell—or edge—in this correlation matrix represents the Pearson
correlation of wavelet coefficient time courses between two non-
cerebellar regions of the AAL, and allowed us to compare the
strength of correlation between each set of two regions in Patient
AM vs. the same regional pairs in controls in an edgewise
fashion.

We additionally applied graph theoretical analysis, a
complementary technique which can provide information
on multiscale, parallel and distributed features of patterns
of connectivity (Sporns, 2014). For each individual, three
adjacency matrices were created with the highest 10% (349),
20% (697), and 30% (1046) significant FDR-controlled Pearson
correlation coefficients between regions, which were used
to construct unweighted brain graphs. Degree as well as
global and local efficiency were derived using Brainwaver
(Version 3.0.2, The R Foundation for Statistical Computing;
for detailed review see Rubinov and Sporns, 2010). Briefly,
degree is the number of edges connecting to a node and is a
broad measure of it importance/centrality (Bernhardt et al.,
2013). Efficiency is the inversion of the mean shortest path
length (Li,j) between a given node and a given set of other
nodes (Onias et al., 2014), including the rest of the network
(Global Efficiency, Eglob) or just the immediate neighbors of
a node (Local Efficiency, Eloc). In healthy cortex a balance
between a region’s ability to subserve its specialized function
in collaboration with related structures in the immediate
neighborhood (segregation/local integration) and its ability
to integrate long-range information from distributed regions
(global integration) is thought to be optimal (Achard and
Bullmore, 2007).

Control Comparison Sample and
Statistical Methodology
To compare AM to controls we used the Crawford-Howell
(CH) modified two-tailed t-test specifically designed for case-
control comparisons (Crawford and Garthwaite, 2012). The CH-
test evaluates the null hypothesis that a case is drawn from
the control distribution and the p-value additionally serves as a
point-estimate of abnormality of the patient’s score, indicating
the proportion of controls more extreme, and both applications
were utilized here (see Figure 1). See Crawford and Garthwaite
(2012) for formal proof of this dual role, and Monte Carlo
simulations demonstrating better control of Type I errors and

1www.fmrib.ox.ac.uk/fsl
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FIGURE 1 | Edgewise functional connectivity (FC) changes in Patient AM. (A) Significantly reduced edges (blue lines) in Patient AM compared to controls at
Time 1 using the Crawford-Howell (CH) test. Differences were considered significant at a Bonferroni-corrected level of p < 1.43 × 10−5. Red nodes are used to
highlight the regions joined by a significantly changed link, and are reproduced for comparison in all figures. (B) Abnormality map at Time 1 (left) and Time 2 (right),
making use of the p value generated by the CH test as a point estimate of abnormality to scale edges in size and color (larger, more yellow being more abnormal),
indicating the proportion of controls with FC values as extreme as those found for each edge in the patient. Note the bilateral frontal normalization vs. retention of
frontoparietal (FP) abnormalities at Time 2. Abbreviations used: Sup, superior; Mid, Middle; Inf, inferior; Supp, Supplementary; Tri, triangular; L, Left; R, Right. Brain
networks were visualized with the BrainNet Viewer (Xia et al., 2013).

greater robustness to violations of normality than other case-
control approaches. Edgewise comparisons were Bonferroni-
corrected at p < 1.43× 10−5.

Graph theoretical metrics were also compared at whole brain
and hemispheric scales as well as in 10 canonical ICNs. See
Supplementary Figure 3 for network partitions.

The CH-test was also used to confirm Patient AM and
controls did not differ in terms of age and motion parameters
(Supplementary Information 1).

RESULTS

Edgewise FC
During the acute phase of DD symptoms (Time 1), edgewise
analysis indicated a network of significantly reduced
(Bonferroni-corrected) interhemispheric connections and
intrahemispheric connections in the right (but not left)
hemisphere (Figure 1A, Table 1), which abated at the second
scan (Time 2). Only a single edge between the left middle and
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TABLE 1 | Significantly reduced edges in Patient AM vs. controls at Time 1.

Node 1 Node 2 t FC (R): FC (R): Cont.
Patient Mean (± SD)

Frontal_Sup_L Frontal_Sup_R −14.08 0.41 0.91 (± 0.03)
Frontal_Mid_R −6.42 0.60 0.87 (± 0.04)
Frontal_Sup_Medial_R −6.87 0.19 0.82 (± 0.09)

Frontal_Sup_R Frontal_Mid_L −8.01 0.37 0.85 (± 0.06)
Precentral_R −7.33 0.34 0.86 (± 0.07)
Supp_Motor_Area_L −11.28 0.27 0.87 (± 0.05)
Supp_Motor_Area_R −7.26 0.19 0.85 (± 0.09)
Cingulum_Mid_L −8.02 0.26 0.86 (± 0.07)
Cingulum_Mid_R −7.04 0.31 0.86 (± 0.08)
Postcentral_R −6.82 0.35 0.83 (± 0.07)

