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Reference frame transformations are usually considered to be deterministic. However,

translations, scaling or rotation angles could be stochastic. Indeed, variability of these

entities often originates from noisy estimation processes. The impact of transformation

noise on the statistics of the transformed signals is unknown and a quantification of

these effects is the goal of this study. We first quantify analytically and numerically how

stochastic reference frame transformations (SRFT) alter the posterior distribution of the

transformed signals. We then propose an new empirical measure to quantify deviations

from a given distribution when only limited data is available. We apply this empirical

measure to an example in sensory-motor neuroscience to quantify how different head

roll angles change the distribution of reach endpoints away from the normal distribution.

Keywords: reaching, sensory-motor transformation, reference frame transformation, Stochastic noise, deviation

from normality

1. Introduction

Reference frame transformations are crucial components in many areas of science and
technology. This includes Engineering, Computer Graphics, Physics, Robotics, Mathematics,
and Neuroscience. Until now they have been used in a deterministic fashion, i.e., assuming that
we have exact knowledge about the transformation parameter, such as rotational angles and axes.
However, in real world applications these transformation parameters are often noisy estimates. For
example, measurement errors can result in noisy parameter estimates. Here, we are interested in
describing the impact of noise in reference frame transformations on the statistical distribution
of transformed data. We propose that reference frame transformations should sometimes more
appropriately be described in stochastic terms, i.e., stochastic reference frame transformations
(SRFTs), and demonstrate the impact of SRFTs for Neuroscience research, but our findings
generalize to other areas.

In Neuroscience—our application field of choice—reference frame transformations are
omnipresent (Knudsen et al., 1987; Soechting and Flanders, 1992; Lacquaniti and Caminiti, 1998;
Snyder, 2000; Cohen and Andersen, 2002; Engel et al., 2002; Henriques et al., 2002; Crawford
et al., 2004; Buneo and Andersen, 2006; Schlicht and Schrater, 2007; Tagliabue andMcIntyre, 2014)
and we therefore expect a large impact of noise on transformed data and thus the neuronal and
behavioral outcomes. For example sensory signals enter the brain in different frames of reference
(vision in a retinal frame, audition in a head-centered frame, etc) and drive different motor systems
(e.g., eye, head, arm movement) requiring motor commands to be specified in yet again different
coordinate frames. Thus virtually all sensory-motor computations are affected by the inevitable
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stochasticity of reference frame transformations (Rossetti et al.,
1994; Sober and Sabes, 2003, 2005; Blohm and Crawford, 2007;
Schlicht and Schrater, 2007; McGuire and Sabes, 2009; Burns and
Blohm, 2010; Burns et al., 2011).

In the present manuscript, we provide new methods for
quantifying SRFTs. First, we compute the exact change in
the statistical posterior distribution compared to the original
distribution due to SRFTs. In a second step, we propose a new
measure to quantify deviations of statistical distributions from
their original distribution in limited experimental data. Finally,
we validate our hypotheses and approach on previously published
data from a reaching task performed under different head roll
positions (Burns and Blohm, 2010) to demonstrate that larger
reference frame transformations will lead to a larger deviations
from normality. Together, these three steps are the building
blocks for capturing the effects of SRFTs on experimental data.

2. Methods

2.1. SRFT Analysis
We will consider the following general linear transformation of
original data points P0 into corresponding data P1.

P1 = RP0 (1)

Our first goal was to find the distribution of the transformed data
P1 given P0 with a known distribution and a noisy transformation
matrix R = R(k, θ), where k is a scaling factor and θ is a rotation
angle. Without loss of generality, we will use two-dimensional
(2D) data and transformations of the form:

R = k

(

cos θ − sin θ

sin θ cos θ

)

(2)

,and investigate the effect of noise in both k and θ on the
resulting distribution of P1. (Note that the linear transformation
depends non-linearly on θ and is thus expected to result in
non-linear effects). To this end, we assume that the data to
be transformed is normally distributed because normality is
assumed in almost all behavioral neuroscience data, but our
conclusions and mathematical developments also apply for other
distributions. Because rotation is a linear transformation, the
transformed data should be jointly normal as well. Therefore,
it is possible to investigate the effect of noisy transformations
by measuring the amount of deviation from normality on the
transformed data.