Frontal_Sup_ Frontal_Mid_L −6.66 0.16 0.78 (± 0.09)
Medial_R

Frontal_Inf_Tri_L −6.55 0.03 0.70 (± 0.1)
Frontal_Sup_Medial_L −11.28 0.49 0.91 (± 0.04)

Differences were considered significant at a Bonferroni corrected level of

p < 1.43 × 10−5. Abbreviations used: FC, functional connectivity; Cont.;

Control; SD, standard deviation; Sup, superior; Mid, Middle; Inf, inferior; Supp,

Supplementary; Tri, triangular; L, Left; R, Right.

inferior occipital gyri (t(15) =−8, p < 1.43× 10−5) was found to
be significantly reduced relative to controls.

The p-value yielded by the CH test was also used in its role
as a point estimate of abnormality, as depicted in Figure 1B.
At Time 1, prominent areas of abnormality are indicated
fronto-centrally in both hemispheres and fronto-parietally in
the right hemisphere. At Time 2, the scan demonstrates the
spatial stability of these areas of abnormality, while indicating
substantial ‘‘improvement’’.

Graph Theoretical Analysis
Results from graph analysis (Table 2) at Time 1 indicate
disturbances to Eglob, Eloc and in the average number of edges
(degree) within the right hemisphere. At Time 2, global and local
efficiency disturbances have abated, though enduring degree
differences are evident at some sparsities.

At the Intrinsic Connectivity Network scale (Figure 2,
Table 2) at Time 1, all metrics were disrupted within the
right fronto-parietal network, and Eglob and Eloc within the
salience network. At Time 2, the salience network had recovered
in terms of topological efficiency and no longer exhibited
significantly extreme graph metric estimates relative to controls
while the right fronto-parietal network demonstrated enduring
disturbances.

DISCUSSION

Patient AM represents a unique case of DD in a developmentally
acallosal patient, highlighting a novel complication of comorbid
AgCC and epilepsy, as well as serving as a test case for the use of
resting-state analyses in a little-understood disorder.

According to recent theoretical accounts, ‘‘alien’’ movements
occur because affordances supplied by the environment
reflexively generate motor primitives that are not inhibited
by an intended action (Frith et al., 2000; Biran et al., 2006).
The patient is aware that an action is produced (via sensory
feedback), but the actual action is performed despite no intention
and no postulation (feed-forward intention) of a predicted
bodily change. Failure of inhibitory signals arising from the
supplementary motor area (SMA) acting on a sensorimotor

TABLE 2 | Scales/Networks showing significant differences in graph theoretical indices.

Eglob Eloc Degree

Scale/Network Sparsity 10 20 30 Sparsity 10 20 30 Sparsity 10 20 30

Right hemisphere C. Mean 0.32 0.48 0.58 C. Mean 0.61 0.75 0.81 C. Mean 9.25 18.5 27.4
C. SD 0.04 0.04 0.04 C. SD 0.08 0.06 0.05 C. SD 0.74 1.19 1.57
T1 Pat 0.23 0.39 0.51 T1 Pat 0.48 0.64 0.7 T1 Pat 8.32 16.1 25.8

t −3.1 −2.9 −3.1 t −1.2 −3.2 −2.9 t −3.4 −4.5 −4.7
p <0.01 0.01 0.01 p 0.24 0.01 0.01 p <0.01 <0.01 <0.01

T2 Pat 0.26 0.45 0.56 T2 Pat 0.49 0.68 0.74 T2 Pat 8.26 16.3 23.9
t −1.9 −0.6 −0.2 t −0.7 −0.5 −0.3 t −0.4 −2.4 −2.3
p 0.08 0.54 0.78 p 0.51 0.64 0.71 p 0.69 0.03 0.03

Frontoparietal right C. Mean 0.36 0.53 0.63 C. Mean 0.63 0.79 0.84 C. Mean 9.05 20.3 31.2
C. SD 0.05 0.05 0.05 C. SD 0.13 0.05 0.04 C. SD 2.31 3.8 5.03
T1 Pat 0.11 0.23 0.36 T1 Pat 0.10 0.53 0.43 T1 Pat 4.43 7.86 13.00

t −4.8 −6.3 −5.8 t −4.1 −4.9 −8.8 t −2.00 −3.2 −3.5
p <0.01 <0.01 <0.01 p <0.01 <0.01 <0.01 p 0.07 0.01 <0.01