We assume that the data vector P0 = (x1, x2) contains two
jointly normal random variables with variances σ 2

xi
, i = {1, 2},

and correlation coefficient ρ with the following joint distribution:

fX(x1, x2) =
1

2πσx1σx2

√

1− ρ2
exp
(

−
1

2(1− ρ2)

{ (x1 − µ1x)
2

σ 2
x1

+
(x2 − µ2x)

2

σ 2
x2

−
2ρ(x1 − µx1 )(x2 − µx2 )

σx1σx2

})

.

(3)

Let us further assume that the data is going to be transformed by
the transformation matrix R to the new vector P1 = (y1, y2) =
y. The goal is then to find the distribution of the resulting
transformed vector ywhen the angle of rotation θ , and the scaling
factor k are noisy with known distributions fθ (θ), and fk(k),
respectively. If we assume that the data is jointly normal, then the
resulting linearly transformed vector y would be jointly normal
as well with the following distribution:

fY (y1, y2|θ, k) =
1

2πσy1σy2

√

1− ρ2
y

exp
(

−
1

2(1− ρ2
y )

{ (y1 − µ1y)
2

σ 2
y1

+
(y2 − µ2y)

2

σ 2
y2

−
2ρy(y1 − µy1 )(y2 − µy2 )

σy1σy2

})

,

(4)

where µy1 , µy2 , σ
2
y1
, σ 2

y2
, and ρy are defined, respectively as:

µy1 = k(cos θµx1 − sin θµx2 ), (5)

µy2 = k(sin θµx1 + cos θµx2 ), (6)

σ 2
y1

= k2(cos2 θσ 2
x1
+ sin2 θσ 2

x2
− ρ sin 2θσx1σx2 ), (7)

σ 2
y2

= k2(sin2 θσ 2
x1
+ cos2 θσ 2

x2
+ ρ sin 2θσx1σx2 ), (8)

ρy =

1
2 sin2θ(σ

2
x1
− σ 2

x2
)+ ρσx1σx2 cos 2θ

σy1σy2
. (9)

The distribution of the transformed vector y can now be defined
as:

fY (y1, y2) =

∫

k

∫

θ

fk(k)fθ (θ)fY (y1, y2|θ, k) dθdk (10)

Note that we have assumed that the scaling factor is independent
of the angle of rotation. The integral in Equation (10) is difficult
to be solved analytically. However, numerical estimation of the
integral can provide us with a good understanding of the shape
of the distribution of the transformed data y.

To quantify the influence of noise on the transformed
data distribution, we calculated the distance of the resulting
distribution from the distribution obtained with a noiseless
transformation. Doing so, we can investigate the effect of noise in
the rotation angle and scaling factor on the shape of the resulting
distribution.

In this paper we use the Kullback–Leibler distance (Kullback
and Leibler, 1951) to calculate the divergence of the two
known distributions. Since the Kullback–Leibler distance is a
non-symmetric measure, we specifically set out to quantify
the information lost when using fY,noiseless (Equation 4) to
approximate fY (Equation 10), such that:

DKL(fY ||fY,noiseless) =

∞
∫

−∞

fY ln
fY

fY,noiseless
dx. (11)
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2.2. Assessing Experimental Deviations from
Multivariate Normality
When the distribution of the transformed data is known or can
be estimated numerically, it is possible to assess the deviation
from multivariate normality (MVN) using the Kullback–Leibler
distance (Equation 11). We use this in the first part of the
results section for simulated data. However, in experiments,
one typically does not have access to the noiseless distribution
fY,noiseless. Thus, to assess deviation from MVN for experimental
data sets, two major groups of procedures have been used. The
first group are statistical assessments that can test the hypothesis
of data being normally distributed with a given p-value but
such tests are not robust against sample size effects (Henderson,
2006). The second group of procedures uses graphical tools
such as probability–probability plots (P–P) and quantile–quantile
plots (Q–Q) (Wilk and Gnanadesikan, 1968; Thompson, 1990;
Burdenski, 2000; Henderson, 2006).

Here, we propose a different approach to quantify the amount
of deviation from normality that consists in (1) reducing the data
space dimensionality and (2) estimating the empirical cumulative
distribution function (CDF) of the transformed data samples
and the reduced-dimension original data. We propose that
the distance between the two empirical CDFs is a measure of
deviation from normality.

In order to reduce the data space from 2D (or 3D) to 1D, we
compute the sample’s Mahalanobis distance:

d2Pi = (Pi − µP0 )
T6−1

P0
(Pi − µP0 ), (12)

where µP0 and 6P0 are the mean vector and covariance matrix
of the original data (P0), respectively; 1 ≤ i ≤ n is the sample
number. The Mahalanobis distance is computed for each sample
of the transformed data P1.

The advantage of the Mahalanobis distance is twofold. It not
only reduces the dimensionality of the data, but for MVN, the
distance distribution also only depends on the dimensionality
of the data, and does depend on neither the marginal standard
deviations nor the correlation coefficients of data components.
For MVN data with dimension p, the Mahalanobis distance
distribution is χ2

p with p degrees of freedom. To study SRFTs, we
thus compute the Mahalanobis distance for the data transformed
without noise (P1) as well as the SRFT data (P1SRFT ), and estimate
empirical CDFs for the two sample sets.

For independent identically distributed (IID) random
variables xi, 1 ≤ i ≤ n with the common CDF F(t), the empirical
CDF can be defined as:

F
emp
x (t) =

1

n

n
∑

i=1

1 (xi ≤ t) , (13)

where 1 (.) is the indicator function.
Now the distance between the empirical CDFs of d2P1 and d2P1SRFT
can be calculated as:

D(F
emp

d2P1
, F

emp

d2P1SRFT

) =

1
∫

0

(

F−1
d2P1

(u)− F−1
d2P1SRFT

(u)

)2

du, (14)

where F−1(.) is the inverse of the empirical CDF. The inverse
exists because CDF is amonotonically increasing function for any
random variable, and its domain is from 0 to 1.

To analyze the effects of noise in θ and k, we generated a
random data sample, P0, and then applied transformations R

with varying amounts of noise in θ and k.

2.3. Experimental Proof of Concept
Burns and Blohm (2010) showed that multi-sensory weights
depend on contextual noise in reference frame transformation.
They designed a reaching experiment to investigate the effect
of head roll on sensory transformations and its consequences
for multi-sensory integration weights. They showed that head
orientation affects the weighting of visual and proprioceptive
information in multi-sensory integration during reaching in
two distinct ways. First, non-accurate head roll estimation
results in an erroneous rotation of the visual information
into proprioceptive coordinates. Second, non-reliable head roll
estimation affects motor planning, and results in increased
movement variability (Burns and Blohm, 2010). In other words,
noise in the reference frame transformation between the rotated
visual input during head roll and the spatially requiredmovement
resulted in more variable movements when the head was rolled
as compared to when the head was straight. In this paper we
use their data to show that reaching under head-roll conditions
also results in deviations from normality compared to the head
straight-ahead situation, confirming the hypothesis that head roll
estimation noise underlies SRFTs of the visual information into
proprioceptive coordinates.

Experimental procedures have been described in detail in
Burns and Blohm (2010). Briefly, in their experiment they asked
seven participants to perform a reaching task while seated in
an augmented reality setup with their head position kept in
place using a bite bar. Subjects viewed visual stimuli that were
projected from an overhead screen through a semi-mirrored
surface in six different positions at 10 cm distance from a center
start position cross at 60, 90, 120, 240, 270, and 300◦ around
the center cross. Underneath the mirrored surface, an opaque
board prevented the subjects from viewing their hand. A dot
corresponding to real time hand position provided subjects with
feedback about their hand, but only until reach movements
started at which time the hand position cue was removed.
Subjects were instructed to begin each trial by aligning the
visual cue representing their hand with the center cross. They
performed rapid reaching movements using a vertical handle
mounted on an air sled while keeping their gaze fixated on the
center cross (Burns and Blohm, 2010). Participants completed
the task at three different head roll positions, −30, 0, and
30◦ head roll. We used this data to analyze the distribution
of reach directions compared to the normal distribution using
Equation (14).

3. Results

In this section we investigate the effect of noise in rotation
angles on transformed simulated data (see Figure legends for
exact simulation parameters) to investigate the statistical data
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properties before and after a noisy rotation. To do so, we first
numerically computed the integral in Equation (10) to find the
distribution of the transformed data with the assumption that
the angle of rotation is normally distributed (see Figure 1).
We then compare this noisy transformation result to the data
transformed without noise in the rotation angle. As noted
before, this latter distribution is normal for joint normal original
data. All transformations considered were performed under the
assumption of independent Gaussian noise in the transformation
parameters.