T2 Pat 0.14 0.42 0.53 T2 Pat 0.34 0.63 0.71 T2 Pat 2.29 9.86 17.9
t −4.2 −2.3 −2.8 t −2.3 −2.9 −2.8 t −2.3 −2.9 −2.8
p <0.01 0.03 0.04 p 0.04 0.01 0.01 p 0.04 0.01 0.01

Salience C. Mean 0.35 0.51 0.61 C. Mean 0.65 0.77 0.82 C. Mean 9.98 20.2 29.5
C. SD 0.08 0.08 0.08 C. SD 0.16 0.08 0.08 C. SD 3.31 5.29 6.64
T1 Pat 0.17 0.28 0.39 T1 Pat 0.44 0.51 0.53 T1 Pat 5.33 11.4 16.6

t −2.3 −2.6 −2.6 t −1.3 −3.3 −3.6 t −1.4 −1.6 −1.9
p 0.04 0.02 0.02 p 0.21 0.01 <0.01 p 0.19 0.13 0.08

T2 Pat 0.24 0.45 0.56 T2 Pat 0.42 0.8 0.86 T2 Pat 5.42 13.3 21.9
t −1.3 −0.7 −0.6 t −1.4 0.31 0.44 t −1.3 −1.3 −1.1
p 0.21 0.49 0.58 p 0.18 0.76 0.67 p 0.2 0.22 0.28

Differences were considered significant at p < 0.05 (indicated in bold type). Abbreviations used: C, control; SD, Standard deviation; Pat, Patient; T1, Time 1; T2; Time 2.
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FIGURE 2 | Significant changes in graph theoretical indices in intrinsic connectivity networks (ICNs). Differences, considered significant at p < 0.05
indicated by black asterisks, at Time 1 and Time 2 for the topological efficiency of connections between nodes and the entire brain network (Eglob top), with
immediate neighbors (Eloc, middle) and the number of edges connecting to a node (Degree, bottom). Gray squares represent graph indices in AM and dark
diamonds represent mean graph indices in controls. X-axis indicates connection sparsity as a percentage of all possible connections. Note that y-axis minima and
maxima are different across metrics. Abbreviations used: Aud, Auditory; DMN, Default Mode Network, SM, Sensorimotor; Vis, Visual; Prime, Primary; Sec,
Secondary; FP, Frontoparietal; Dors, Dorsal; Atten, Attention.

(SM) fronto-parietal system involved in the production and
coordination of motor primitives has also been posited, either
because of defective inhibition (e.g., lesions of the SMA) or an
impairment of its inter-hemispheric transfer (e.g., lesions of the
CC; Frith et al., 2000; Biran et al., 2006). Other accounts stress
a form of ‘‘split-brain’’ phenomena: movements are purposeful
and reasonable given each hemisphere’s competences, but
the ‘‘intention’’ is inaccessible and thus ‘‘alien’’ due to failed
interhemispheric integration (Verleger et al., 2011).

Activation-fMRI studies have attempted to delineate the
neural basis of alien hand syndromes (Assal et al., 2007; Schaefer
et al., 2010). Collectively, they suggest that both intentional and
non-intentional movements involve a common set of regions,
principally primary motor, supplementary motor and pre-motor
areas, but differ in the activation of the inferior frontal gyrus
(IFG). However, conclusions regarding the role of the IFG
could not be drawn, since the activation studies are in apparent
disagreement: associating the IFG with either intentional (Assal
et al., 2007) or non-intentional movements (Schaefer et al., 2010).

Given its minimal demands on the individual being scanned,
a resting-state approach offers an adjunct to traditional imaging
approaches that need not rely on specific symptoms or tasks
that may be difficult in DD (Scepkowski and Cronin-Golomb,
2003; Berlucchi, 2012). Our results (Figure 1A) implicate inter-
hemispheric disruption between a set of frontal regions identified
in the above activation studies (Assal et al., 2007; Schaefer
et al., 2010) in both intentional and non-intentional movements
(superior mesial, pre-central and SMA regions), as well as those
that distinguish them (i.e., the IFG). Additionally, graph analysis
implicates reduced efficiency in the salience network (Figure 2).
The salience network is a recently described large-scale network
that comprises frontoinsular regions and the anterior cingulate
cortex (ACC), along with limbic and subcortical structures
(Seeley et al., 2007). Comparisons between intrinsic connectivity
and task-based co-activation derived from many thousands of
functional datasets indicate the salience network encompasses
a wide range of processes including integration of bodily-
related information and conflict/error monitoring (Smith et al.,

Frontiers in Human Neuroscience | www.frontiersin.org 6 June 2016 | Volume 10 | Article 307

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Ridley et al. Longitudinal Changes in Alien Hand Connectomics

2009), positioning it remarkably well for the transitional role
between extero-/interoception and cognition originally posited
by Seeley et al. (2007): as a sensory integrator and filter capable
of ‘‘tagging’’ information as relevant or irrelevant for higher-
level ‘‘executive’’ networks. Concordantly, salience network
disruption observed in frontotemporal dementia is thought
to be specifically implicated in disinhibited behaviors (Farb
et al., 2013; Zhou and Seeley, 2014). Thus, our results may
reflect a disruption of a system involved in the ability to
select the relevant sensory stimuli, and/or inhibit non-intended
actions.