Three things can be observed in Figure 1 when comparing
the transformed data without noise in the transformation angle
(Figure 1B) to data from noisy transformations (Figures 1C–E).
First, it is quite obvious that noise added to the transformation
will result in noisier transformed data. This will result in larger
variances and covariances of the transformed data. Second, even
moderate noise can change the covariance of the transformed
data (compare Figure 1B and Figure 1C), both in size and
orientation. Third, noise in the transformation angle generally
distorts data away from multi-variate normality. This distortion
is non-trivial in particular for data with non-zero correlation ρ.
This is best observed in the contour plots in the lower part of

Figures 1C–E . It is thus important to quantify such distortions,
which we will do in the following.

To obtain a better idea about how noise in transformations
affects the distribution of the transformed data, we quantified
the difference between the distribution of the data transformed
under noisy conditions and the transformed data without noise
in the transformation using the Kullback–Leibler distance (DKL)
measure defined in Equation (11). Figure 2 shows the result
of the deviation from normality analysis. As one can see, DKL

saturates for large transformation angle noise σθ but grows fast
with the data eccentricity from the origin ||µx||. The former is
observed because with infinite σθ the data become uniformly
distributed on an annulus, while the latter occurs because for
small ||µx|| the original data distribution, i.e., the variability
ellipse, spans the origin and thus transformation noise does not
have a big impact. It should also be noted that DKL is invariant to
the mean transformation angle ||µθ || (data not shown).

Next we analyzed the effect of the scaling factor k on DKL, also
as a function of σθ in Figure 3. Here one can observe the effect
of σθ on DKL for small ||µx|| (i.e., ||µx|| = 1), which was not
visible in Figure 2 due to effect scaling. Interestingly, k only has
an influence on DKL for large σθ , actually reducing the deviation

A

C D E

B

FIGURE 1 | Noisy rotations. (A) Scatter plot of n = 5000 original

normally distributed data points with µx1
= 0, µx2

= 3, ρ = 0.5 and

σx1
= σx2

= 1. (B) Same data as in (A) rotated by a fixed µθ = −π/4.

(C–E) (top). Results from noisy rotations of the data in (A) by the same

average amount as in (B) (µθ = −π/4) but with different rotational

standard deviations, i.e., σθ = 0.4 (C), σθ = 1 (D), σθ = π/2 (E). Bottom

parts of (C–E) show contour plots of the distribution fy (y1, y2 )

(Equation 10).
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A B

FIGURE 2 | Effect of transformation angle noise σθ and data

eccentricity from the origin ||µx|| on the multi-variate

normality of the transformed data, as captured by the

Kullback–Leibler distance DKL (Equation 11). µx1
= 0, µx2

= 1,

ρ = 0.5 and σx1
= σx2

= 1. (A) Surface plot. (B) Corresponding

contour plot.

A B

FIGURE 3 | Effect of transformation angle noise σθ and scaling factor k on the multi-variate normality of the transformed data, as captured by the

Kullback–Leibler distance DKL (Equation 11). µx1
= 0, µx2

= 1, ρ = 0.5 and σx1
= σx2

= 1. (A) Surface plot. (B) Corresponding contour plot.

from normality. This is because scaling in the transformation will
result in data being pushed away from the origin and thus result
in smaller relative deviations from normality.

More interestingly we also analyzed the effect of data
correlation ρ and σθ on DKL. This is shown in Figures 4A, B. As
can be observed, deviations from normality grow with increasing
data correlation ρ. Thus, increased covariances (and variances)
in the data make the transformation result more vulnerable to
noise effects. In addition, Figure 4C shows that this relationship
depends on the relative contribution of σx1 and σx2 . Thus the
orientation of the correlated noisy original data with respect to
the eccentricity (µx1 and µx2 ) from the origin is an important
factor in how noise in the rotation angle influences multi-variate
normality.

While deviations from normality can be quantitatively
assessed when both the original and transformed data are
available, this is not usually the case when dealing with
experimental measurements where we often do not have access
to the original data distribution but only measure the data
after it has been transformed. In order to still be able to
assess deviations from normality and to do so regardless of
data dimensionality, we developed a novel measure based on

the sample’s Mahalanobis distance (see Equation 12). This has
three advantages. First, it reduces the multi-dimensional data to
a one-dimensional measure; second, the Mahalanobis distance
(by definition) normalizes the deviations from the mean by the
variance thus providing a scale-invariant measure; and three,
the Mahalanobis distance of normally distributed data follows
a χ2 distribution. The latter means that we can generate χ2-
distributed data for comparison with experimental data if the
original data is not available.

Figure 5 shows how the Mahalanobis distance of the
transformed data behaves as a function of angular transformation
noise σθ when plotted as Q–Q plots. As shown, the larger σθ ,
the more the data deviates from the unity line. The unity line
represents equal P1 and P0 distributions and thus the larger
the deviations from the unity line, the larger the deviation
from normality of P1 (note, that original data P0 is normally
distributed here).

Using the procedure illustrated by the Q–Q plots (Figure 5),
we can quantify the deviation from normality in a single measure,
as outlined in Equation (14). Using this single measure of
the empirical distance D from normality, we can analyze its
susceptibility to data set size n. This is done in Figure 6. The small
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A

C

B

FIGURE 4 | Effect of transformation angle noise σθ and data

correlation ρ on the multi-variate normality of the transformed data,

as captured by the Kullback–Leibler distance DKL (Equation 11).

µx1
= 0, µx2

= 1 and σx1
= σx2

= 1. (A) Surface plot. (B) Corresponding

contour plot. (C) Effect of transformation angle noise σθ on DKL for different

combinations of original data variances (σx1 and σx2
) and correlations ρ.

A B C

FIGURE 5 | Q–Q plots of the transformed data (P1) Mahalanobis

distance against the original data (P0) for different values of angular

transformation noise σθ . (A) σθ = 0.1. The Q–Q plot compares an ordered

sample distribution with the quantiles of the standard normal distribution. (B)

σθ = 1. (C) σθ = π/2. Deviations from the unity line indicate deviations from

normality.

influence from data set size on the mean empirical distance D
(Figure 6A) stems from the random nature of the samples and
P0 and P1 here being independently generated, i.e., P1 is not a
rotated version of P0. We did this to analyze the usefulness of this
empirical measure for real data where original distributions are
often not available and have to be created based on an assumption
of the underlying distribution. Thus, for small effects and limited
data it is preferable to only compare D across data sets of equal
size. As expected, the variance of D also depends on the data

set size n (Figure 6B) and as a result so does the coefficient of
variation (Figure 6C). The larger the data set size n, the more
robust the estimation of D.

To demonstrate that our empirical measure of deviations from
normality can be effectively used for real data, we computed
the deviation from normality for reaching movements under
different head roll angles as published in Burns and Blohm,
2010 (see Methods for more details). For visually-guided reaches
during head roll, the brain has to transform rotated visual
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A

B

C

FIGURE 6 | Dependency of the empirical distance D from multi-variate

normality (see Equation 14) on the angular transformation noise σθ and

the number of available data points n. (A) Average (Mean) empirical

distance D. (B) Standard deviation (SD) of empirical distance D. (C) Coefficient

of variation (CV = SD/Mean) of empirical distance D.

inputs into spatially accurate reach motor commands. This
requires a reference frame transformation. Burn and Blohm
(2010) have shown in accordance with other studies (Sober
and Sabes, 2003, 2005; McGuire and Sabes, 2009; Burns et al.,

FIGURE 7 | Experimental validation of deviation from normality

measure. When the head was rolled and thus a larger reference frame

transformation was needed, data deviated more from the normal distribution

as compared to when the head was straight (head roll = 0). Average measures

across all 7 subjects and across all six reach targets are shown for each head

roll angle (means ± s.e.m.). Asterisks indicate significant differences (ANOVA

with post-hoc paired t-tests, p < 0.05). Data points at −30 and 30◦ head roll

angle were not significantly different from one another (p > 0.1).