Furthermore, patients experience non-volitional movements
as not only unplanned but also as distinctly ‘‘other’’ or ‘‘alien’’
(Scepkowski and Cronin-Golomb, 2003; Biran and Chatterjee,
2004; Biran et al., 2006). Both edgewise and ICN results indicate
disruption of an inter-hemispheric network that task-based
neuroimaging implicates in distinguishing self/other-generated
actions, including dorsomedial frontal cortices and one of the
salience network’s key nodes (the insular region; Farrer and Frith,
2002; Farrer et al., 2003; Sperduti et al., 2011). Interestingly,
corticobasal degeneration can also result in volitional experience
and movement aberrations falling under the rubric of ‘‘alien
hand’’ (c.f. Schaefer et al., 2016). In a group of patients suffering
from this condition, Wolpe et al. (2014) revealed modified FC of
the pre-SMA with a set of fronto-parietal regions that included
the anterior component of the salience network.

Taken together, the normalization of connectivity and
network organization with remission of DD may reflect a
regained ability to detect and disregard irrelevant SM programs
primed by environmental affordances, and a restored sense of
authorship in self-generated actions. Enduring modifications
within a right hemisphere could reflect remaining difficulties
in tool-use pantomimes (Supplementary Figure 1), consistent
with the role of FP regions in complex actions relying on stored
information such as tool use (Wheaton and Hallett, 2007).

We suggest that disconnection symptoms and DD were likely
prompted by SE, unbalancing the inter-hemispheric transfer that
may have previously transited via an intact anterior commissure
which subserved the patient’s previously ‘‘normal’’ behavioral
profile (Franz, 2012; Winter and Franz, 2014). Comorbities
in patient AM, while potential sources of vulnerability seem
unlikely to account for the acute onset and trajectory described
here. Ongoing seizure activity cannot explain AM’s DD, since
seizures have fully resolved. Despite distributed network effects
of epilepsy (Bettus et al., 2009, 2010; Guye et al., 2010; Ridley
et al., 2015), changes involving the regions identified here are
for the most part identified in children and young adults and
represent developmental and non-acute processes (Ibrahim et al.,
2014; Luo et al., 2014; Li et al., 2015; Wei et al., 2015). Likewise,
despite drastic and life-long structural modifications (Kasprian
et al., 2013; Jakab et al., 2015) AgCC it is not equivalent to
callosotomy (Owen et al., 2013), and recent evidence suggests
acallosal brains can support a largely ‘‘normal’’ cognitive and
intrinsic FC repertoire in the form of preserved homotopic
connectivity and bilaterally symmetric ICN architecture (Tyszka
et al., 2011; Tovar-Moll et al., 2014). This conclusion is
bolstered by the fact that partitioning at gross anatomical scales
(Supplementary Figure 4) does not yield equivalent graph metric

changes, underlining the relevance of the functional network
partitions employed here.

However, despite the forgoing, larger homogenous
samples—including separate longitudinal control, AgCC
and epilepsy patient groups—are certainly necessary to address
the limitations of this study and confirm Patient AM as a general
model of alien hand syndromes. Furthermore, the test-retest
reliability of connectomics metrics places a lower limit on the
interpretability of data, though the stability of our data over
time as suggested by Figure 1B militate against this being the
main determinant of our results. Future work will also need to
speak to known sources of variance in connectomics, including
age, gender, handedness, hemispheric dominance, medication,
and vigilance state (Bettus et al., 2009; Liu et al., 2009; Tian
et al., 2011; Vlooswijk et al., 2011; Tagliazucchi and Laufs,
2014).

CONCLUSION

Our data suggest that the salience network and interhemispheric
connectivity play a role in supporting the experience and control
of volitional movements and the ability to select themost relevant
among internal and extrapersonal stimuli in order to produce
appropriate behavior. Bearing methodological and sampling
caveats in mind, the current work represents a promising
first indication that rs-fMRI is relevant to the understanding
of alien hand syndromes over time and, more broadly, of
neuropsychiatricmanifestations thatmay benefit in the sameway
from an adjunct to structural and task-based functional imaging.
In this spirit, we hope that AM’s case will serve to marshal
resources in pursuit of a better understanding of this difficult and
rare disorder.
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