2011) that such reference frame transformations introduce noise,
and that the larger the transformation angle, the more noise
is added. Based on our SRFT theory, this should lead to
changes to the normality of reach distributions. Specifically,
we expect larger deviations from normality when the head is
rolled as opposed to when the head is upright. We test this
hypothesis in Figure 7. As one can observe, data is deviated from
normality even when the head is upright. This might have many
causes, including measurement errors, biomechanical factors or
workspace anisotropies (e.g., we use our right arm more for
rightward reaches). Regardless, the important observation is to
compare deviations from normality when the head is rolled
to when the head is upright. Doing so in Figure 7, we find
that reaching under eccentric head rolls leads to significantly
larger deviations from normality than reaching when the head
is upright [Two-Way ANOVA with factors subjects and head
roll; main effect of head roll F(2, 117) = 6.27, p = 0.0026; main
effect of subjects F(6, 117) = 0.96, p = 0.45; no interaction effect).
This validates our hypothesis and confirms that reference frame
transformations in the brain should indeed be viewed as being
stochastic in nature.

4. Discussion

We have studied the impact of stochastic noise on reference
frame transformations and argue that SRFTs can lead to
distortions of the statistical distribution of transformed data. In
neuroscience, this idea has been previously suggested (Rossetti
et al., 1994; Sober and Sabes, 2003, 2005; Blohm and Crawford,
2007; Schlicht and Schrater, 2007; McGuire and Sabes, 2009;

Frontiers in Computational Neuroscience | www.frontiersin.org 7 July 2015 | Volume 9 | Article 82

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Alikhanian et al. Stochastic reference frame transformations

Burns and Blohm, 2010; Burns et al., 2011; Tagliabue and
McIntyre, 2011, 2013, 2014) but never formally quantified.
Indeed, noise added in reference frame transformations should
lead to larger variability (in terms of variance) in the system’s
output. This has been reported for the geometry-dependence of
hand localization (Scott and Loeb, 1994; Fuentes and Bastian,
2010), for reaching movements (Rossetti et al., 1994; Blohm and
Crawford, 2007; Schlicht and Schrater, 2007; Burns and Blohm,
2010) and for sensory-motor transformations requiring explicit
reference frame transformation (Blohm and Crawford, 2007;
Burns and Blohm, 2010). We propose a new method to capture
the changes of the statistical distribution of experimental data
after a reference frame transformation, which tells us that the
sensory-to-motor transformation in the brain involves a SRFT
based on noisy estimates of the head roll angle (Steinleitner,
1978; Guerraz et al., 2000).

Reference frame transformations are omnipresent in the
brain (see Introduction). Therefore we argue that quantifying
those SRFTs could provide deep insight into the working
principles of the brain. This includes research areas as diverse
as multi-sensory integration across reference frames, coordinate
transformations in sensory-motor planning and forward/inverse
models in motor control. Indeed, based on our theory, one
would expect deviations from specific distributions (usually
Gaussian) in many of these studies. Our framework will for the
first time allow quantifying these effects. In addition, many other
research areas face similar problems. For example, in the pose
estimation industry different sensors capture data in different
reference frames that need to be combined for a unique pose
estimate and the relative orientation of those reference frames
is often not fixed (such as for a sensor attached to the moving
body). In that case, the relative orientation between reference
frames needs to be estimated from (noisy) sensory data. Thus

SRFTs should be used to quantify the reliability of individual
sensory information in the generation of the unique pose
estimate. Thus we believe that this study has broad implications
for science and industry that go beyond neuroscience
research.

The method presented herein can be used to quantify
how different experimental conditions affect output statistics,
and thus to indirectly estimate the degree of stochasticity of
the SRFTs involved, which can provide insight into different
processing steps in the brain. There are of course limitations
to our framework. So far we have explored 2D effects and did
not consider higher dimensions. In general, only translational
transformations will maintain normality, which scaling or
rotations can result in deviation from the original distribution. It
is straight-forward to extend our main findings to 3D rotations,
as data can be projected onto a 2D plane orthogonal to the
rotation axis. However, investigating the effect of uncertainty in
the orientation of the rotation axis remains to be done. Another
limitation is that the original data (before any reference frame
transformation) is often not known and has to be assumed,
at least in neuroscience research. This also means that we
do not know what the ideal distribution shape should be, as
required by the empirical distancemeasure. However, one can get
around this problem by simply assuming a certain distribution

and computing deviations from that distribution for different
conditions, such as we have done here. Overall, these limitations
are easily overcome in practice and should not prevent successful
application of our theory.
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